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VARIOUS KINDS OF MATRICES IN CYCLOTOMIC GRAPHS

D. Nagarajan1 and A. Rameshkumar

ABSTRACT. The component matrix, Laplacian matrix, Distance matrix, Peripheral
distance matrix, Distance Laplacian of the cyclotomic graphs and some properties
are found. The D-energy, Dp-energy, DL-energy and some indices of the cyclo-
tomic graphs are determined. For the real symmetric matrices, matrices that attain
the maximum L,Ls and the minimum S are calculated. The Hausdorff distance
and optimal matching distance of the cyclotomic graphs are evaluated.

1. INTRODUCTION

A graph is denoted by G=G(V, E) , where V is its vertex set and E its edge set.
The order of G is the number of its vertices and its size is the number of its edges.
Let G be a graph, possessing n vertices and m edges. We say that G is an (n, m)-
graph. A simple graph has no loops or multiple edges. Let G be a simple graph
with n labeled vertices. Let G be the complement of G. The adjacency matrix of a
simple undirected graph G is the symmetric matrix AG whose rows and columns
are both indexed by identical orderings of VG such that

A(G) = AG(vi, vj) =

1, if vi and vj are adjacent

0, otherwise
.
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The degree di of the vertex i ∈ V is the number of vertices adjacent to i , i.e.,
the sum of the i - th row (column) of the adjacency matrix of G. The eigenvalues
of A(G) areλ1, λ2, . . . λn and can be ordered as λ1 ≥ λ2 ≥ . . . ≥ λn. For a monic
characteristic polynomial χA(G)(x) ∈ Z[x] of degree n, we define its associated
reciprocal polynomial to be RA(z) = znχA(G)(z + (1/z)). RA(G)(z) is reciprocal
which is a monic reciprocal polynomial of degree 2n.The Mahler measure M(A(G))
of A(G) is defined as M(RA(G)(z)). A Symmetric matrix A(G) is called Cyclotomic
if its associated reciprocal polynomial RA(G) has integer coefficients and Mahler
measure M(RA(G)) = 1. The adjacency graph of the cyclotomic matrix is called
the cyclotomic graph. The inertia of a square matrix M with with real eigenvalues
is the triplet (n+(M), n0(M), n−(M)), where n+(M), n−(M) denote the number of
positive and negative eigenvalues of M, respectively and n0(M) is the multiplicity
of 0 as an eigenvalue. A connected acyclic graph is called a tree.

The degree matrix of the graph is a diagonal matrix where the rows and columns
are indexed by the set of vertices and each diagonal entry gives the degree of the
corresponding vertex. A spanning tree of a graph G is a connected acyclic sub-
graph containing all the vertices of G. A symmetric real matrix M is called positive
definite if xTMx > 0 for every nonzero real column vector x in Rn. The Randic
index of a graph is invented in 1976 by Milan Randic. It is good correlation abil-
ity for many physical and biochem properties. Indulal et al. [4] calculated the
D-spectra of some graphs and their D-energies and constructed a pair of equiener-
getic bipartite graphs on 24t, t ≥ 3. Zhou et al. [9] determined lower and upper
bounds for the distance spectral radius of graphs. Aouchiche et al. [2] introduced
a Laplacian and signless Laplacian for the distance matrix of a connected graph.
Aouchiche et al. [1] reported on the results related to the distance matrix of a
graph and its spectral properties. Milan et al. [7] proved the largest distance
Laplacian eigenvalue of a path is simple and the corresponding eigenvector has
the similar property of Fiedler vector. The graphs are classified through Perron
number in [8]. Kishori et al. [5] found bounds of Peripheral distance energy in
terms of peripheral Wiener index for the graphs of diam(G) ≤ 2. Milica Andelic
et al. [6] computed the distance energy of particular types of graph and found
a sequence of infinite families of distance equienergetic graphs. Cong-Trinh [3]
studied the Wielandt-Mirsky conjecture for matrix polynomials.
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2. PRELIMINARIES

Definition 2.1. A set of all square matrices which are the adjacency matrix of the
simple graphs of order 2. They are denoted by {[aij]2×2/aij ∈ {0, 1}}. The adjacency
graph of these matrices are denoted by Ar , where r = 0, 1 and are shown in Figure
1.

Definition 2.2. A set of all square matrices which are the adjacency matrix of the
simple graphs of order 3. They are denoted by {[aij]3×3/aij ∈ {0, 1}}. The adjacency
graph of these matrices are denoted by Br , where r = 0, 1, . . . , 7 and are shown
Figures 2, 4, 11. Bi−j represents the graphs from Bi to Bj and i > j. B0 is the totally
disconnected graph of order 3. Suppose we have seven graphs of order 3, we arrange
the graphs in ascending or descending order with respect to eigenvalues of the graph
and give the labels 1, 2, . . . in the suffix of Br. Suffix r represents nothing but it means
that rth graph of order 3.

Definition 2.3. A set of all square matrices which are the adjacency matrix A(G)
of the simple graphs of order 4. They are denoted by {[aij]4×4/aij ∈ {0, 1}}. The
adjacency graph of these matrices are denoted by Cr , where r = 0, 1, . . . , 61 and are
shown in Figure 3, 5-10, 12-14. Ci−j represents the graphs from Ci to Cj and i > j.

Definition 2.4. Dj
r, r = 1, . . . , 32 denote the Simple graphs of order 5 and are shown

in Figures 15-27. The number of j values for the graph Dj
r for the corresponding value

r = 1, . . . , 32 depends upon how many graphs we get, when we label the numbers
1,2,3,4,5 for the five vertices.

Definition 2.5. Ejr, r = 1, . . . , n denote the Simple graphs of order 6 and are shown
in Figures 28-39. The number of j values for the graph Ejr for the corresponding value
r = 1, . . . , n depends upon how many graphs we get, when we label the numbers
1,2,3,4,5,6 for the five vertices.

Properties 2.1. The properties of the graphs are

a) A1, B4−7, C26−42,D
j
1−4, Ej1−3 are connected cyclotomic graphs.

b) C43−61,D
j
5−20,E

j
4−69 are connected non-cyclotomic graphs.

c) B1−3, C1−25,D
j
21−29,E

j
70−78 are disconnected cyclotomic graphs.
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FIGURE 1. A1
FIGURE 2. B4−6 FIGURE 3. C30−41

FIGURE 4. B7
FIGURE 5. C26−29

FIGURE 6. C42

FIGURE 7. C43−54 FIGURE 8. C55−60

FIGURE 9. C61

FIGURE 10. C22−25

FIGURE 11. B1−3 FIGURE 12. C1−6

FIGURE 13. C7−18 FIGURE 14. C19−21

d) Dj
30−32, Ej79−97 are disconnected non-cyclotomic graphs.

e) A1 is a 2-path graph, B7 is a triangle graph, C42 is a square graph, C55−60 is a
diamond graph, Dj

1 is a 5-cycle graph, B4−6 is a 3-path graph, C30−41 is a 4-path
graph , C26−29 is a claw graph, C43−54 is a paw graph.

f) The line graph L(G) of G is the graph whose vertices correspond to the edges of
G with two vertices of L(G) being adjacent iff the corresponding edges in G have
a vertex in common. L(B7) ∼= B7, L(C42) ∼= C42, L(D

j
1)
∼= Dj

1, L(B4−6) ∼= A1,
L(C30−41) ∼= B4−6, L(D

j
4)
∼= C30−41.
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FIGURE 15. Dj
1

FIGURE 16. Dj
2

FIGURE 17. Dj
3

FIGURE 18. Dj
4

FIGURE 19. Dj
21 FIGURE 20. Dj

22

FIGURE 21. Dj
23 FIGURE 22. Dj

24

FIGURE 23. Dj
25

FIGURE 24. Dj
26

FIGURE 25. Dj
27 FIGURE 26. Dj

28

FIGURE 27. Dj
29

TABLE 1. Values of n+(M), n0(M), n−(M)

Graph A1 B4−6 B7 C26−29 C30−41 C42 Dj
1 Dj

2 Ej3 Dj
4 Ej1 Ej2 Ej3

n+(M) 1 1 2 1 2 1 3 1 2 2 2 3 2
n0(M) 0 1 0 2 0 2 0 3 1 1 2 0 2
n−(M) 1 1 1 1 2 1 2 1 2 2 2 3 2

3. EIGENVALUES OF REAL SYMMETRIC MATRICES

Definition 3.1. Let Sn{0, 1} denote the set of n × n real symmetric matrices whose
entries are in the set {0, 1}. For an n× n real symmetric matrix A(G), we denote the
eigenvalues of A(G) in decreasing order by λ1(A) ≥ . . . ≥ λn(A). The spread of an
n× n real symmetric matrix A(G) is s(A) = λ1(A)− λn(A).
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FIGURE 28. Ej1 FIGURE 29. Ej2 FIGURE 30. Ej3

FIGURE 31. Ej70 FIGURE 32. Ej71 FIGURE 33. Ej72

FIGURE 34. Ej73 FIGURE 35. Ej74 FIGURE 36. Ej75

FIGURE 37. Ej76 FIGURE 38. Ej77 FIGURE 39. Ej78

Definition 3.2. For a given j with 2 ≤ j ≤ n− 1, L = max{λj(A) : A ∈ Sn{0, 1}},
S = min{λj(A) : A ∈ Sn{0, 1}}, Ls = max{s(A) : A ∈ Sn{0, 1}}.

Properties 3.1. The properties of the spread of matrix are

a) The spread of an adjacency matrix for the cyclotomic graph of order 2 is 2.
b) The spread of an A(G) for the cyclotomic graphs of order 3 are 2, 2

√
2 and 3.

c) The spread of an A(G) for the cyclotomic graphs of order 4 are 2, 2
√
2 , 2, 3,

2
√
3,1 +

√
5, 4.

d) The spread of an A(G) for the cyclotomic graphs of order 5 are (1/2)(5 +
√
5),4,

2
√

2 +
√
2, 2
√
3, 3, 4, 3, 2

√
3 ,1 +

√
5 ,2
√
2,2
√
2, 2, 2.

e) The spread of an A(G) for the cyclotomic graphs of order 6 are 4, 4,2
√

(1/2)(5 +
√
5).

Properties 3.2. The properties of Cyclotomic matrix of the graph of order up to 6
are
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a) −4 ≤ Det(χA(G)(λ)) ≤ 4.
b) χA(G)(λ)is not a positive definite matrix.
c) 1 ≤

∥∥χA(G)(λ)
∥∥ ≤ 2.

d) tr(χA(G)(λ)) = 0.

TABLE 2. Matrices that attain extremum

Matrices Adjacency matrices
Matrices that attain

maximum L
A(B7),A(C42),A(C22), A(Dj

1), A(Dj
2), A(Dj

21),
A(Dj

22), A(Dj
23), A(Ej1), A(Ej2)

Matrices that attain
minimum S A(B4−6), A(C42), A(Dj

2), A(Dj
22),A(Ej1), A(Ej2)

Matrices that attain
maximum Ls

A(B7), A(C42), A(Dj
2), A(Dj

22), A(Ej1), A(Ej2)

Definition 3.3. A vertex subset is called independent if its elements are pairwise
nonadjacent. Two vertices are co-neighbour vertices if they share the same neighbours.
If S is a pairwise co-neighbour vertices of a graph G, then S is an independent set of
G. A cluster of order k of G is a set S of k pairwise co-neighbour vertices. If each vertex
of a cluster has the same transmission, then it is called the transmission of the cluster.
For example, {1, 3} and {1, 4} are independent set of C42. A cluster of order 2 of C42

is {{1, 3}, {2, 4}} and it is transmission of the cluster.

4. THE COMPANION MATRIX OF THE CYCLOTOMIC GRAPH

Definition 4.1. Let χA(G)(λ) be the characteristic polynomial of A(G). The compan-
ion matrix of the monic polynomial χA(G)(λ) = c0 + c1λ+ . . .+ cn−1λ

n−1 + xn is the
square matrix defined as

C(χA(G)(λ)) =


0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

... . . . ...
...

0 0 · · · 1 −cn−1

.
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TABLE 3. The companion matrices

Companion matrix Eigenvalues Norm Rank Trace Discriminant
C(χA(A1)(x)) -1, 1 1 2 0 4
C(χA(B7)(x)) -1, -1, 2

√
7 + 3

√
5 3 0 0

C(χA(C42)(x)) -2, 2,0,0
√
17 3 0 0

C(χA(Dj
21)
(x)) -1, -1, 0, 1,

2
4 4 1 0

C(χA(Ej
2)
(x)) -2, -1, -1 ,

1, 1, 2

√
67 + 3

√
497 6 0 0

Properties 4.1. The properties of Companion matrix of the characteristic polynomial
of the cyclotomic graph of order up to 6.

a) −4 ≤ Det(C(χA(G)(λ))) ≤ 4.
b) C(χA(G)(λ)) is not a positive definite matrix.
c) 2 ≤ ρ(C(χA(G)(λ))) ≤ 6.
d) 1 ≤

∥∥C(χA(G)(λ))
∥∥ ≤√147 +

√
21593.

e) tr(C(χA(G)(λ))) = 0 or 1.
f) 0 ≤ 4(χA(G)(λ))) ≤ 8192.

5. LAPLACIAN MATRIX

Definition 5.1. Let G be a simple graph with n vertices. Let the Laplacian matrix L
is defined as L = Deg(G) − A(G) , where Deg(G) is the degree matrix and A(G) is
the adjacency matrix of the graph. The elements of L are

i,j =


deg(vi), if i = j ,

−1, if i 6= j and vi adjacent to vj ,

0, if otherwise .

Let β1 ≥ β2 ≥ . . . ≥ βn = 0 denote the Laplacian eigenvalues of G. The Laplacian
matrix is used to enumerate the number of trees. The determinant of the Laplacian
matrix counts the number of spanning trees.

Properties 5.1. The properties of Laplacian matrix are

a) The number of spanning trees of the connected cyclotomic graphs A1, B4−6, B7,
C26−29, C30−41, C42, Dj

2, Dj
4, Ej2 are 1, 1, 3, 1, 1, 4, 1, 1, 6.
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b) It is difficult to find the eigenvalues of Laplacian matrix for the graphs Dj
1, Dj

3, Ej3,
Ej73.

c) L(G) + L(G) = L(Kn) = nIn − Jn, where Jn is the matrix of order n with each
entry 1.

d) If 4 denotes the maximum vertex degree, then β1 ≥ 4+ 1.
e) The second smallest Laplacian eigenvalue βn−1 is called the algebraic connectivity.
βn−1 = 0 iff the graph is disconnected.

f) An eigenvector corresponding to βn−1 is called a Fiedler vector.
g) The maximum value of a Fiedler vector for a graph of n vertices is n (for a complete

graph).

Definition 5.2. Let T = (V, E) be a tree and f be a Fiedler vector of it. Let f(v)
denotes the component of f for a vertex v ∈ V . If f(v) 6= 0 for all v ∈ V , then T
contains exactly one edge uw such that f(u) > 0 and f(w) < 0. This edge uw is called
characteristic edge.

Definition 5.3. The median of a graph G is the set {v ∈ V |Tr(v) ≤ Tr(x), for all
x ∈ V }. The median of a tree is either a single vertex or two adjacent vertices.

Properties 5.2. The properties of Laplacian matrix of the characteristic polynomial
of the cyclotomic graph of order up to 6.

a) −1 ≤ Det(L(G)) ≤ 0.
b) L(G) is not a positive definite matrix.
c) 1 ≤ ρ(L(G)) ≤ 6

d)
√

2 +
√
2 ≤ ‖L(G)‖ ≤ 5.

e) 2 ≤ tr(L(G)) ≤ 12.

6. DISTANCE MATRIX

The Energy of a graph is a concept defined by Gutman in 1978 and originated
from theoretical chemistry. The Energy of the graph is the sum of the absolute val-
ues of its eigenvalues. It is denoted by E(G). Two graphs are called equienergetic
if they have equal energies. If λi1 > λi2 > . . . > λih are the distinct eigenvalues of
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FIGURE 40. B4

FIGURE 41. C26

FIGURE 42. C30

FIGURE 43. Ej2
FIGURE 44. Dj

2

FIGURE 45. Dj
4

TABLE 4. Fiedler vector of the Laplacian matrices

Graph βn−1 Fiedler vector Characteristic edge Median
A1 2 {−1, 1} 12 {1}
B4 1 {0,−1, 1} - {2}
B7 3 {−1, 1, 0} - {1, 2, 3}
C26 1 {0,−1, 1, 0} - {1}
C30 2−

√
2 {1 −

√
2,−1 +√

2,−1, 1}
21 {1, 2}

C42 2 {−1, 0, 1, 0} - {1, 2, 3, 4}
Dj

2 1 {0,−1, 1, 0, 0} - {1}
Dj

4 (3−
√
5)/2 {−1, (1 −√

5)/2, 0, (−1 +√
5)/2, 1}

- {3}

Ej2 1 {−1,−1, 0, 1, 1, 0} - {1, 2, 3, 4, 5, 6}

the graph, then the spectrum is

spec(G) =

[
λi1 λi2 · · · λih
n1 n2 · · · nh

]
where nj indicates the algebraic multiplicity of the eigenvalue λij . Two graphs G
and H such that spec(G) = spec(H) are called cospectral graph.

Definition 6.1. Suppose G is a connected graph with set of vertices V (G) = {v1, v2,
. . . , vn} and dij represent the shortest path length between vertices vi and vj. The
distance matrix of G is defined as an n × n matrix whose (i, j)-th entry is dij. It is
denoted by D(G). Its eigenvalues can be ordered as µ1 ≥ µ2 ≥ . . . ≥ µk.
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Definition 6.2. The D-eigenvalues of a connected graph G are the eigenvalues of its
distance matrix D, and form the D-spectrum of G. The D-energy of the graph G is the
sum of the absolute values of its D-eigenvalues. It is denoted by ED(G). Two graphs
are called D-equienergetic if they have equal D-energies.

Properties 6.1. The properties of Distance matrix are

a) The determinant of the distance matrix of a tree is a function of the number of
vertices only.

b) If G = Kn, the complete graph on n vertices, then A(Kn) = D(Kn) and ED(G) =

E(G) = 2(n− 1).
c) Denote by Jn the all 1′s n × n matrix and by In the identity matrix of order n. If

the diameter of G is atmost two, then D(G) = 2Jn−2In−A(G) = Jn− In+A(G).
d) The inertia of the distance matrix is (1, 0, n− 1) for all trees on n ≥ 2 vertices.
e) If the characteristic polynomial of the distance matrix D of a tree on n vertices is
PD(T )(t), det(D) = (−1)nPD(T )(0).

f) D(G) is real, symmetric and has trace equal to zero. It is Hermitian.
g) The largest eigenvalue µ1 is called the distance spectral radius or distance index.

Definition 6.3. Wiener index of the graph W(G) is the sum of the distances between
all unordered pair of vertices of G. It is half the sum of the entries of the distance
matrix.

Definition 6.4. The Randic index is a degree based topological index. It is defined as

R(G) =
∑

uv∈E(G)

1√
d(u)d(v)

.

Definition 6.5. The first Zagreb Index is defined as M1(G) =
∑

uv∈E(G)(d(u)+d(v)).
The second Zagreb Index is defined asM2(G) =

∑
uv∈E(G)(d(u)×d(v)). The Harmonic

Index is defined as H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
.

Definition 6.6. A graph G having energy greater than the complete graph on the
same number of vertices is called hyperenergetic.

Theorem 6.1. Let G be a (n,m)- graph of diameter 2 and µ1 be its greatest D-
eigenvalues. Then µ1 ≥ (2n2 − 2m− 2n)/n.
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TABLE 5. The Energy of the connected cyclotomic graphs

G Energy D-energy W R(G) M1 M2 M2

A1 2 2 1 1 1 1 1
B4−6 2

√
2 2

√
3 + 2 4

√
2 6 4 4/3

B7 4 4 3 1 8 8 1
C26−29 2

√
3 2

√
7 + 4 9

√
3 12 9 3/2

C30−41 2
√
5 4 + 2

√
10 10 (2

√
2 + 1)/2 10 8 11/6

C42 4 8 8 2 16 16 2
Dj

1 2 + 2
√
5 12 15 5/2 20 20 5/2

Dj
2 4 2

√
13 + 6 16 1 20 16 8/5

Dj
3 2

√
2 +
√
2 +

2
√

2−
√
2

2
√
13 + 6 16 (3

√
2 + 1)/2 13 10 5/2

Dj
4 2

√
3 + 2 - 20

√
2 + 1 14 12 7/3

Ej1 6 - 27 (1 + 2(
√
2 +√

3))/
√
6

19 16 2/3

Ej2 8 18 27 3 24 24 3

Ej3 2
√

(5 +
√
5)/2+

2
√
(5−

√
5)/2

- 30 (3 +
√
2)/
√
2 17 14 3

TABLE 6. The Energy of the disconnected cyclotomic graphs

G B1−3 C1−6 C7−18 C19−21 C22−25 Dj
21 Dj

22 Dj
23 Dj

24 Dj
25 Dj

26 Dj
27

Energy 2 2 2
√
2 4 4 5 4 4 2

√
3 2
√
5 2
√
2 + 2 2

√
2

TABLE 7. The Energy of the disconnected cyclotomic graphs

G Dj
28 Dj

29 Ej70 Ej71 Ej72 Ej73 Ej74 Ej75 Ej76 Ej77
Energy 4 2 4 10 12 2(

√
2 +
√
2 +

√
2−
√
2) 2 + 2

√
3 2
√
3 2
√
2 6

TABLE 8. Equienergetic and cospectral graphs

Graphs Types
B7, C42 Equienergetic graphs

B4−6, C26−29, C30−41 Equienergetic and cospectral graphs
B4−6, C26−29,C30−41 D-equienergetic and D-cospectral graphs

B1−3, C1−6, C7−18, C19−21, C26−29 Equienergetic and cospectral graphs
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Proof. Let G be a connected graph of diameter 2 and let its vertices be labeled as
v1, . . . , vn. Let di denote the degree of vi. Then i-th row of D consists of di one ′ s
and n− di − 1 two ′ s. Let x[1, 1, 1, . . . , 1], the all one vector. Then by the Raileigh
Principle µ1 ≥ (xDxT/xxT ) = (1/n)

∑n
i=1(2n− di − 2) = (2n2 − 2m− 2n)/n. �

Theorem 6.2. If G is a connected (n,m)- graph, then√
2
∑

1≤i≤j≤n

(dij)2 ≤ ED(G) ≤
√

2n
∑

1≤i≤j≤n

(dij)2.

Proof. By using Cauchy-Schwartz inequality and assuming ai = 1, bi = |µi|, we get

(
n∑
i=1

|µi|)2 ≤ n
n∑
i=1

µ2
i ⇒ ED(G)

2 ≤ 2n
∑

1≤i≤j≤n

(dij)
2,

ED(G)
2 ≤ (

n∑
i=1

|µi|)2 ≥
n∑
i=1

|µi|2 = 2
∑

1≤i≤j≤n

(dij)
2.

�

7. PERIPHERAL DISTANCE MATRIX

Let G be connected nontrivial graph. Let u and v be two vertices of a graph G.
The distance d(u, v) between the vertices u and v is the length of a shortest path
connecting u and v. The eccentricity e(v) of a vertex v in a graph G is the distance
between v and a vertex farthest from v in G. The diameter diam(G) of G is the
maximum eccentricity of G. A vertex v with e(v) = diam(G) is called a peripheral
vertex of G. The set of peripheral vertices of G is called as periphery and denoted
by P(G).

Definition 7.1. Peripheral distance matrix (Dp-matrix) of G is defined as

Dp = Dp(G) = [dij],

where dij is the distance between two peripheral vertices vi and vj in G. The eigenval-
ues of Dp-matrix are said to be Dp-eigenvalues of G. The peripheral distance energy
(Dp-energy )of G is defined as the sum of the absolute values of Dp-eigenvalues of
Dp-matrix of G.
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Theorem 7.1. Let G be a graph of order n with k peripheral vertices and let µ1, µ2, . . . , µk

be its peripheral distance eigenvalues. Then

a)
∑k

i=1 µi = 0,
b)
∑k

i=1 µ
2
i = 2

∑
1≤i≤j≤k(dij)

2.

Theorem 7.2. Suppose G is a graph of order n and size m with k peripheral vertices
having the diam(G) ≤ 2. Then

∑k
i=1 µ

2
i = 6

(
n
2

)
+ 2

(
k
2

)
−6m.

Definition 7.2. The sum of the distances between all pairs of peripheral vertices is a
peripheral Wiener index of a graph G,

PWI(G) =
∑

1≤i≤j≤k

d(vi, vj),

where G is an (n,m)- graph with k peripheral vertices and vi, vj ∈ P (G).

Theorem 7.3. Suppose G is a graph of order n and size m with k peripheral vertices
having the diam(G) ≤ 2. Then PWI(G) =

(
n
2

)
+
(
k
2

)
−m.

TABLE 9. Dp- eigenvalues and Dp - energy

Graph A1 B4−6 B7 C26−29 C30−41 C42

Dp- eigenvalues -1,1 -2,2 2,-1,-1 4,-2,-2 -3, 3 4,-2,-2,0
Dp - energy 2 4 4 8 6 8

TABLE 10. Dp- eigenvalues and Dp - energy

Graph Dj
1 Dj

2 Dj
3 Dj

4

Dp- eigenvalues {6, (−3 ±
√
5)/2, (−3 ±√

5)/2}
6,-2,-2,-2 {1±

√
19,−2} -4,4

Dp - energy 2 4 4 8

TABLE 11. Dp- eigenvalues and Dp - energy

Graph Ej1 Ej2 Ej3
Dp- eigenvalues 8, -4, -2, -2 9,-4,-4,-1,0,0 {1±

√
33,−2}

Dp - energy 16 18 2
√
33 + 2
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8. DISTANCE LAPLACIAN

Definition 8.1. The transmission Tr(v) of a vertex v is defined to be the sum of
the distances from v to all other vertices of G. The distance Laplacian of a connected
graph G is defined as the matrix DL(G) = Tr(G)−D(G) , where Tr(v) denotes the
diagonal matrix with Tr(vi) as the i-th diagonal entry. The eigenvalues ofDL -matrix
are said to be DL -eigenvalues of G. The Distance Laplacian energy ( DL-energy )of G
is defined as the sum of the absolute values of DL-eigenvalues of DL -matrix of G. Let
δ1 ≥ δ2 ≥ . . . ≥ δn−1 ≥ δn denote the eigenvalues of DL. DL is a positive semidefinite
matrix and δn = 0. (Aouchiche et al. [2])

TABLE 12. DL- eigenvalues and DL - energy

Graph A1 B4−6 B7 C26−29 C30−41 C42

DL- eigenvalues 2,0 5,3,0 3,3,0 7,7,4,0 {7±
√
5, 6, 0} 6,6,4,0

DL - energy 2 8 6 18 20 16

TABLE 13. DL- eigenvalues and DL - energy

Graph Dj
1 Dj

2 Dj
3 Dj

4 Ej1 Ej2 Ej3
DL- eigenvalues - 9,9,9,5,0 - {(23 ±√

41)/2, 0, 7, 0}
- 13,13,10,9,9,0 -

DL - energy 30 32 - 40 - 54 -

9. SPECTRAL VARIATION OF GRAPHS

Definition 9.1. Let A have eigenvalues λ1, λ2, . . . , λn and Ã have eigenvalues λ̃1, λ̃2,
. . . , λ̃n. Then the spectral variation of Ã with respect to A is

svA(Ã) = maximinj

∣∣∣λ̃i − λj∣∣∣ .
Definition 9.2. The Hausdorff distance between the eigenvalues of A and Ã is

hd(A, Ã) = max{svA(Ã), svÃ(A)}.

Definition 9.3. The optimal matching distance between the eigenvalues of A and Ã
is

md(A, Ã) = minπ{maxi
∣∣∣λ̃π(i) − λi∣∣∣}

where π is taken over all permutations of {1, 2, . . . , n}.
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TABLE 14. The spectral variation, Hausdorff distance, Optimal
matching distance

A, Ã svA(Ã) svÃ(A) hd(A, Ã) md(A, Ã)

B1, B4

√
2− 1

√
2− 1

√
2− 1

√
2− 1

B1, B7 1 1 1 1
B4, B7 2−

√
2 1 1 1

C26, C30 (
√
5− 1)/2 (

√
5− 1)/2 (

√
5− 1)/2 (

√
5− 1)/2

C26, C42 2−
√
3 2−

√
3 2−

√
3 2−

√
3

C30, C42 (
√
5− 1)/2 (

√
5− 1)/2 (

√
5− 1)/2 (

√
5− 1)/2

Dj
1, Dj

2 (
√
5− 1)/2 (

√
5 + 1)/2 (

√
5 + 1)/2 (

√
5− 1)/2

Dj
1, Dj

3 ((1 +
√
5)/2) −√

2−
√
2

2−
√

2 +
√
2 ((1 +

√
5)/2) −√

2−
√
2

√
2−
√
2 +

(
√
5− 1)/2

Dj
1, Dj

4 (
√
5− 1)/2 1− ((

√
5− 1)/2) (

√
5− 1)/2

√
3 − ((

√
5 −

1)/2)

Dj
2, Dj

3

√
2−
√
2 2−

√
2 +
√
2

√
2−
√
2

√
2 +
√
2

Dj
2, Dj

4 1 2−
√
3 1 2

Dj
3, Dj

4 1−
√

2−
√
2 1−

√
2−
√
2 1−

√
2−
√
2

√
3−

√
2−
√
2

Ej1, Ej2 0 1 1 2

Ej1, Ej3
√

(5−
√
5)/2−1

√
(5−

√
5)/2−1

√
(5−

√
5)/2−1

√
(5−

√
5)/2

Ej2, Ej3
√

(5−
√
5)/2−1

√
(5−

√
5)/2−1

√
(5−

√
5)/2−1

√
(5−

√
5)/2+1

10. POLYNOMIAL MATRIX

Definition 10.1. A polynomial matrix is a matrix whose elements are univariate
or multivariate variables. It can be written as P =

∑k
m=0B(m)xm , where B(m)

denotes the matrix of constant coefficients. Let A be a polynomial matrix, then the
matrix λI − A is the characteristic matrix of the matrix A. Its determinant |λI − A|
is the characteristic polynomial of the matrix A.

Theorem 10.1. If the polynomial matrix P1 = A(B1) +A(B4)x, then the solution of
the characteristic polynomial of the matrix P1 is λ = 0, λ = ±

√
1 + 2x+ 2x2.

Theorem 10.2. If the polynomial matrix P2 = A(B1) + A(B7)x, then the solution
of the characteristic polynomial of the matrix P2 is λ = −1 − x2, λ = {1 + x2 ±√
1 + 2x2 + 9x4)/2.
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Theorem 10.3. If the polynomial matrix P3 = A(B1) + A(B4)x + A(B7)x
2, then

the solution of the characteristic polynomial of the matrix P3 is λ = (Y/3Z) −
(Z/32/3), λ = −[((1+i

√
3)Y/6Z)+((1−i

√
3)Z/(2×32/3))], λ = −[((1−i

√
3)Y/6Z)+

((1 + i
√
3)Z/(2 × 32/3))], where Y = −3 − 6x − 12x2 − 12x3 − 9x4 and Z =

31/3
(
− 9x3 − 18x4 − 18x5 − 9x6 +

√
3(−1 − 6x − 24x2 − 68x3 − 153x4 − 276x5 −

385x6 − 396x7 − 291x8 − 136x9 − 36x10)1/2)1/3.

Theorem 10.4. If the polynomial matrix P4 = A(B4) +A(B7)x, then the solution of
the characteristic polynomial of the matrix P4 is λ = −a, λ = (x±

√
9x2 + 16x+ 8)/2.

11. APPLICATIONS

The applications of graph theory on computer networks, Medical Analysis, solve
shortest path problems between cities, scheduling exams and assign channels to
television stations, sports scheduling, mobile towering and traffic signals. The ap-
plication of a distance matrix is the distance between cities by road, to help with
planning travel and haulage. In data analysis, distance matrices are used as a data
format when performing hierarchical and multidimensional scaling. A distance
matrix are used in hierarchical clustering , phylogenetic analysis and determina-
tion of protein structures from X-ray crystallography. The applications of Euclidean
metrics are in crystallography, psychometrics, machine learning, acoustics, wire-
less sensor networks, ultrasound tomography, room reconstruction echoes, micro-
phone position calibration. The applications of Hausdorff distance is on compar-
ison of DNA and three dimensional protein structures. It is used to measure the
similarity of two dimensional curves, shape matching, image retrieval. Optimal
matching distance are used in marine traffic tracking. In chemistry, the experi-
mental heats from the formation of conjugated hydrocarbons are closely related
to the total π-electron energy.

12. CONCLUSION

Hence conclude that the component matrix, Laplacian matrix, Distance matrix,
Peripheral distance matrix, Distance Laplacian of the cyclotomic graphs and some
properties found. The D-energy, Dp-energy, DL-energy and some indices of the cy-
clotomic graphs determined. For the real symmetric matrices, matrices that attain
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the maximum L, Ls and the minimum S are calculated. The Hausdorff distance
and optimal matching distance of the cyclotomic graphs evaluated. Further de-
velopment of work is on the cyclotomic graphs of order greater than 6 and for
non-cyclotomic graphs.
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