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ON THE SPECTRUM OF THE TWO-PARTICLE SCHRÖDINGER OPERATOR
WITH POINT POTENTIAL: ONE DIMENTIONAL CASE

Utkir N. Kuljanov1,2

ABSTRACT. In the paper a one-dimensional two-particle quantum system inter-
acted by two identical point interactions is considered. The corresponding Schrö-
dinger operator (energy operator) hε depending on ε, is constructed as a self-
adjoint extension of the symmetric Laplace operator. The main results of the work
are based to the study of the operator hε. First the essential spectrum is described.
The existence of unique negative eigenvalue of the Schrödinger operator is proved.
Further, this eigenvalue and corresponding eigenfunction are found.

1. INTRODUCTION

The problems of the point interaction of two and three identical quantum parti-
cles interacted by point potentials (also called contact potentials and also occasion-
ally singular potentials) have been studied in various physical works. In the works
of F.A. Berezin and L.D. Faddeev [1] and R.A. Minlos and L.D. Faddeev [2], [3]
first proposed a rigorous mathematical description of the point interaction of two
and three particles, respectively.

In [2], [3] the Hamiltonian of the system under consideration was investigated
using the theory of self-adjoint extensions of symmetric operators and was intro-
duced as some self-adjoint extension of the symmetric Laplace operator defined on
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the domain of functions of three variables x1, x2, x3;xj ∈ R, j = 1, 2, 3 vanishing if
any two arguments xj = xk, j 6= k, k = 1, 2, 3 coincide.

The proposed extension is called the Skornyakov-Ter-Martirosyan expansion. In
[4], using the results of [1], [2] the Hamiltonian of three particles (two fermions
and one particle of a different nature) with the same masses interacting with point
potential was studied and it was shown that the Skornyakov-Ter-Martirosyan ex-
tensions are self-adjoint and semi-bounded.

In [5], the results in [1]- [4] were generalized to the case of three arbitrary parti-
cles and it was shown that the corresponding Hamiltonian has a discrete spectrum
unbounded below. Note that the advantage of one-dimensional models with point
perturbations is clear as they are useful for the study of a variety of qualitative
properties. For instance, you can see [6]- [11] for one body problems with delta
potential. In this article, following the basic scheme used in [2]- [5], we study
the problem of the point interaction of two arbitrary particles for one-dimensional
space. The Laplace operator with domain on variables x1, x2 ∈ R, vanishing as
x1 = x2 is considered. In the impuls representation of the Hamiltonian after re-
duction of the variables we establish the Skornyakov-Ter-Martirosyan extension hε
as a self-adjoint operator on his domain. The essential spectrum of hε coincides
with the interval [0;∞). It is proved that the operator hε has no any eigenvalue as
ε ≤ 0 and if the parameter extansion is positive, i.e. ε > 0, then hε has a unique
negative eigenvalue.

2. PRELIMINARIES AND SELECTION OF EXTENSION

The Hamiltonian (energy operator) of the two-particle system under consider-
ation is defined as some extension H̃ of the symmetric operator H̃0 acting in the
Hilbert space L2(R2) ≡ L2 of the form(

H̃0φ
)

(x1, x2) = (− 1

2m1

∆x1 −
1

2m2

∆x2)φ(x1, x2),

where the domain of H̃ is considered as the manifold

D(H̃0) = {φ ∈ L2 : (∆x1 + ∆x2)φ ∈ L2, φ(x, x) = 0} ,

where ∆xi
-is the Laplace operator in the xi variable xi ∈ R, mi-is the mass of the

i-th particle, i = 1, 2.
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After the action of the corresponding Fourier transform, the operator H̃0 trans-
fers to the operator

(H0f) (p1, p2) = (
1

2m1

p2
1 +

1

2m2

p2
2)f(p1, p2),

defined on the set D(H0) ⊂ L2 of functions f(p1, p2), satisfying the following con-
ditions: ∫

R2

(p4
1 + p4

2)|f(p1, p2)|2dp1dp2 <∞,
∫
Γp

f (p1, p2) dνp = 0.

Here Γp = {(p1, p2) ∈ R2 : p1 + p2 = p} , p ∈ R- is a family of lines with the natural
Lebesgue measure dνp.

Make a change of variables

P = p1 + p2, p =
m2

M
p1 −

m1

M
p2, M = m1 +m2

ensure a natural isomorphism between the spaces L2 (R)⊗ L2 (Γp) and L2 (R2) .

The last space can be identified with the space L2 (R)⊗ L2 (R) , while the oper-
ator H0 is written as the tensor sum of the following operators

H0 =

(
1

2M
P 2 +

1

2m
h0

)
⊗ I,

where I− is the identity operator, m = m1m2/(m1 +m2), (1/2M)P 2 is the operator
of multiplication by the number P 2/(2M) in the space L2(R), and h0 is a closed
non-negative symmetric operator acting in L2(R) by

h0f(p) = p2f(p)

and its domain D(h0) consists of functions satisfying the conditions:

(2.1)
∫
p4|f(p)|2dp <∞;

∫
f(p)dp = 0

Further, the integral without indicating limits is understood as integration over
R.

The symbol <z denotes the defeciency subspace of the operator h0, i.e.

<z = {g ∈ L2(R) : ((h0 − zI)f, g) = 0, f ∈ D(h0)} .
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Lemma 2.1. For any z ∈ Π0 = C1\[0,∞) the defeciency subspace <z ⊂ L2(R) of
h0 consists of functions of the form

g(p) =
c

p2 − z̄
, c ∈ C1.

Proof. Let g ∈ <z. Then for any f ∈ D(h0) the relation

((h0 − zI)f, g) =

∫
(p2 − z)f(p)g(p)dp =

∫
f(p)(p2 − z)g(p)dp = 0

holds.
From the last relation and conditions (1) it follows that

(p2 − z̄)g(p) = c

or
g(p) =

c

p2 − z̄
.

The lemma is proved. �

It follows from the lemma that for any z ∈ Π0 the defeciency subspace <z of the
operator h0, is determined by

<z = {g ∈ L2(R) : ((h0 − zI)f, g) = 0, f ∈ D(h0)} .

There fore, h0 is a symmetric operator with defective indices (1,1). Using the
general extension theory [4], we find that the operator h0 has a one-parameter
family of self-adjoint extensions.

Since the operator h0 is non-negative, as in [2]- [5], we use the theory of exten-
sions of semibounded operators. The defeciency subspace <−1 of the operator h0

consists of functions of the form

u−1(p) =
c

p2 + 1
, c ∈ C1.

Moreover, following the schemes of [2]- [4], the adjoint operator h∗0 is described
using the following lemma.

Lemma 2.2. The domain of definition D(h∗0) of h∗0 consists of functions of the
form

(2.2) g(p) = f(p) +
c1

p2 + 1
+

c2

(p2 + 1)2 ,
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where f ∈ D(h0), c1 ∈ C1. The operator h∗0 acts on an function g of the form (2.2)
by the formula

(h∗0g) (p) = p2g(p)− c1,

where the constant c1 is taken from the decomposition (2.2) of the function g.

Further we select the extensions of the operator h0. We define the set

D(hε), D(h0) ⊂ D(hε) ⊂ D(h∗0),

as follows:

(2.3) D(hε) =

{
g ∈ D(h∗0) : g(p) = f(p) +

c

p2 + 1
+

(ε− 2)c

(p2 + 1)2 , f ∈ D(h0)

}
.

The restriction of the operator h0 to the domain D(hε) is denoted by hε and it
has the form

hεg(p) = p2g(p)− c.

By definition of hε , it is an extension of the operator h0.

Theorem 2.1. For any ε ∈ R, the extension hε is a self-adjoint operator.

Proof. It is easy to verify that for any g1, g2 ∈ D(hε) the relation (hεg1, g2) =

(g1, hεg2) holds, i.e. hε is a symmetric operator. Now we show that the defective
indices of the operator hε are equal to (0, 0).

Let ψ ∈ <−1(hε). Then the function ψ(p) has the form

ψ(p) =
b

p2 + 1
, b ∈ C1.

For any g ∈ D(hε) the equality ((hε + I)g, ψ) = 0 holds. According (2.3) the last
equality can be written as

((hε + I)g, ψ) =

∫
(
(
p2 + 1

)
(f(p) +

c

p2 + 1
+

(ε− 2)c

(p2 + 1)2
)− c)ψ(p)dp =∫

(
(
p2 + 1

)
f(p)ψ(p)dp+ (ε− 2)c

∫
b

(p2 + 1)2
dp = 0.

Since ∫
(
(
p2 + 1

)
f(p)ψ(p)dp = 0

and (ε − 2)c 6= 0, we have b = 0. Hence ψ(p) = 0. This proves that the defective
indices of the operator hε are equal to (0, 0). �
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3. SPECTRAL PROPERTIES OF THE OPERATOR hε

The main results of the paper are the following theorems.

Theorem 3.1. For any ε ∈ R the essential spectrum of hε coincides with inter-
val [0,∞). If ε ≥ 0 then hε has no any negative eigenvalue, and for any ε < 0

the operator hε has a unique simple eigenvalue z = − 4
ε2

and the corresponding

eigenfunction has the form gε(p) =
1

p2 + 4
ε2

.

Proof. First we show that the essential spectrum of hε equals to [0;∞). For each
z ≥ 0 consider the sequence of cut-off layers:

Gn(z) =

{
p ∈ R :

√
z +

1

n+ 1
< |p| <

√
z +

1

n

}
, n = 1, 2, 3, . . . .

We split the each layer Gn(z) into two half-layers as

G+
n (z) = {p ∈ Gn(z) : p ≥ 0}

and
G−n (z) = {p ∈ Gn(z) : p < 0} .

By construction, the volume of these parts are equal and

µ(G+
n (z)) = µ(G−n (z)) =

1

2
µ(Gn(z)).

One can see that
Vn = µ (Gn(z)) =

2

n (n+ 1)
.

Let f (z)
n , n = 1, 2, 3, . . . be a sequence of the test functions

f (z)
n (p) =


1√
Vn(z)

, p ∈ G+
n (z)

− 1√
Vn(z)

, p ∈ G−n (z)

0, p ∈ R \Gn(z).

Then it is easy to verify that f (z)
n ∈ L2(R),

∥∥∥f (z)
n

∥∥∥ = 1 and (f
(z)
n , f

(z)
m ) = 0 as n 6= m.

One can see that ∫
f (z)
n (p)dp = 0, n = 1, 2, 3, . . . ,



ON THE SPECTRUM OF THE TWO-PARTICLE SCHRÖDINGER OPERATOR 3575

i.e., f (z)
n ∈ D(h0). Note that

‖(hε − zI)f (z)
n ‖

2
=

∫
Gn(z)

1

Vn(z)
|(p2 − z)|2dp =

2

Vn

√
z+ 1

n∫
√
z+ 1

n+1

(
p2 − z

)2
dp

or

(3.1) ‖(hε − zI)f (z)
n ‖

2
=

2

Vn

√
z+ 1

n∫
√
z+ 1

n+1

(
p2 − z

)2
dp.

Since
|p| <

√
z +

1

n
, p2 − z < 1

n
(2
√
z +

1

n
).

This gives

(p2 − z)2 < (2
√
z +

1

n
)2 1

n2
.

Hense by (3.1) we have

‖(hε − zI)f (z)
n ‖

2
< (2
√
z +

1

n
)2 1

n2
.

This shows that
lim
n→∞

∥∥(hε − zI)f (z)
n

∥∥ = 0.

This means that if z ≥ 0, then z ∈ σess(hε) there fore [0;∞) ⊂ σess(hε). In
order to show the reverse inclusion σess(hε) ⊂ [0;∞), we construct the resolvent
operator of hε.

Let
(hε − zI)g = ψ.

Then
(p2 − z)g(p)− c = ψ(p).

If z < 0, then p2 − z 6= 0. Hence

(3.2) g(p) =
ψ(p)

p2 − z
+

c

p2 − z
.

Since g ∈ D(hε) it represents as

(3.3) g(p) = f(p) +
c

p2 + 1
+

(ε− 2)c

(p2 + 1)2
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for some f ∈ D(hε). Comparing (3.3) and (3.2) we obtain the equation for c:

(3.4) f(p) + (
1

p2 + 1
− 1

p2 − z
)c+

(ε− 2)c

(p2 + 1)2
=

ψ(p)

p2 − z
,

where f ∈ D(h0). Integrating both sides of (3.4), taking into account (2.1) and
the identities

(3.5)
∫

dp

p2 − z
dp =

π√
−z

, z < 0,

and

(3.6)
∫

dp

(p2 + 1)2
=
π

2
,

we have

(ε
√
−z − 2)πc = 2

√
−z
∫

ψ(p)

p2 − z
dp

or

c =
2
√
−z

π(ε
√
−z − 2)

∫
ψ(p)

p2 − z
dp.

This gives

g(p) =
ψ(p)

p2 − z
− 2

√
−z

π(ε
√
−z − 2)

· 1

p2 − z

∫
ψ(q)

q2 − z
dq.

This if z ∈ Π0 and ε
√
−z − 2 6= 0, then the resolvent of the operator hε acts in

L2(R) as

(Rz(hε)g)(p) =
g(p)

p2 − z
− 2

√
−z

π(ε
√
−z − 2)

· 1

p2 − z

∫
g(q)

q2 − z
dq.

This shows that the resolvent of the operator hε is bounded operator for ε
√
−z−

2 6= 0 and z < 0. It means that σess(hε) ⊂ [0;∞). It follows directly from here that
σess(hε) = [0;∞). Now we consider an eigenvalue problem for hε. From equation
(hε− zI)g(p) = 0 we obtain that. If ε ≤ 0 and z ∈ Π0, then ε

√
−z− 2 6= 0. By (3.4)

the resolvent of the operator hε is definedon D(hε). Hence hε has no any negative
eigenvalue.

Let ε > 0. Then from the equality ε
√
−z − 2 = 0 we have z = − 4

ε2
. The equation

(hε − zI)g(p) = 0
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gives

(3.7) g(p) =
c

p2 − z
.

We show that g ∈ D(hε). To this g should be represented of the form (3.3) for
some f ∈ D(h0). Assume that g represents as (3.3). Comparing (3.3) with (3.7)
we obtain

f(p) +
c

p2 + 1
+

(ε− 2)c

(p2 + 1)2
=

c

p2 − z
,

i.e,

f(p) =
c(1− 4

ε2
)

(p2 + 4
ε2

)(p2 + 1)
− c(ε− 2)

(p2 + 1)2
.

Taking into account the identities (3.5) and (3.6) one can see that
∫
f(p)dp = 0.

This gives f ∈ D(h0). Theorem 3.1 is proved. �
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