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A QUASISTATIC FRICTIONAL CONTACT PROBLEM WITH NORMAL DAMPED
RESPONSE FOR THERMO-ELECTRO-ELASTIC-VISCOPLASTIC BODIES

Ahmed Hamidat1 and Adel Aissaoui

ABSTRACT. We consider a mathematical problem for quasistatic contact between
a thermo-electro–elastic-viscoplastic body and an obstacle. The contact is mod-
eled by a general normal damped response condition with friction law and heat
exchange. We present a variational formulation of the problem and prove the
existence and uniqueness of the weak solution. The proof is based on the for-
mulation of four intermediate problems for the displacement field, the electric
potential field and the temperature field, respectively. We prove the unique solv-
ability of the intermediate problems, then we construct a contraction mapping
whose unique fixed point is the solution of the original problem.

1. INTRODUCTION

Phenomena of contact abound in industry and everyday life, especially in mo-
tors, engines, and transmissions: the contact of the braking pads with the wheel,
the tire with the road and the piston with skirt are just three simple examples. For
this reason, considerable literature is devoted to these topics. The early prelim-
inary study of contact problems within the framework of variational inequalities
was made in the books [9,12,14].
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In this work we consider a general model for the quasistatic process of thermo-
electro-elastic-viscoplastic contact between a deformable body and a rigid obsta-
cle. Many crystalline materials like the quartz (also ceramics (BaTiO3, KNbO3,
LiNbO3,. . . ) and even the human mandible), exhibit piezoelectric behavior to
produce a voltage when they are subjected to mechanical stress. The piezoelectric
effect is characterized by the coupling between the mechanical and the electrical
properties of the material. This coupling, leads to the appearance of electric field
in the presence of a mechanical stress, and conversely, mechanical stress is gener-
ated when electric potential is applied. The first effect is used in sensors, and the
reverse effect is used in actuators. contact problems have been investigated fric-
tional or frictionless involving piezoelectric materials, see for instance [5, 16, 18]
and the references therein.

Contact problems involving the coupling between thermal and mechanical fields
are considered in [6, 17]. Dynamic elastic or viscoelastic frictional contact prob-
lems, with thermal considerations, can be found in [2, 13], and the references
therein. In particular, one-dimensional thermal problems for rods and beams have
been investigated in [3, 10, 15]. Recent existence and uniqueness results for vari-
ous quasistatic contact problems can be found in the extensive review [19] .

The novelty of this paper is the study of a model that describes the interaction
between thermal, mechanical and electrical fields, in the normal damped response
conditions, with the corresponding frictional condition. Numerous examples of
normal damped response contact condition may be found in [1,8,11].

The rest of the article is structured as follows. In Section 2 we present contact
model and provide comments on the contact boundary conditions. In Section 3
we list the assumptions on the data and derive the variational formulation. We
prove in Section 4 the existence and uniqueness of the solution.

2. PROBLEM STATEMENT

The physical setting is the following. A body occupies the domain Ω ⊂ Rd(d =

2, 3) with outer Lipschitz surface Γ that is divided into three disjoint measurable
parts Γ1, Γ2 and Γ3 on one hand, and a partition of Γ1 ∪ Γ2 into two open parts Γa
and Γb, on the other hand. such that meas(Γ1) > 0 and meas(Γa) > 0. We denote
by ν the unit outer normal on Γ. Let T > 0 and let [0, T ] be the time interval of
interest. The body is clamped on Γ1 × (0, T ) and the displacement vanishes there.
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Surface tractions of density f2 act on Γ2 × (0, T ) and a volume force of density f0

is applied in Ω× (0, T ).
We also assume that the electrical potential vanishes on Γa×(0, T ) and a surface

electric charge of density q2 is prescribed on Γb×(0, T ). On Γ3 the potential contact
surface, the body is in contact with an insulator obstacle, the so-called foundation.

The classical formulation of the mechanical problem of electro elastic-viscoplastic
with thermal effects, be stated as follows.

Problem P . Find a displacement field u : Ω × (0, T ) → Rd, a stress field σ :

Ω× (0, T )→ Sd, an electric potential field ϕ : Ω× (0, T )→ R, a temperature field
θ : Ω × (0, T ) → R, and an electric displacement field D : Ω × (0, T ) → Rd such
that

σ = Aε (u̇) + Bε (u)− E∗E(ϕ) +

∫ t

0

G (σ(s)−Aε (u̇(s))

+E∗E(ϕ)(s), ε (u(s))) ds− Ceθ in Ω× (0, T ),

(2.1)

(2.2) D = Eε(u) +BE(ϕ), in Ω× (0, T ),

(2.3) θ̇ − divK(∆θ) = r(u̇) + q, in Ω× (0, T ),

(2.4) Divσ + f0 = 0, in Ω× (0, T ),

(2.5) divD − q0 = 0, in Ω× (0, T ),

(2.6) u = 0, on Γ1 × (0, T ),

(2.7) σν = f2, on Γ2 × (0, T ),

(2.8) − σν6 = pν (u̇ν) , on Γ3 × (0, T )
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(2.9)


‖στ‖ ≤ pτ (u̇ν)

στ = −pτ (u̇ν)
u̇τ
‖uτ‖

if u̇τ 6= 0
, on Γ3 × (0, T ),

(2.10) − kij
∂θ

∂xi
νj = ke (θ − θR) + hτ (|u̇τ |) , on Γ3 × (0, T ),

(2.11) ϕ = 0, on Γa × (0, T ),

(2.12) D.ν = q2, on Γb × (0, T ),

(2.13) θ = 0 on (Γ1 ∪ Γ2)× (0, T ),

(2.14) u(0) = u0, θ(0) = θ0, in Ω.

First, equations (2.1)-(2.3) represent the electro-elastic-viscoplastic constitutive
law with thermal effects, were A, B and G are, respectively, nonlinear operators
describing the purely viscous, the elastic and the viscoplastic properties of the
material, E(ϕ) = −∇ϕ is the electric field, E = (eijk) represent the third order
piesoelectric tensor, E∗ is its transposition and B denotes the electric permittivity
tensor, θ represent the temperature, Ce = (cij) represents the thermal expansion
tensor, K represent the thermal conductivity tensor, q represent the density of
volume heat source and r is non linear function of velocity.

Equations (2.4) and (2.5) represent the equilibrium equations for the stress and
electric displacement fields. Equations (2.6)-(2.7) are the displacement-traction
conditions.

frictional contact conditions with normal damped response of the form (2.8)
and (2.9) represent an appropriate version of Coulomb’s law of friction. This con-
dition states a general dependence of the normal stress σν on the normal velocity
u̇ν , which represents the possible behavior of a layer of lubricant on the contact
surface. Here pν and pτ represent given contact functions. Here, again, the tan-
gential shear stress cannot exceed the maximal frictional resistance pτ . When the
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strict inequality holds the surface adheres to the foundation and is in the so-called
stick state; and when the equality holds then there is relative sliding between the
surface and the foundation; this is the so-called slip state.

This type of contact case has been considered by several authors (See for exam-
ple [20] )

(2.10), represent, on Γ, a Fourier boundary condition for the temperature.
(2.11) and (2.12) represent the electric boundary conditions. Equation (2.13)
means that the temperature vanishes on (Γ1 ∪ Γ2) × (0, T ). Finally, The functions
u0 and θ0 in (2.14) are the initial data.

3. VARIATIONAL FORMULATION AND PRELIMINARIES

We denote by Sd the space of second order symmetric tensors on Rd, (d = 2, 3)

while (., .) and ‖.‖ represent the inner product and Euclidean norm on Rd and Sd

respectively. Let Ω ⊂ Sd be a bounded domain with a regular boundary Γ and let
ν denote the unit outer normal on Γ. We define the function spaces

H = L2(Ω)d = {u = (ui) | ui ∈ L2(Ω)} , H1 = {u = (ui) | ε(u) ∈ H} ,
H = {σ = (σij) | σij = σji ∈ L2(Ω)} , H1 = {σ ∈ H | Divσ ∈ H}.

Here ε and Div are the deformation and divergence operators, respectively, defined
by

ε(u) = (εij(u)) , εij(u) =
1

2
(ui,j + uj,i) , Div(σ) = σij,j.

Here and below, the indices i and j run between 1 and d. the summation over
repeated indices is implied and the index that follows a comma represents the
partial derivative with respect to the corresponding component of the independent
spatial variable

The sets H, H1, H and H1 are real Hilbert spaces endowed with the canonical
inner products

(u,v)H =

∫
Ω

uividx ∀u,v ∈ H, (σ, τ )H =

∫
Ω

σijτijdx ∀σ, τ ∈ H,

(u,v)H1 = (u,v)H + (ε(u), ε(v))H, ∀u,v ∈ H1,

(σ, τ )H1 = (σ, τ )H + (Divσ,Div τ )H , σ, τ ∈ H1.

The associated norms are denoted by ‖.‖H , ‖.‖H1 , ‖.‖H and ‖.‖H1. For every ele-
ment u ∈ H1, we denote by uν and uτ the normal and tangential components of
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u on Γ given by
uν = u.ν, uτ = u− uνν.

Similarly, for a regular tensor field σ ∈ H1 we define its normal and tangential
components by

σν = σν · ν, στ = σν − σνν,

and we recall that the following Green’s formula holds

(σ, ε(v))H + (Divσ,v)H =

∫
Γ

σν.vda, ∀v ∈ H1,

where da is the surface measure element. Now, let X denote the closed subspace
of H1(Ω) given by

X =
{
γ ∈ H1(Ω) | γ = 0 on Γ1 ∪ Γ2

}
,

and we denote by X ′ the dual space of X .
Let V denote the closed subspace of H1(Ω)d defined by

V =
{
v ∈ H1(Ω)d | v = 0 on Γ1

}
.

Since meas (Γ1) > 0, the following Korn’s inequality holds,

‖ε(v)‖H ≥ C0‖v‖H1(Ω)d , ∀v ∈ V,

where the constant C0 > 0, depends only on Ω and Γ1.
On V , we consider the inner product and the associated norm given by

(3.1) (u,v)V = (ε(u), ε(v))H, ‖v‖V = ‖ε(v)‖H, u,v ∈ V.

It follows from Korn’s inequality that the norms ‖.‖H1(Ω)d and ‖.‖V are equivalent
on V and therefore (V, (., .)V ) is a real Hilbert space.

We also introduce the spaces

W =
{
ξ ∈ H1(Ω), ξ = 0 on Γa

}
,

W =
{
D ∈ H | div D ∈ L2(Ω)

}
,

where div D = (Di,i). The spaces W andW are real Hilbert spaces with the inner
products given by

(ϕ, ξ)W =

∫
Ω

∇ϕ.∇ξdx,

(D,E)W =

∫
Ω

D · Edx+

∫
Ω

div D · div Edx.
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The associated norms will be denoted by ‖.‖W and ‖.‖W , respectively.
Since meas (Γa) > 0, the Friedrichs-Poincaré inequality holds:

(3.2) ‖∇ζ‖H ≥ cF‖ζ‖H1(Ω), ∀ζ ∈ W,

where cF > 0 is a constant which depends only on Ω and Γa. It follows from (3.2)
that ‖.‖H1(Ω) and ‖.‖W are equivalent norms on W and therefore (W, ‖.‖W ) is a
real Hilbert space.

Moreover, by the Sobolev trace theorem, there exist two positive constants c0

and c̃0 such that

(3.3) ‖v‖L2(Γ3)d ≤ c0‖v‖V , ∀v ∈ V, ‖ψ‖L2(Γ3) ≤ c̃0‖ψ‖W , ∀ψ ∈ W.

Moreover, when D ∈ W is a regular function, the following Green’s type for-
mula holds

(3.4) (D,∇ζ)H + (divD, ζ)L2(Ω) =

∫
Γ

D · νζda, ∀ζ ∈ H1(Ω).

For any real Hilbert space X, we use the classical notation for the spaces
Lp(0, T ;X) and W k,p(0, T ;X), where 1 ≤ p ≤ ∞ and k ≥ 1. For T > 0 we
denote by C(0, T ;X) and C1(0, T ;X) the space of continuous and continuously
differentiable functions from [0, T ] to X, respectively, with the norms

‖f‖C(0,T ;X) = max
t∈[0,T ]

‖f(t)‖X ,

‖f‖C1(0,T ;X) = max
t∈[0,T ]

‖f(t)‖X + max
t∈[0,T ]

‖ḟ(t)‖X .

Now we introduce assumptions on the data in the study of Problem P . For the
viscosity operator A : Ω× Sd −→ Sd, we assume

(a) There exists LA > 0 such that

‖A(x, ς1)−A(x, ς2)‖ ≤ LA‖ς1 − ς2‖, for all ς1, ς2 ∈ Sd, a.e x ∈ Ω.

(b) There exists mA > 0 such that

(A(x, ς1)−A(x, ς2)).(ε1 − ς2) ≥ mA‖ς1 − ς2‖2,

for all ς1, ς2 ∈ Sd, a.e x ∈ Ω.

(c) The mapping x 7→ A(x, ς) is Lebesgue measurable on Ω,

for any ς ∈ Sd.

(d) The mapping x 7→ A(x,0) ∈ H.

(3.5)
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For the elasticity operator B : Ω× Sd −→ Sd, we assume

(a) There exists LB > 0 such that

‖B(x, ς1)− B(x, ς2)‖ ≤ LB‖ς1 − ς2‖, for all ς1, ς2 ∈ Sd, a.e. x ∈ Ω.

(b) The mapping x 7→ B(x, ς) is Lebesgue measurable on Ω,

for all ς ∈ Sd.

(c) The mapping x 7→ B(x,0) ∈ H.

(3.6)

For the visco-plasticity operator G : Ω× Sd × Sd −→ R, we assume

(a) There exists a constant LG > 0 such that

‖G (x,σ1, ς1)− G (x,σ2, ς2)‖ ≤ LG(‖σ1 − σ2‖+ ‖ς1 − ς2‖),

for all t ∈ (0, T ),σ1,σ2, ς1, ς2 ∈ Sd, a.e. x ∈ Ω.

(b) The mapping x 7→ G(x,σ, ς) is Lebesgue measurable on Ω,

for all σ, ς ∈ Sd, t ∈ (0, T ),

(c) The mapping x 7→ G(x,0,0) ∈ H.

(3.7)

For the thermal expansion operator Ce : Ω× R→ R, we assume



(a) There exists LCe > 0 such that

‖Ce (x, µ1)− Ce (x, µ2)‖ ≤ LCe ‖µ1 − µ2‖ for all µ1, µ2 ∈ R, a.e. x ∈ Ω.

(b) Ce = (cij) , cij = cji ∈ L∞(Ω).

(c) The mapping x 7→ Ce(x, µ) is Lebesgue measurable on Ω,

for any µ ∈ R.

(d) The mapping x 7→ Ce(x, 0) ∈ H.

(3.8)

For the thermal conductivity operator K : Ω× R→ R, we assume



(a) There exists LK > 0 such that

‖K (x, µ1)−K (x, µ2)‖ ≤ LK ‖µ1 − µ2‖ , for all µ1, µ2 ∈ R, a.e. x ∈ Ω.

(b) kij = kji ∈ L∞(Ω), kijαiαj ≤ ckαiαj for some ck > 0,

for all (αi) ∈ R.

(c) The mapping x 7→ k(x, 0) belongs to L2(Ω).

(3.9)
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For the electric permittivity operator B = (bij) : Ω× Rd → Rd, we assume

(a) B(ε, E) = (bij(ε)Ej) for all E = (Ei) ∈ Rd, a.e. ε ∈ Ω.

(b) bij = bji ∈ L∞(Ω), 1 ≤ i, j ≤ d.

(c) There exists a constant mB > 0 such that

BE.E ≥ mB‖E‖2, for all E = (Ei) ∈ Rd, a.e. in Ω.

(3.10)

For the piezoelectric operator E : Ω× Sd → Rd, we assume{
(a) E = (fijk) , fijk ∈ L∞(Ω), 1 ≤ i, j, k ≤ d.

(b) E(x)σ · τ = σ · E∗τ , for all σ ∈ Sd, and all τ ∈ Rd.
(3.11)

For the tangential function pe : Γ3 × R −→ R+, e = ν, τ , we assume



(a) There exists Le > 0 such that
‖pe (x, µ1)− pe (x, µ2)‖ ≤ Le ‖µ1 − µ2‖
for all µ1, µ2 ∈ R, a.e. x ∈ Γ3

(d) For any µ ∈ R,x 7→ pe(x, µ) is Lebesgue measurable on Γ3

(c) The mapping x 7→ pe(x, 0) belongs to L2(Γ3).

(3.12)

We assume that the boundary and initial data θR, ke, u0 and θ0 the volume of
forces f0 and f2 and the charges densities q0, q2, the heat source density q, satisfy

θR ∈ C(0, T ;L2(Γ3)), ke ∈ L∞(Ω,R+),(3.13)

u0 ∈ V, θ0 ∈ X ,(3.14)

f0 ∈ C
(
0, T ;L2(Ω)d

)
, f2 ∈ C

(
0, T ;L2 (Γ2)d

)
,(3.15)

q0 ∈ C
(
0, T ;L2(Ω)

)
, q2 ∈ C

(
0, T ;L2 (Γb)

)
,(3.16)

q ∈ C
(
0, T ;L2 (Ω)

)
.(3.17)

Finally, for the function r : V → L2(Ω) satisfies that there exists a constant
Lr > 0 such that

‖r (u1)− r (u2)‖L2(Ω) ≤ Lr ‖u1 − u2‖V , ∀u1,u2 ∈ V.(3.18)
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Next. We define six mappings j : V × V → R, f : [0, T ] → V , q : [0, T ] → W ,
Q : [0, T ]→ X ′, K : X → X ′, and R : V → X ′ respectively, by

j(u,v) =

∫
Γ3

pν (uν) vνda+

∫
Γ3

pτ (uν) ‖vτ‖ da,(3.19)

(f(t),v)V =

∫
Ω

f 0(t) · vdx+

∫
Γ2

f 2(t) · vda,(3.20)

(q(t), ζ)W =

∫
Ω

q0(t)ζdx−
∫

Γb

q2(t)ζda,(3.21)

(Q(t), y)X ′×X =

∫
Γ3

keθR(t)yda+

∫
Ω

q(t)ydx,(3.22)

(Kτ, y)X ′×X =
d∑

i,j=1

∫
Ω

kij
∂τ

∂xj

∂y

∂xi
dx+

∫
Γ3

keτyda,(3.23)

(Rv, y)X ′×X =

∫
Ω

r(v)ydx+

∫
Γ3

hτ (|vτ |) yda.(3.24)

for all u,v ∈ V , ζ ∈ W , y, τ ∈ X and t ∈ [0, T ]. Note that

f ∈ C (0, T ;V ) , q ∈ C(0, T ;W ).(3.25)

By using a standard arguments, we obtain the following variational formulation
of the mechanical problem (2.1)-(2.14).

problem PV . Find a displacement field u : (0, T )→ V , a stress field σ : (0, T )→
H, an electric potential ϕ : (0, T ) → W, and a temperature θ : (0, T ) → X such
that

σ(t) = Aε (u̇(t)) + Bε (u(t)) + E∗∇ϕ(t)

+

∫ t

0

G (σ(s)−Aε (u̇(s))− E∗∇ϕ(s), ε (u(s))) ds− Ceθ(t),
(3.26)

(σ(t), ε(v)− ε(u̇(t))H + j(u̇(t),v)− j(u̇(t), u̇(t)) ≥ (f(t),v − u̇(t))V ,(3.27)

(B∇ϕ(t),∇φ)H − (Eε(u(t)),∇φ)H = (q(t), φ)W , ∀φ ∈ W, t ∈ (0, T )(3.28)

θ̇(t) +Kθ(t) = Ru̇(t) +Q(t), in X ′,(3.29)

u(0) = u0, θ(0) = θ0.(3.30)

Our main existence and uniqueness result, which we state now and prove in the
next section, is the following
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4. EXISTENCE AND UNIQUENESS

Theorem 4.1. Assume that (3.5)-(3.18) hold, Then there exists a unique solution
(u,σ, ϕ, θ,D) to problem PV . Moreover, the solution has the regularity

u ∈ C1(0, T ;V ),(4.1)

ϕ ∈ C(0, T ;W ),(4.2)

σ ∈ C(0, T ;H),(4.3)

θ ∈ C
(
0, T ;L2(Ω)

)
∩ L2(0, T ;X ) ∩W 1,2 (0, T ;X ′) ,(4.4)

D ∈ C(0, T ;W).(4.5)

We note that elements u, σ, ϕ, θ, andD which solves Problem PV is a weak so-
lution of the contact Problem P . Theorem 4.1 thus states that the contact Problem
P has a unique weak solution, provided that (3.5)-(3.18) hold.

The proof of Theorem 4.1, is carried out is several steps and is based on ar-
guments of evolutionary quasivariational inequalities, differential equations and
fixed points.

We denote by C a constant whose value may change from line to line when no
confusing can arise.

Let η ∈ C(0, T ;H), and consider the auxiliary problem.

Problem P1
η . Find a displacement field uη : [0, T ]→ V such that for all t ∈ [0, T ]

(Aε (u̇η(t)) , ε (v)− ε(u̇η(t)))H + (Bε (uη(t)) , ε (v)− ε(u̇η(t)))H
+ (η(t), ε(v)− ε(u̇η(t)))H + j(u̇η(t),v)− j (u̇η(t), u̇η(t))

≥ (f(t),v − u̇η(t))V ,∀v ∈ V, a.e. t ∈ (0, T ),

(4.6)

uη(0) = u0.(4.7)

Lemma 4.1. There exists a unique solution uη ∈ C1(0, T ;V ) to the problem (4.6)
and (4.7).

Proof. Let us introduce operators A : V → V and B : V → V

(Au,v)V = (Aε(u), ε(v))H, ∀u,v ∈ V,(4.8)

(Bu,v)V = (Bε(u)ε(v))H, ∀u,v ∈ V.(4.9)
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Therefore, (4.6) can be rewritten as follows

(Au̇(t),v − u̇(t))V + (Bu(t),v − u̇(t))V + j(u̇η(t),v)

− j(u̇η(t), u̇η(t)) ≥ (fη(t),v − u̇(t))V ,
(4.10)

where

fη(t) = f(t)− η(t), a.e.t ∈ [0, T ].

Using (4.8)-(4.9) and (3.5)-(3.6) it follows that A and B are Lipschitz con-
tinuous operators. Using again (4.8) and (3.5) we deduce that A is a strongly
monotone operator on V ,

(Au1 − Au2,u1 − u2)V = (A (ε (u1))−A (ε (u2)) , ε (u1)− ε (u2))H

≥ mA ‖ε (u1)− ε (u2)‖2
H ≥ C ‖u1 − u2‖2

V .

It follows from (3.12) that the functional j defined in (3.19) is continuous and,
therefore, it is convex lower semicontinuous function on V .

Finally, note that fη ∈ C([0, T ];V ) and u0 ∈ V and we use classical arguments of
functional analysis concerning evolutionary quasivariational inequality [, 20] that
there exists a unique solution uη ∈ C1(0, T ;V ) to the problem P1

η �

In the next step we use the solution uη, obtained in Lemma 4.1, to construct the
following variational problem for the electrical potential.

Problem P2
η . Find an electrical potential ϕη : (0, T )→ W such that

(B∇ϕη(t),∇ζ)H − (Eε (uη(t)) ,∇ζ)H = (q(t), ζ)W , ∀ζ ∈ W, t ∈ (0, T ).(4.11)

We have the following result

Lemma 4.2. Problem (4.11) has unique solution ϕη which satisfies the regularity
(4.2). Moreover, if ϕη1

and ϕη2
are the solutions of (4.11) corresponding to η1,η2 ∈

C([0, T ];H), then there exists C > 0 such that∥∥ϕη1
(t)− ϕη2

(t)
∥∥
W
≤ C

∥∥uη1
(t)− uη2

(t)
∥∥
V
, ∀t ∈ [0, T ].(4.12)

Proof. we consider the form S : W ×W → R

S(ϕ, φ) = (B∇ϕ,∇φ)H , ∀ϕ, φ ∈ W,(4.13)

we use (3.2), (3.10), (4.13) and defined (ϕ, ψ)W to show that the form S is bilinear
continuous, symmetric and coercive on W , moreover using (3.21) and the Riesz
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representation Theorem we may define an element ξη : [0, T ]→ W such that

(ξη(t), φ)W = (q(t), φ)W + (Eε (uη(t)) ,∇φ)H , ∀φ ∈ W, t ∈ (0, T ),

we apply the Lax-Milgram Theorem to conclude that there exists a unique element
ϕη(t) ∈ W such that

S (ϕη(t), φ) = (ξη(t), φ)W , ∀φ ∈ W.(4.14)

It follows from (4.14) that ϕη is a solution of the equation (4.11). Let ϕηi = ϕi,
and uηi = ui for i = 1, 2. We use (4.11) to obtain

‖ϕ1(t)− ϕ2(t)‖W ≤ C ‖u1(t)− u2(t)‖V , ∀t ∈ [0, T ].

Now since uη ∈ C1(0, T ;V ), so implies that ϕη ∈ C(0, T ;W ). This completes the
proof. �

In the third step, we use the displacement field uη obtained in Lemma 4.1 to
consider the following variational problem.

Problem P3
η . Find the temperature field θη : (0, T )→ L2(Ω)

θ̇η(t) +Kθη(t) = Ru̇η(t) +Q(t), in X ′, a.e.t ∈ [0, T ],(4.15)

θη(0) = θ0.(4.16)

Lemma 4.3. There exists a unique solution θη to the auxiliary problem P3
η satisfying

(4.4).

Proof. The result follows from classical first order evolution equation given in Refs.
[4,21]. Here the Gelfand triple is given by

X ⊂ L2(Ω) =
(
L2(Ω)

)′ ⊂ X ′.
The operator K is linear and coercive. By Korn’s inequality, we have

(Kτ, τ)X ′×X ≥ C‖τ‖2
X .

�

In the fourth step, we use uη, ϕη and θη obtained in Lemmas 4.1, 4.2 and 4.3,
respectively to construct the following Cauchy problem for the stress field.
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Problem P4
η . Find the stress field ση : [0, T ] → H which is a solution of the

problem

ση(t) = B (ε (uη(t))) +

∫ t

0

G (ση(s), ε (uη(s))) ds− Ceθη(t), a.e. t ∈ (0, T ).(4.17)

Lemma 4.4. P4
η has a unique solutions ση ∈ C(0, T ;H). Moreover, if σηi, uηi and θηi

represent the solutions of Problems P4
η , P1

η and P3
η respectively, for ηi ∈ C(0, T ;H),

i = 1, 2, then there exists C > 0 such that

‖ση1(t)− ση2(t)‖
2
H ≤ C

(
‖uη1(t)− uη2(t)‖

2
V

+ ‖θη1(t)− θη2(t)‖
2
L2(Ω) +

∫ t

0

‖uη1(s)− uη2(s)‖
2
V

)
.

(4.18)

Proof. Let Ση : C(0, T ;H)→ C(0, T ;H) be the operator given by

Σησ(t) = B (ε (uη(t))) +

∫ t

0

G (ση(s), ε (uη(s))) ds− Ceθη(t),(4.19)

Let σi ∈ C(0, T ;H), i = 1, 2 and t1 ∈ (0, T ). Using hypothesis (3.7) and Holder’s
inequality, we find

‖Σησ1 (t1)− Σησ2 (t1)‖2
H ≤ L2

GT

∫ t1

0

‖σ1(s)− σ2(s)‖2
H ds.

Integration on the time interval (0, t2) ⊂ (0, T ), it follows that∫ t2

0

‖Σησ1 (t1)−Σησ2 (t1)‖2
H dt1 ≤ L2

GT

∫ t2

0

∫ t1

0

‖σ1(s)− σ2(s)‖2
H dsdt1.

Therefore

‖Σησ1 (t2)−Σησ2 (t2)‖2
H ≤ L4

GT
2

∫ t2

0

∫ t1

0

‖σ1(s)− σ2(s)‖2
H dsdt1.

For t1, t2, . . . , tp ∈ (0, T ), we generalize the procedure above by recurrence on p.
We obtain the inequality

‖Σησ1 (tp)−Σησ2 (tp)‖2
H

≤ L2p
G T

p

∫ tp

0

· · ·
∫ t2

0

∫ t1

0

‖σ1(s)− σ2(s)‖2
H dsdt1 . . . dtp−1.

Which implies

‖Σησ1 (tp)−Σησ2 (tp)‖2
H ≤

L2p
G T

p+1

p!

∫ T

0

‖σ1(s)− σ2(s)‖2
H ds.
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Thus, we can infer, by integrating over the interval time (0, T ), that

‖Σησ1 −Σησ2‖2
C(0,T ;H) ≤

L2p
G T

p+2

p!
‖σ1 − σ2‖2

C(0,T ;H) .

It follows from this inequality that for large p enough, the operator Σp
η is a

contraction on the Banach space C(0, T ;H), and therefore there exists a unique
element σ ∈ C(0, T ;H) such that Σησ = σ. Moreover, σ is the unique solution
of Problem P4

η , and using (4.17), the regularity of uη, θη, and the properties of
the operators B, G and Ce it follows that σ ∈ C(0, T ;H). Consider now η1,η2 ∈
C(0, T ;H) and for i = 1, 2, denote uηi = ui, θηi = θi, and σηi = σi. We have

σi(t) = B (ε (ui(t)))(4.20)

+

∫ t

0

G (σi(s), ε (ui(s))) ds− Ceθi(t), a.e. t ∈ (0, T ).

and using the properties (3.6), (3.7) and (3.8) of B, G and Ce we find

‖σ1(t)− σ2(t)‖2
H ≤ C

(
‖u1(t)− u2(t)‖2

V + ‖θ1(t)− θ2(t)‖2
L2(Ω)

+

∫ t

0

‖u1(s)− u2(s)‖2
V ds+

∫ t

0

‖σ1(s)− σ2(s)‖2
H ds

)
, ∀t ∈ [0, T ].

(4.21)

We use Gronwall argument in the previous inequality to deduce (4.18), which
concludes the proof of Lemma 4.4. �

Finally, as a consequence of these results and using the properties of the op-
erators G, E and Ce, for t ∈ (0, T ), we consider the element Λη(t) ∈ H defined
by

(Λη(t),v)H×V = (E∗∇ϕη(t), ε(v))H + (Ceθη(t), ε(v))H

+

(∫ t

0

G (ση, ε (uη(s))) ds, ε(v)

)
H
,∀v ∈ V,

(4.22)

Here, for every η ∈ C(0, T ;H). uη, ϕη, θη and ση represent the displacement field,
the electric potential field, the temperature field and the stress field, obtained in
Lemmas 4.1, 4.2, 4.3 and 4.4 respectively. We have the following result.

Lemma 4.5. The mapping Λ has a fixed point η∗ ∈ C(0, T ;H), such that Λη∗ = η∗.

Proof. Let t ∈ (0, T ) and η1,η2 ∈ C (0, T ;H). We use the notation that uηi = ui,

u̇ηi = u̇i, θηi = θi, ϕηi = ϕi, and σηi = σi for i = 1, 2.
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Let us start by using (3.3), (3.7), (3.8) and (3.11), we have

‖Λη1(t)− Λη2(t)‖2
H ≤ ‖E∗∇ϕ1(t)− E∗∇ϕ2(t)‖2

H

+ ‖Ceθ1(t))− Ceθ2(t)‖2
H

+

∫ t

0

‖G (σ1(s), ε(u1(s)))− G (σ2(s), ε(u2(s)))‖2
H ds

≤ C
(
‖ϕ1(t)− ϕ2(t)‖2

W + ‖θ1(t)− θ2(t)‖2
L2(Ω)

+

∫ t

0

‖σ1(s)− σ2(s)‖2
H ds+

∫ t

0

‖u1(s)− u2(s)‖2
V ds

)
.

(4.23)

We use estimates (4.18), (4.12) to obtain

‖Λη1(t)− Λη2(t)‖2
H ≤ C

(
‖θ1(t)− θ2(t)‖2

L2(Ω) + ‖u1(s)− u2(s)‖2
V

+

∫ t

0

‖u1(s)− u2(s)‖2
V ds

)
.

(4.24)

Using inequality (4.6) for η = η1, we find

(Aε (u̇1(t)) , ε (v)− ε(u̇1(t)))H + (Bε (u1(t)) , ε (v)− ε(u̇1(t)))H

+ (η1(t), ε(v)− ε(u̇1(t)))H + j(u̇1(t),v)− j (u̇1(t), u̇1(t))

≥ (f(t),v − u̇1(t))V ,∀v ∈ V, a.e. t ∈ (0, T ),

(4.25)

for η = η2, we find

(Aε (u̇2(t)) , ε (v)− ε(u̇2(t)))H + (Bε (u2(t)) , ε (v)− ε(u̇2(t)))H

+ (η2(t), ε(v)− ε(u̇2(t)))H + j(u̇2(t),v)− j (u̇2(t), u̇2(t))

≥ (f(t),v − u̇2(t))V ,∀v ∈ V, a.e. t ∈ (0, T ),

(4.26)

we take v = u̇2(t) in (4.25) and v = u̇1(t) in (4.26), add the two inequalities to
obtain

(Aε (u̇1(t))−Aε (u̇2(t)) , ε(u̇1(t))− ε(u̇2(t)))H

≤ (Bε (u1(t))− Bε (u2(t)) , ε (u̇2(t))− ε(u̇1(t)))H

+ (η1(t)− η2(t), ε(u̇2(t))− ε(u̇1(t))) + j (u̇1(t), u̇2(t))

− j (u̇1(t), u̇1(t)) + j (u̇2(t), u̇1(t))− j (u̇2(t), u̇2(t)) ,
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then we use assumptions (3.5), (3.6) and (3.12) to find

mA ‖u̇1 − u̇2‖2
V ≤ LB ‖u1 − u2‖V ‖u̇1 − u̇2‖V + ‖η1 − η2‖H ‖u̇1 − u̇2‖V

+ c2
0(Lν + Lτ ) ‖u̇1 − u̇2‖2

V

(4.27)

It follows that

‖u̇1 − u̇2‖V ≤ C (‖u1 − u2‖V + ‖η1 − η2‖H) .(4.28)

Since ui(t) =

∫ t

0

u̇i(s)ds+ u0,∀t ∈ [0, T ], we have

‖u1(t)− u2(t)‖V ≤
∫ t

0

‖u̇1(s)− u̇2(s)‖V ds.(4.29)

Using (4.28), (4.29) and the Gronwall’s inequality, we find∫ t

0

‖u̇1(s)− u̇2(s)‖V ds ≤
∫ t

0

‖η(s)− η(s)‖Hds,(4.30)

Then, we find

‖u1(t)− u2(t)‖V ≤ C

∫ t

0

‖η1 − η2‖H ds, t ∈ [0, T ].(4.31)

Let θηi = θi, and uηi = ui for i = 1, 2. Let t ∈ R+ be fixed. Then, we have(
θ̇1(t)− θ̇2(t), θ1(t)− θ2(t)

)
X ′×X

+ (Kθ1(t)−Kθ2(t), θ1(t)− θ2(t))X ′×X

= (Ru̇1(t)−Ru̇2(t), θ1(t)− θ2(t))X ′×X .

We integrate the above equality over (0, t) and we use the strong monotonicity
of K and the Lipschitz continuity of R : V → X ′ to deduce that

‖θ1(t)− θ2(t)‖2
L2(Ω)ds ≤ C

∫ t

0

‖u̇1(s)− u̇2(s)‖2
V ds,

It follows now from (4.30), that

‖θ1(t)− θ2(t)‖2
L2(Ω) ≤ C

∫ t

0

‖η1(s)− η2(s)‖2
H ds, ∀t ∈ [0, T ].

Form the previous inequality and estimates (4.31) and (4.24) it follows now
that

‖Λη1(t)− Λη2(t)‖2
H ≤ C

∫ T

0

‖η1(s)− η2(s)‖2
H ds.(4.32)
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Reiterating this inequality m times we obtain

‖Λmη1 − Λmη2‖
2
C(0,T ;H) ≤

CmTm

m!
‖η1 − η2‖

2
C(0,T ;H) .

Thus, form sufficiently large, Λm is a contraction on the Banach space C(0, T ;H),
and so Λ has a unique fixed point. �

Now, we have all the ingredients to prove Theorem 4.1.

Existence. Let η∗ ∈ C(0, T ;H) be the fixed point of Λ and

u = uη∗ , θ = θη∗ , ϕη∗ = ϕ,(4.33)

σ = Aε(u̇) + E∗∇ϕ(t) + ση∗ ,(4.34)

D = Eε(u) +B∇(ϕ).(4.35)

We prove that (u,σ, θ, ϕ,D) satisfies (3.26)-(3.30) and (4.1)-(4.5). Indeed, we
write (4.17) for η∗ = η and use (4.33)-(4.34) to obtain that (3.26) is satisfied.
Now we consider (4.6) for η∗ = η and use (4.33) to find

(Aε(u̇(t)), ε(v − u̇(t)))H + (Bε (u(t)) , ε (v)− ε(u̇(t)))H
+ (η∗(t),v − u̇(t))H + j (u̇(t),v)− j (u̇(t), u̇(t)) ≥ (f(t),v − u̇(t))V
∀v ∈ V, t ∈ [0, T ].

(4.36)

The equalities Λη∗ = η∗ combined with (4.22), (4.33) and (4.34) show that for
all v ∈ V ,

(η∗ (t) ,v)H×V = (E∗∇ϕ(t), ε(v))H − (Ceθ(t), ε(v))H,

+

(∫ t

0

G(σ(s)−Aε(u̇(s))− E∗∇ϕ(t), ε(u(s)))ds, ε(v)

)
H
,

(4.37)

We substitute (4.37) in (4.36)) and use (3.26) to see that (3.27) is satisfied.
We write now (4.11) for η = η∗ and use (4.33) to find (3.28). From (4.15) and

(4.33) we see that (3.29) is satisfied.
Next, (3.30), The regularities (4.1), (4.2), (4.3) and (4.4) follow from Lemmas

4.1, 4.2, 4.4 and 4.3.
Let now t1, t2 ∈ [0, T ], from (3.2), (3.10), (3.11) and (4.35), we conclude that

there exists a positive constant C > 0 verifying

‖D (t1)−D (t2)‖H ≤ C (‖ϕ (t1)− ϕ (t2)‖W + ‖u (t1)− u (t2)‖V ) .
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The regularity of u and ϕ given by (4.1) and (4.2) implies

D ∈ C(0, T ;H).(4.38)

We choose φ ∈ D(Ω)d in (3.28) and using (3.21) we find

divD(t) = q0(t), ∀t ∈ [0, T ],(4.39)

Property D ∈ C(0, T ;W) follows from (3.16),(4.38) and (4.39) which concludes
the existence part the Theorem 4.1.

Uniqueness. It follows by the unique solvability of the Problems P1
η , P2

η , P3
η and

P4
η that the quintuple (u,σ, θ, ϕ,D) is a unique solution of the problem PV and

with the regularity express (4.1)-(4.5). Finally, the uniqueness follows from the
uniqueness of the fixed point of the operator Λ, which completes the proof of
Theorem
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