
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 10 (2021), no.12, 3515–3531
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.10.12.1

BIAS CORRECTION AT END POINTS IN KERNEL DENSITY ESTIMATION

Hind Bouredji and Abdallah Sayah1

ABSTRACT. In this paper, we propose a new approach of boundary correction for
kernel density estimation with the support [0, 1], in particular at the right end-
points and we derive the theoretical properties of this new estimator and show
that it asymptotically reduce the order of bias at the boundary region, whereas the
order of variance remains unchanged. Our Monte Carlo simulations demonstrate
the good finite sample performance of our proposed estimator. Two examples with
real data are provided.

1. INTRODUCTION

Suppose we observe n independent identically distributed aleatoire random
variables, with unknown continuous density function f . The kernel density esti-
mator which presented by Rosenblatt [8] then developed by Parzen [7], is defined
as,

(1.1) fn,R (x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
, x ∈ R,
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where h is a positive smoothing parameter, called the bandwidth, in which h→ 0

and nh → ∞ when n → ∞, and k is the kernel function with compact support
[−1, 1], satisfying the following conditions,

(1.2) k (t) ≥ 0, k (t) = k (−t) ,
1∫

−1

k (t) dt = 1, 0 6=
1∫

−1

t2k (t) dt <∞.

Let introduce the notation,

(1.3)

1∫
−1

tjk (t) dt = µj, j = 1, 2, 3,

to be more precise µ1 = µ3 = 0 since k is symmetric. Best reference in this area
is Silverman [?] and Wand and Jones [15]. With appropriate choice of h, we can
divided the support of the density onto regions, the intervals [0, h) and (1−h, 1] are
called the left and the right boundary region respectively and the interior region
formed by the interval [h, 1− h]. The performance of the kernel density estimator
at least in one side of the support (x ∈ [0, h) ∪ (1− h, 1]), differs from the interior
points due to so-called boundary problems and the region formed by the points
with boundary problems is called the boundary region.

To remove these boundary effects at the left region (x ∈ [0, h)), a diversity
of methods have been developed during the past two decades. Among them
the reflection method (Schuster [17]), the transformation method (Marron and
Ruppert [6]), the boundary kernel method (Jones [3]), the pseudo-data method
(Cowling and Hall [2]), the local linear method (Zhang and Karunamuni [12]).

As the boundary kernel density estimator could yield negative point estimates,
Jones and Foster [16] propose much simpler nonnegative boundary corrected es-
timators which are analogues of the wide class of simple. Karunamuni and Al-
berts [4] proposed a new general method generates a class of boundary corrected
estimators possess desirable properties such as local adaptivity and non-negativity,
in addition to this work, Karunamuni and Alberts [5] constructed a new technique
based on a data transformation that depends on the point of estimation. In a
very exciting work, Zhang and al [14] expected a new method of boundary cor-
rection for kernel density estimation, their approach is an amount of generalized
reflection method involving reflecting a transformation of the data.
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In this paper, we focus on the boundary bias problem in the right side of the
support (1− h, 1], when the true density supported with endpoints one, the kernel
density estimator has the well-known boundary problem. More specifically, we
assume that f (j), the jth derivative of f , exists and is continuous on a neighborhood
of x, (j = 0, 1, 2, 3), with f (0) = f , then for x = 1− ch, c ∈ [0, 1[,

E (fn,R (x)) =

1∫
−c

k (t) f(x− th)dt

= f(x)

1∫
−c

k (t) dt− hf (1)(x)

1∫
−c

tk (t) dt

+
h2

2
f (2)(x)

1∫
−c

t2k (t) dt+ o
(
h2
)

= f(x)− f(x)
−c∫

−1

k (t) dt− hf (1)(x)

1∫
−c

tk (t) dt

+
h2

2
f (2)(x)

1∫
−c

t2k (t) dt+ o
(
h2
)
,

therefore the value of bias of fn,R is

(1.4) − f (x)
−c∫

−1

k (t) dt+ hf (1) (x)

1∫
−c

tk (t) dt+
h2

2
f (2) (x)

1∫
−c

t2k (t) dt+ o
(
h2
)
.

Similar computations give the variance expression,

(1.5)
f (x)

nh

1∫
−c

k2 (t) dt+ o

(
1

nh

)
.

However, the usual bias is

(1.6)
h2

2
f (2) (x)

1∫
−1

t2k (t) dt+ o
(
h2
)
,
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for (1.4) and (1.6), we see that fn,R is not a consistent estimator of f and there
exists an extra first order term of h. To correct this boundary problem, we construct
a new approach, the basic technique of construction of the proposed estimator
is kind of a generalized reflection method involving reflecting a transformation
of the observed data. Then, a comparison of the boundary performance of our
proposed estimator with the other kernel density estimators is carried out. It is
well-known that a comparison between different methods is only meaningful with
respect to their respective optimal performances. We have adopted this strategy
in our comparison.

The rest of the paper is formulated as following. Section 2 introduces asymp-
totic properties of the proposed kernel estimator. Section 3 conducts Monte Carlo
simulations and data analysis to compare the performance of our estimator, which
is the main objective of this paper. The conclusion presents in Section 4.

2. TRANSFORMATION-REFLECTION KERNEL DENSITY ESTIMATION

Using transformation and reflection method in kernel density estimations im-
proved bias at the boundary, but unless the first derivative of the density is 0, the
estimator with reflection can still be much more severely biased at the boundary
than in the interior. Marron and Ruppert [6] propose to transform the data to a
density that has its first derivative equal to 0 at both boundaries. The transforma-
tion is selected from a parametric family, which is allowed to be quite general in
our theoretical study. Zhang and al [14] combine those two methods to construct
a new approach which correct the boundary problem at the left side of the sup-
port. We use this technique to correct the boundary problem at the right side. The
proposed estimator defined as follow,

(2.1) fn,TR (x) =
1

nh

n∑
i=1

{
k

(
x−Xi

h

)
+ k

(
x− 2 + ψ(Xi)

h

)}
.

The transformation ψ is stated in the theorem 2.1, which exhibits the explicit forms
of the bias, variance and mean squared error (MSE), under certain conditions on
ψ.

Theorem 2.1. Assume that ψ(3) exist and is continuous, where ψ(i) denote the ith

derivative of ψ. Further assume that ψ−1 (1) = 1 and ψ(1) (1) = 1, where ψ−1 is the
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inverse function of ψ. Then for x = 1− ch, 0 ≤ c < 1, we have,

Bias (fn,TR (x)) = h

−c∫
−1

(t+ c)k (t) dt
[
2f (1) (1)− f (1)ψ(2)(1)

]

+
h2

2
µ2f

(2)(1)− h2

2

−c∫
−1

(t+ c)2k (t) dt

×
[
f (1)ψ(3)(1)− 3ψ(2)(1)

[
f (1) (1)− f (1)ψ(2)(1)

]]
+ o

(
h2
)
,

(2.2)

and

V ar (fn,TR (x)) =
f(1)

nh

 1∫
−1

k2 (t) dt+ 2

1∫
−c

k (t) k (− (2c+ t)) dt

+ o

(
1

nh

)
.

We shall choose the transformation ψ so that the first order term in the bias expan-
sions (2.2) is zero. Assume that f(1) > 0, it is enough to let,

(2.3) ψ(2) (1) = 2f (1) (1) /f (1) .

So ψ should satisfy the following three conditions:

C [1] . ψ is monotonically increasing.
C [2] . ψ(1) (1) = 1 and ψ−1 (1) = 1.
C [3] . ψ(2) (1) = 2f (1) (1) /f (1) .

The transformation function ψ, verify the conditions C[1], C[2] and C[3], has the
form:

(2.4) ψ (x) =M −BM2 +
(
1− 2M + 3BM2

)
x+

(
M − 3BM2

)
x2 +BM2x3,

where

(2.5) M = f (1) (1) /f (1) ,

and

(2.6) B > 1/3.
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For ψ be defined by (2.4) and for x = 1− ch, 0 ≤ c < 1, we have,

Bias (fn,TR (x))

=
h2

2

µ2f
(2)(1)− 6 [B + 1]

[
f (1) (1)

]2
f (1)

×
−c∫

−1

(t+ c)2k (t) dt

+ o
(
h2
)
.

(2.7)

Then the approximate form of mean squared error (MSE) is,

MSE (fn,TR (x))

∼ h4

4

µ2f
(2)(1)− 6 [B + 1]

[
f (1) (1)

]2
f (1)

×
−c∫

−1

(t+ c)2k (t) dt

2

+
f(1)

nh

 1∫
−1

k2 (t) dt+ 2

1∫
−c

k (t) k (− (2c+ t)) dt

 .
(2.8)

The mean integrated squared error (MISE) of fn,TR (x) can be expressed as the sum
of the integrated squared bias and the integrated variance for it,

(2.9) MISE (fn,TR (x)) =

∫
Bias2 (fn,TR (x)) dx+

∫
V ar (fn,TR (x)) dx.

Estimation of ψ. In practice, the transformation ψ given by (2.4) is not available
because it defined by unknown term M (2.5). We must replace M with a pilot
estimator. Our proposed estimator (2.1) is not very sensitive to the accurate details
of the pilot estimate of M , and therefore any appropriate estimate can be used.
Note that M can be written as the derivative of log f(x) evaluated at x = 1, so M
can be estimated by,

(2.10) Mn =
log fn,R (1)− log fn,R (1− h)

h
,

we now define,

(2.11) ψn (x) =Mn−BM2
n+
(
1− 2Mn + 3BM2

n

)
x+

(
Mn − 3BM2

n

)
x2+BM2

nx
3,

as the estimator of ψ (x).

The proposed new estimator. Our proposed new estimator of f(x) is defined as, for
x = 1− ch, 0 ≤ c < 1,

fn,TR,new (x) =
1

nh

n∑
i=1

{
k

(
x−Xi

h

)
+ k

(
x− 2 + ψn(Xi)

h

)}
,
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where ψn is given by (2.11) with M replaced by Mn of (2.10).

Proof. This proof starts by proving the bias of fn,TR. We have

E(fn,TR (x)) =
1

h
E

{
k

(
x−X1

h

)
+ k

(
x− 2 + ψ(X1)

h

)}
= I1 + I2

By using change of variable and Taylor expansion for x = 1 − ch, 0 ≤ c < 1, we
can write,

I1 =
1

h

1∫
0

k

(
x− y
h

)
f (y) dy

= f(x)

1∫
−c

k (t) dt− hf (1)(x)

1∫
−c

tk (t) dt+
h2

2
f (2)(x)

1∫
−c

t2k (t) dt

+ o
(
h2
)
.

Therefore,

I2 =

−c∫
−1

k (t)
f (ψ−1 (th− x+ 2))

ψ(1)(ψ−1 (th− x+ 2))
dt

=

−c∫
−1

k (t)

[
f (ψ−1 (1))

ψ(1)(ψ−1 (1))

+ (t+ c)h

[
f (1) (ψ−1 (1))ψ(1)(ψ−1 (1))− f (ψ−1 (1))ψ(2)(ψ−1 (1))

[ψ(1)(ψ−1 (1))]
3

]

+ (t+ c)2
h2

2

[
ψ(1)(ψ−1 (1))f (2) (ψ−1 (1))− f (ψ−1 (1))ψ(3)(ψ−1 (1))

[ψ(1)(ψ−1 (1))]
4

−
3ψ(2)(ψ−1 (1))

[
f (1) (ψ−1 (1))ψ(1)(ψ−1 (1))

[ψ(1)(ψ−1 (1))]
5

−
f (ψ−1 (1))ψ(2)(ψ−1 (1))

]
[ψ(1)(ψ−1 (1))]

5

]
dt

+ o
(
h2
)
.
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Using the condition C [2] we have,

1

h
E

[
k

(
x− 2 + ψ(X1)

h

)]

=

−c∫
−1

f (1) k (t) dt+ h
[
f (1) (1)− f (1)ψ(2)(1)

] −c∫
−1

(t+ c)k (t) dt

+
h2

2

[
f

(2)

(1)− f (1)ψ(3)(1)− 3ψ(2)(1)
[
f (1) (1)− f (1)ψ(2)(1)

]]
×

−c∫
−1

(t+ c)2k (t) dt

+ o
(
h2
)
.

(2.12)

By the existence and continuity of f (2) near 1, we obtain, for x = 1− ch,

f (1) =f(x) + chf (1)(x) +
(ch)2

2
f (2)(x) + o(h2).

f (1)(x) =f (1)(1)− chf (2)(1) + o(h).

f (2)(x) =f (2)(1) + o(1).

So,

(2.13) f (1) = f(x) + chf (1)(1)− (ch)2

2
f (2)(1) + o(h2).

Now combining (I1) and (I2) and using the formula (2.13), we get,

Bias (fn,TR (x))

= h

−c∫
−1

(t+ c)k (t) dt
[
2f (1) (1)− f (1)ψ(2)(1)

]
+
h2

2
µ2f

(2)(1)

− h2

2

−c∫
−1

(t+ c)2k (t) dt
[
f (1)ψ(3)(1)− 3ψ(2)(1)

[
f (1) (1)− f (1)ψ(2)(1)

]]
+ o

(
h2
)
.

The task now is to prove the variance of fn,TR: observe that for x = 1− ch, 0 ≤ c <

1, we have,

V ar (fn,TR (x)) =
1

nh2
V ar

{
k

(
x−X1

h

)
+ k

(
x− 2 + ψ(X1)

h

)}
= J1 + J2,
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where,

J1 =
1

nh2
E

[
k

(
x−X1

h

)
+ k

(
x− 2 + ψ(X1)

h

)]2

=
1

nh2

 1∫
0

k2
(
x− y
h

)
f(y)dy +

1∫
0

k2
(
x− 2 + ψ(y)

h

)
f(y)dy


+

2

nh2

1∫
0

k

(
x− y
h

)
k

(
x− 2 + ψ(y)

h

)
f(y)dy

= J11 + J12.

Using a Taylor expansion, it can be shown that,

J11 =
1

nh

 1∫
−c

k2 (t) f(x− th)dt+
−c∫

−1

k2 (t)
f(ψ−1 (th− x+ 2))

ψ(1)(ψ−1 (th− x+ 2))
dt


=

1

nh

 1∫
−c

k2 (t) [f(1) + o(1)] dt+

−c∫
−1

k2 (t)

(
f(ψ−1 (1))

ψ(1)(ψ−1 (1))
+ o(1)

)
dt


=

f(1)

nh
µ2 + o

(
1

nh

)
,

and,

J12 =
2

nh

1∫
−c

k (t) k

(
x− 2 + ψ (x− th)

h

)
f(x− th)dt

=
2

nh

1∫
−c

k (t) k

(
1− ch− 2 + 1− (c+ t)h) + o (h)

h

)
f(1− (c+ t)h)dt

=
2f(1)

nh

1∫
−c

k (t) k (− (2c+ t)) dt+ o(
1

nh
).

Similarly as in the proof of J1, we get

J2 = −
1

nh2

[
E2

(
k

(
x−X1

h

)
+ k

(
x− 2 + ψ(X1)

h

))]
= o

(
1

nh

)
.

By adding up J1 and J2, we have the desired result for the variance. �
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3. SIMULATION STUDY

To compare the performance of our proposed estimator against the other well
known estimators, we divided this section into two parts, in the first, we introduce
the results of simulated data and in the second part, we present some examples of
real data. All computations were done by utilizing R software.

3.1. Simulated Data. In our simulation study reported in this part, we intro-
duced the issue of potential quality of our proposed estimator per se form that of
bandwidth selection. Throughout our study we use Epanechnikov kernel k (t) =

(3/4) (1− t2) I(−1 ≤ t ≤ 1), where I denote the indicatrice function.

3.1.1. Smoothing Parameter Selection. It is well known that the kernel estimation
of the density depends crucially on the bandwidths. In our study, we used two
methods of smoothing parameter selection which are the optimal bandwidth and
the cross validation method.

Optimal Bandwidth. The popular bandwidth selector in kernel density estimation
is due to Sheather and Jones [18]. This method adopts the asymptotic MISE as
criterion, defined by

(3.1) AMISE ∼ h4

4
µ2
2

∫ [
f (2)(x)

]2
dx+

1

nh

∫
k2(t)dt,

the optimal bandwidth minimizing (3.1) is,

hopt =

{∫
k2(t)dt/nµ2

2

∫ [
f (2)(x)

]2
dx

}1/5

.

Cross Validation Method. Rudemo [9] and Bowman [1] suggested known as unbi-
ased cross-validation (UCV ) in kernel density estimator, is surely the most popular
and exceed studied one. The basic thought of this strategie, it purpose to estimate
h the minimizer of ISE(h). The minimisation measure is characterized by,

(3.2) hucv = argminhUCV (h),

where

(3.3) UCV (h) =

∫
f 2
n,R (x) dx− 2

n

n∑
i=1

fn,R (xi) .
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3.1.2. Compared Estimators. We compare the performance of the kernel density
estimator fn,R, the transformation-reflection kernel density estimation fn,TR, the
boundary kernel estimator fn,B and the Jones and Foster estimator fn,JF . The
comparison is carried out with respect to the different densities.

The boundary kernel estimator is the general boundary corrected estimators
define by Jones [3], which replace the standard kernel function by the modified
version. The modified kernel function gave at the right boundary region based on
the Epanechnikov kernel, by

(3.4) kB (t) = 12
1− t

(1 + c)4

(
3c2 − 2c+ 1

2
− t (1− 2c)

)
I (−c ≤ t ≤ 1) ,

this kernel satisfies the following conditions,

(3.5)

−c∫
−1

kB (t) dt = 0,

1∫
−c

kB (t) dt = 1,

1∫
−c

tkB (t) dt = 0,

1∫
−c

t2kB (t) dt <∞,

the boundary kernel estimator is defined as,

(3.6) fn,B (x) =
1

nh

n∑
i=1

kB

(
x−Xi

h

)
.

The Jones and Foster estimator that corrects for the possible negativity of the
boundary kernel estimates has the following form,

(3.7) fn,JF (x) = fn,CN (x) exp

(
fn,B (x)− fn,CN (x)

fn,CN (x)

)
,

where,

(3.8) fn,CN (x) =
1

nh

n∑
i=1

kCN

(
x−Xi

h

)
,

denote the cut-and-normalized density estimator introduced by Gasser and Muller
[11] and by using the kernel function kCN for the right boundary region truncated
and normalized, ensuring integration to unity. For Epanechnikov kernel, it given
by

(3.9) kCN (t) =
1− t2

1∫
−c

(
1− t2

)
dt

I(−c ≤ t ≤ 1)
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3.1.3. Simulation Steps. We can compile the steps of simulation as follow,

Step 1. We simulate sample of size nwith R repetition from the probability density
f .

Step 2. We calculate h using the optimal bandwidth and the cross validation method.
Step 3. We estimate f by fn,R, fn,TR, fn,B and fn,JF .
Step 4. We compute the SBIS, V AR and MSE of each estimator.
Step 5. We graph the MISE in the form of a boxplot.

For evaluating the performance of estimators at the boundaries, we tend to
limit our attention to n = 200. We consider six distributions with bounded support
[0, 1]. This set of distributions illustrated in Table 1, and for each distrubution we
simulate R = 1000.

TABLE 1. Densities used in the simulation

Distribution Density function
D1 Beta (3/2, 1) (3/2)x1/2

D2 Truncated Gamma (2, 1) x exp(−x)/1− 2 exp(−1)

D3 Truncated Normal (0, 1) exp(−x2/2)/
1∫

0

exp(−t2/2)dt

D4 (1/2)Beta (3/2, 1) +(1/2)Beta (1, 3/2) 0.75x1/2 + 0.75(1− x)1/2

D5 Truncated Exponential (1) exp(−x)/1− exp(−1)

D6 Truncated Beta (5, 1)[1/2,1] 160x4/31

3.1.4. Results and discussions. For each density, we have calculated the squared
bias (SBIS), variance (V AR) and mean squared error (MSE) of the estimators
at the endpoint x = 1 using the two methods of smoothing parameter selection.
The results are presented in Table 2 and Table 3.

Comparing between the estimators, we can see from the table 2, which includes
simulated values of SBIS, V AR and MSE calculated by using the optimal band-
width, that fn,TR had the smallest values of SBIS, V AR and MSE among the
other estimators for all the cases considered, followed by fn,B and fn,JF estima-
tors, while the fn,R estimator is the worst among them, as to the Beta, Truncated
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TABLE 2. The squared bias, variance and MSE values computed us-
ing the optimal bandwidth

Density D1 D2 D3 D4 D5 D6

Estimator h = 0.2122 h = 0.1884 h = 0.2259 h = 0.2341 h = 0.2304 h = 0.2378

fn,R

SBIS

V AR

MSE

0.0954

0.0584

0.1538

0.0832

0.0466

0.1298

0.0221

0.0109

0.0331

0.0315

0.0132

0.0447

0.0148

0.0078

0.0226

0.0434

0.0248

0.0683

fn,TR

SBIS

V AR

MSE

0.0205

0.0094

0.0299

0.0220

0.0077

0.0297

0.0096

0.0025

0.0121

0.0119

0.0030

0.0149

0.0078

0.0022

0.0100

0.0133

0.0048

0.0182

fn,B

SBIS

V AR

MSE

0.0222

0.0156

0.0378

0.0262

0.0172

0.0433

0.0123

0.0073

0.0196

0.0149

0.0093

0.0242

0.0108

0.0065

0.0173

0.0163

0.0107

0.0270

fn,JF

SBIS

V AR

MSE

0.0228

0.0173

0.0402

0.0267

0.0183

0.0451

0.0121

0.0069

0.0190

0.0143

0.0088

0.0231

0.0106

0.0062

0.0167

0.0165

0.0116

0.0282

TABLE 3. The squared bias, variance and MSE values computed us-
ing the cross validation method

Density D1 D2 D3 D4 D5 D6

Estimator h = 0.1324 h = 0.0865 h = 0.0945 h = 0.2256 h = 0.1297 h = 0.1729

fn,R

SBIS

V AR

MSE

0.0946

0.0687

0.1633

0.0803

0.0583

0.1385

0.0292

0.0141

0.0433

0.0353

0.0162

0.0516

0.0209

0.0083

0.0292

0.0502

0.0289

0.0791

fn,TR

SBIS

V AR

MSE

0.0463

0.0189

0.0652

0.0415

0.0157

0.0572

0.0223

0.0054

0.0278

0.0240

0.0055

0.0295

0.0146

0.0032

0.0178

0.0349

0.0092

0.0440

fn,B

SBIS

V AR

MSE

0.0566

0.0331

0.0897

0.0511

0.0298

0.0809

0.0284

0.0144

0.0429

0.0298

0.0153

0.0452

0.0191

0.0102

0.0293

0.0444

0.0217

0.0661

fn,JF

SBIS

V AR

MSE

0.0575

0.0320

0.0895

0.0518

0.0280

0.0798

0.0286

0.0146

0.0432

0.0299

0.0152

0.0451

0.0194

0.0114

0.0308

0.0449

0.0224

0.0674

Gamma and the last one Truncated Beta, but as to Truncated Normal, Mixture
Beta and Truncated Exponontiel, the fn,B changed your position to the third place
and fn,JF came in the second place.



3528 H. Bouredji and A. Sayah

From the table 3, which includes simulated values of SBIS, V AR and MSE

calculated by using the unbasied cross validation method, it can be observe that
fn,TR has good performance among the others. Moreover, the ranking from best
to worst concerning the SBIS is fn,TR, fn,B, fn,JF , fn,R for all densities, but con-
cerning the MSE we can observe that fn,B change it’s order to the third place and
fn,JF came to the second place for the Beta, Truncated Gamma and Mixture Beta
densities, but for the other densities Truncated Normal, Truncated Exponentiel
and Truncated Beta fn,B and fn,JF came in the second, third place respectively.

Comparing two smoothing parameter for a given estimators, we also find that,
in general, the optimal bandwidth tends to perform better.

3.2. Real Data. In this section, we apply our proposed estimators over two data
sets. The densities of our data sets are assumed to have a compact support S =

[a, b]. In our study, we mapped the original observation Xi ∈ S onto the unit
interval by the transformation Yi = (Xi − a)/(b− a).

The natural stands of the seedlings and saplings of Japanese black pines. The first
data set consists the data were collected on the position, height (cm) and age
(years) of the natural stands of the seedlings and saplings of 204 Japanese black
pines in a 100m2 region. The data set can be found in the paper of Ogata Y.
and Tanemura M. (1985). Table 4 shows the descriptive statistics of the data.
We used bandwidth h = 0.14, which we choose subjectively. We have graphed
the performance of our proposed estimator and the histogram of unknown real
density function in figure 1.

TABLE 4. Descriptive statistics of the natural stands of the seedlings
and saplings of Japanese black pines data.

Min 1st Qu Median Mean 3rd Qu Max kurtosis skewness
3.10 10.20 15.40 31.92 46.52 150.2 6.70 1.91

From the figure 1 alone, one can see that the fn,TR is a good estimator of the
true density removes a large part of the boundary effect and when we move to the
interior, we remark that all the estimators close to the kernel density estimator. We
can conclude that, fn,TR yield the best estimator of natural stands of the seedlings
and saplings of Japanese black pines data and hence can be adequat for estimation
these data.
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FIGURE 1. Density estimates of the natural stands of the seedlings
and saplings of 204 Japanese black pines.

The measure of the motor cortex neuron interspike of unstimulated monkey. The
second data set is the measres intervals of motor cortex neuron interspike (in ms)
for an unstimulated monkey. The objects of the analysis were to estimate the firing
rate prior to Stimulation and to characterize the time dependence. The data set
can be found in the paper of Zeger, S.L. and Bahjat Qaqish (1988). The descriptive
statistics of the data is given in Table 5. The bandwidth is chosen subjectively to
be h = 0.16. The proposed estimators are plotted in figure 2, superimposed on the
histogram of the data.

TABLE 5. Descriptive statistics of the measrues intervals of motor
cortex neuron interspike for an unstimulated monkey data.

Min 1st Qu Median Mean 3rd Qu Max kurtosis skewness
2.00 20.00 29.50 36.49 49.25 104 1.08 3.87

From figure 2 we can see that the fn,TR is closer to the empirical histogram of
the density. That indicates, fn,TR is well covers the density of the measure of the
motor cortex neuron interspike of unstimulated monkey data.
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FIGURE 2. Density estimates of the measres intervals of motor cortex
neuron interspike for an unstimulated monkey.

4. CONCLUSION

In this paper, we proposed a new approach reducing the bias of the kernel den-
sity estimator near the right bord of the support [0, 1]. Our estimator has a good
comparable performances in approximating the true density. It perform better
than the other well known kernel density estimators. We also noticed the consis-
tent property of our estimator for estimating the density at the endpoint x = 1. So,
we show that the new proposed estimator here improves the bias in such point.
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