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ABSTRACT. The research efforts of this paper is to present a new inertial relaxed
Tseng extrapolation method with weaker conditions for approximating the solu-
tion of a variational inequality problem, where the underlying operator is only
required to be pseudomonotone. The strongly pseudomonotonicity and inverse
strongly monotonicity assumptions which the existing literature used are success-
fully weakened. The strong convergence of the proposed method to a minimum-
norm solution of a variational inequality problem are established. Furthermore,
we present an application and some numerical experiments to show the efficiency
and applicability of our method in comparison with other methods in the litera-
ture.

1. INTRODUCTION

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm
‖ · ‖, C be a nonempty closed convex subset of H and A : H → H be an operator.
The classical variational inequality problem for A on C is denoted by V I(A,C)

and is defined as follows.
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Find x ∈ C such that

〈Ax, y − x〉 ≥ 0 ∀ y ∈ C.(1.1)

The notion of V I(A,C) was introduced independently by Stampacchia [22] and
Fichera [10, 11] for modeling problems arising from mechanics and for solving
Signorini problem. It is well-known that many problems in economics, mathe-
matical sciences, mathematical physics can be formulated as V I(A,C). The set of
solution of (1.1) is denoted by Ω, that is

Ω = {x ∈ C : 〈Ax, y − x〉 ≥ 0 ∀ y ∈ C}.(1.2)

The metric projection (PC) property is well-known in the literature and it is defined
as x ∈ Ω if and only if

x = PC(I − λA)x.

Due to the fruitful applications of V I(A,C), many useful iterative algorithms
have been developed to approximate the solution of (1.1). For example, Xu [31]
introduced the iterative process

xn+1 = PC(I − λA)xn.(1.3)

It has been established that if A strongly monotone and Lipschitz continuous, then
the iterative scheme (1.3) has strong convergence results under some suitable
conditions. In addition, if A is inverse strongly monotone, the iterative scheme
(1.3) has weak convergence results under some suitable conditions. An attempt
to overcome these setbacks was made by Korpelevich [15]. The extragradient
type method which is given by (1.4), was introduced. The convergence of the
method was established for a monotone and Lipschitz continuous operator A in
the finite-dimensional Euclidean spaces.

x1 ∈ C
yn = PC(xn − λAxn)

xn+1 = PC(yn − λAyn) ∀ n ∈ N.

(1.4)

Under some suitable conditions, the sequence {xn} was shown to converge to the
solution set Ω. Since then, other authors have studied the V I(A,C) in Hilbert
spaces using different iterative algorithms, (see [1, 2, 12–14, 21] and the refer-
ences therein). However, in all of these approaches, the convergence of their
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methods were obtained under the inversely strongly monotone or strongly pseu-
domonotone or monotonicity and Lipschitz continuity or pseudomonotonicity and
Lipschitz continuity assumption of the underlying operator A. The challenge about
these methods is how to calculate the Lipschitz constant of the given monotone or
pseudomonotone operator, which is difficult or even sometimes impossible. Thus,
making their methods very difficult in applications.

Remark 1.1. In the light of the above facts, it is natural to ask, if an iterative algo-
rithm can be introduced to approximate the V I(A,C) (1.1) in which the underlining
operator is just pseudomonotone, with the minimum metric projection.

It is well-known that the V I(A,C) (1.1) can be associated with the dynamical
system in [30],

du(t)

dt
= ρ[−u(t) + PC(u(t)− λ(t)A(u(t)) + λ(t)A(u(t))

− λ(t)A(PC(u(t)− λ(t)A(u(t))))](1.5)

where ρ, λ > 0. Taking a time step size hn > 0, u(t) = un and λ(t) = λn, and using
an explicit finite-difference of the system (1.5), we have

un+1 − un
hn

= ρ[−un + PC(un − λnA(un) + λnA(un)(1.6)

− λnA(PC(un − λnA(un)))].

If hn = 1, (1.6) becomes

un+1 = (1− ρ)un + ρPC(un − λnA(un) + ρλnA(un)(1.7)

− ρλnA(PC(un − λnA(un))).

Now, observe that (1.7) can be written in two steps. That is of the formvn = PC(un − λnAun)

un+1 = (1− ρ)un + ρvn + ρλn(A(un)− A(vn)) ∀ n ∈ N.
(1.8)

It is easy to see that if PC(un − λnAun) = (I + λnB)−1(I − λnA) and ρ = 1,

we have that un+1 reduces to the well-known Tseng’s forward backward-forward
method introduced in [28]. The convergence of the scheme in [28] requires that
0 < λn < 1

L
, where L is the Lipschitz constant of the operator A or λn can be

computed using a line search procedure with a stopping criterion.
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Remark 1.2. It is unfortunate that the iterative scheme (1.8) is not an answer to
the proposition in Remark 1.1. The underlying operator A is required to be inversely
strongly monotone or pseudomonotone and Lipschitz continuous. The question of
constructing an iterative scheme that will approximate the solution of a V I(A,C)

(1.1) in which the underlying operator will just be pseudomontone, with minimum
projection still persists.

The inertial extrapolation method has proven to be an effective way for accel-
erating the rate of convergence of iterative algorithms. The technique was intro-
duced in 1964 and is based on a discrete version of a second order dissipative
dynamical system [4, 5]. The inertial type algorithms use its two previous iter-
ates to obtain its next iterate [3, 16]. For details on the inertia extrapolation,
see [7,17,18] and the references therein. In 2018, Dong et al. [9] proposed an in-
ertial type iterative algorithm for approximating the solution of (1.1). The method
is of the form: 

x0, x1 ∈ H,
wn = xn + θn(xn − xn−1)

yn = PC(wn − λAwn),

d(wn, yn) = wn − yn − λ(Awn − Aun)

xn+1 = wn − ζηnd(wn, yn)

(1.9)

where ζ ∈ (0, 2), λ ∈ (0, 1
L

), ηn := φ(wn, yn) if d(wn, yn) 6= 0 and ηn := φ(wn, yn)

if d(wn, yn) = 0. They established that the sequence {xn} converges weakly to an
element of Ω. An inertial type iterative algorithm for approximating the solution
of (1.1) was also proposed by Thong et al. [25], which is of the form,

x0, x1 ∈ H,
wn = xn + θn(xn − xn−1)

un = PC(wn − λAwn),

xn+1 = un − λ(Aun − Axn),

(1.10)

where A is monotone and Lipschitz continuous. They established that the se-
quence {xn} converges weakly to an element of Ω.

Remark 1.3. Notice that in Algorithm 1.9 and Algorithm 1.10, the underlying op-
erator A is monotone and L-Lipschitz continuous. Also, since strong convergence is
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always more desirable than weak convergence. It is therefore natural to ask if Algo-
rithm 1.9 and Algorithm 1.10 can be further modified to get a strong convergence. In
addition, can we further weaken the condition on the operator A?

In 2020, Thong et al. [27] provide a partial answer to the question raised in
Remark 1.3 by introducing a vicosity based iterative algorithm for approximating
the solution of a V I(A,C) (1.1). The method is of the form:

x0, x1 ∈ H,
wn = xn + θn(xn − xn−1)

un = PC(wn − λAwn),

xn+1 = βnf(xn) + (1− βn)zn

where zn = un − λ(Aun − Awn)

(1.11)

and A is monotone and Lipschitz continuous. They established that the sequence
{xn} converges strongly to an element of Ω.

Remark 1.4. In Algorithm 1.11, the underlying operator A is monotone and L-
Lipschitz continuous. More so, the step size requires the knowledge of the Lipschitz
constant of the underlying operator, which is difficult or even sometimes impossible
to calculate, thus, making their methods very difficult in applications. Therefore, the
answer to the proposition in Remark 1.1 and Remark 1.3 are still lingering.

Motivated by the work of Thong et al. [25], Thong et al. [27] and (1.8), in this
paper, we provide an affirmative answer to the questions raised in Remark 1.1
and Remark 1.3. An iterative algorithm is constructed in view of inertial method
variational inequality problems for a pseudomonotone operator in the framework
of real Hilbert spaces. Using this algorithm we establish weak and strong conver-
gence results without using the conventional two cases approach. Furthermore,
we present some numerical experiments to show the efficiency and applicability
of our method in the framework of infinite and finite dimensional Hilbert spaces.
The comparison of our proposed iterative algorithm with existing ones in the liter-
ature shows that our proposed schemes approximate faster and the convergence
analysis is easy to follow.

The rest of this paper is organized as follows: In Section 2, we recall some useful
definitions and results that are relevant for our study. In Section 3, we present our
proposed method and highlight its advantages over other existing algorithms. In
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Section 4, we establish weak and strong convergence analysis of our method and
in Section 5, we give an application to equilibrium problem. More so, in Section
6, we present some numerical experiments to show the efficiency and applicability
of our method in the framework of infinite and finite dimensional Hilbert spaces
and lastly in Section 7, we give the conclusion of the paper. The results obtained
in this work extend, generalize and improve several results in this direction.

2. PRELIMINARIES

In this section, we recall some known and useful results which are needed in
the sequel.

Let H be a real Hilbert space. The set of fixed point of T will be denoted by
F (T ), that is F (T ) = {x ∈ H : Tx = x}. We denote strong and weak convergence
by "→" and "⇀", respectively. For any x, y ∈ H and α ∈ [0, 1], it is well-known that

〈x, y〉 =
1

2
(‖x‖2 + ‖y‖2 − ‖x− y‖2).(2.1)

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.(2.2)

‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2.(2.3)

Let H be a real Hilbert space and C a nonempty, closed and convex subset of H.
For any u ∈ H, there exists a unique point PCu ∈ C such that

‖u− PC‖ ≤ ‖u− y‖ ∀y ∈ C.

PC is called the metric projection of H onto C. It is well-known that PC is a non-
expansive mapping and that PC satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2,

for all x, y ∈ H. Furthermore, PCx is characterized by the properties PCx ∈ C,

〈x− PCx, PCx− y〉 ≥ 0

for all y ∈ C and
‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2

for all x ∈ H and y ∈ C.

Lemma 2.1. Let PC : H → C be a metric projection. Then, we have the following:

(a) 〈PCx− PCy〉 ≥ ‖PCx− PCy‖2 for all x, y ∈ H.
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(b) ‖x− PCy‖2 + ‖PCy − y‖2 ≤ ‖x− y‖2 for all x ∈ C and y ∈ H.
(c) y = PCx if and only if 〈x− y, y − z〉 ∀ z ∈ C.

Definition 2.1. Let T : H → H be an operator. Then the operator T is called

(a) L-Lipschitz continuous if

‖Tx− Ty‖ ≤ L‖x− y‖,

where L > 0 and x, y ∈ H. If L = 1, Then T is called nonexpansive. Also, if
y ∈ F (T ) and L = 1, Then T is called quasi-nonexpansive.

(b) monotone if

〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ H.

(c) pseudomonotone if

〈Tx, y − x〉 ≥ 0⇒ 〈Ty, y − x〉 ≥ 0, ∀x, y ∈ H.

(d) firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉, ∀ x, y ∈ H,

or equivalently

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T )x− (I − T )y‖2, ∀ x, y ∈ H,

(e) k-inverse strongly monotone (k-ism) if there exists k > 0, such that

〈Tx− Ty, x− y〉 ≥ k‖Tx− Ty‖2, ∀ x, y ∈ H.

(f) sequentially weakly continuous mapping if for each {xn} inH, such that {xn}
converges weakly to a point x ∈ H, then, {Txn} converges weakly to Tx.

It is well-known that for any nonexpansive mapping T, the set of fixed point is
closed and convex. Also, T satisfies the following inequality

〈(x− Tx)− (y − Ty), T y − Tx〉 ≤ 1

2
‖(Tx− x)− (Ty − y)‖2, ∀ x, y ∈ H.(2.4)

Thus, for all x ∈ H and x∗ ∈ F (T ), we have that

〈x− Tx, x∗ − Tx〉 ≤ 1

2
‖Tx− x‖2, ∀ x, y ∈ H.(2.5)
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Lemma 2.2. [19] Let {an} be a sequence of positive real numbers, {αn} be a sequence
of real number in (0, 1) such that

∑∞
n=1 αn = ∞ and {dn} be a sequence of real

numbers. Suppose that

an+1 ≤ (1− αn)an + αndn, n ≥ 1.

If lim supk→∞ dnk
≤ 0 for all subsequences {ank

} of {an} satisfying the condition

lim inf
k→∞

{ank+1 − ank
} ≥ 0,

then, lim
n→∞

an = 0.

3. PROPOSED ALGORITHM

In this section, we present our proposed method and discuss some motivations
for proposing it. We begin with the following assumptions under which our strong
convergence is obtained.

Assumption 3.1. Suppose that the following conditions hold:

(1) The set C is a nonempty closed and convex subset of the real Hilbert space H.
(2) A : H → H is pseudomonotone, sequentially weakly continuous and uni-

formly continuous on bounded subsets of C.
(3) The solution set Ω = {x ∈ C : 〈Ax, y − x〉 ≥ 0 ∀ y ∈ C} 6= ∅.

Algorithm 3.2. Initialization: Given γ, κ > 0, ρ ∈ (0, 1] and θn, βn, αn, µ, l,∈ (0, 1),

for all n ∈ N, let x0, x1,∈ H be arbitrary.

Iterative step:
Step 1: Given the iterates xn−1 and xn for all n ∈ N, choose θn such that 0 ≤ θn ≤ θ̄n,

where

θ̄n =


min

{
θ
κ
, εn
||xn−xn−1||

}
, if xn 6= xn−1,

θ
κ
, otherwise,

(3.1)

where θ > 0 and {εn} is a positive sequence such that εn = ◦(αn).

Step 2. Set
wn = xn + θn(xn − xn−1).
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Then, compute

un = PC(wn − λnAwn),(3.2)

where λn is chosen to be the largest λ ∈ {γ, γl, γl2, · · · } satisfying

λ‖Awn − Aun‖ ≤ µ‖wn − un‖.(3.3)

If wn = un, then stop, un is a solution of (1.1).
Step 3. Compute

xn+1 = (1− αn − βn)xn + βn((1− ρ)wn + ρun + ρλn(Awn − Aun)).(3.4)

Stopping criterion: If wn = un = xn, then stop, otherwise, set n := n + 1 and go
back to Step 1.

We highlight the motivation for the proposed algorithm.

Remark 3.1.

(1) A notable advantage of this method (Algorithm 3.2) is that the operator
A is pseudomonotone unlike the inversely strongly monotone or strongly
pseudomonotonicity assumptions used in other papers (see for example,
[12,14,20,21]). No extra projection is required under the setting. The use
of the Armijo-line search rule in our algorithm stands as a local approxi-
mation of the Lipschitz constant of the operator A. The knowledge of the
Lipschitz constant of A is not required.

(2) The proof of the strong convergence of Algorithm 3.2 (that is, proof of
Theorem 4.1) does not rely on the usual "Two cases approach (Case 1 and
Case 2)" usually used in numerous paper for solving optimization problems
(see [13, 21, 24, 26] and the reference therein). The techniques and ideas
employed in the strong convergence analysis are new.

(3) In Algorithm 3.2, it is easy to compute step 1 since the value of ‖xn−xn−1‖
is a prior knowledge before choosing θn. It is easy to see from (3.1) that
lim
n→∞

θn
αn
‖xn − xn−1‖ = 0.

Recall that, {εn} is a positive sequence such that εn = ◦(αn), which means
that lim

n→∞
εn
αn

= 0. Clearly, we have that that θn‖xn − xn−1‖ ≤ εn for all
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n ∈ N, which together with lim
n→∞

εn
αn

= 0, it follows that

lim
n→∞

θn
αn
‖xn − xn−1‖ ≤ lim

n→∞

εn
αn

= 0.

It is worth mentioning that, we can take αn = 1/(n + 1)p and εn = 1/(n +

1)1−p, where p ∈ [0, 1/2).

4. CONVERGENCE ANALYSIS

Lemma 4.1. Let A be an operator satisfying the Assumption 3.1. Then, for all p ∈ Ω,

we have the

‖un − p‖2 ≤ ‖wn − p‖2 − ‖wn − un‖2 − 2λn〈Awn − Aun, un − p〉.

Proof. Since un = PC(wn − λn(Awn)) and p ∈ Ω, then by the characteristics of PC
(Lemma 2.1), we have that

〈wn − un − λnAwn, un − p〉 ≥ 0,

which is equivalent to

2〈wn − un, un − p〉 − 2λn〈Awn − Aun, un − p〉 − 2λn〈Aun, un − p〉 ≥ 0.(4.1)

Since 2〈wn − un, un − p〉 = ‖wn − p‖2 − ‖wn − u‖2 − ‖un − p‖2, (4.1) becomes

‖wn − p‖2 − ‖wn − u‖2 − ‖un − p‖2 − 2λn〈Awn − Aun, un − p〉

−2λn〈Aun, un − p〉 ≥ 0.(4.2)

Using the fact that A is pseudomonotone, we have that 〈Aun, un−p〉 ≥ 0. It follows
that

‖un − p‖2 ≤ ‖wn − p‖2 − ‖wn − u‖2 − 2λn〈Awn − Aun, un − p〉 − 2λn〈Aun, un − p〉

≤ ‖wn − p‖2 − ‖wn − u‖2 − 2λn〈Awn − Aun, un − p〉.

This implies that

‖un − p‖2 ≤ ‖wn − p‖2 − ‖wn − un‖2 − 2λn〈Awn − Aun, un − p〉.

�

Lemma 4.2. Let {xn} be a sequence generated by Algorithm 3.2. Then, under the
Assumptions 3.1, we have that {xn} is bounded.
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Proof. Let p ∈ Ω and since lim
n→∞

θn
αn
‖xn − xn−1‖ = 0, there exists N1 > 0 such that

θn
αn
‖xn − xn−1‖ ≤ N1. Then from Step 2 of Algorithm 3.2, we have

‖wn − p‖ = ‖xn + θn(xn − xn−1)− p‖

≤ ‖xn − p‖+ θn‖xn − xn−1‖

= ‖xn − p‖+ αn
θn
αn
‖xn − xn−1‖

≤ ‖xn − p‖+ αnN1.(4.3)

Now, suppose that vn = (1 − ρ)wn + ρun + ρλn(Awn − Aun). Then, using Lemma
4.1, we have that

‖vn − p‖2

= ‖(1− ρ)wn + ρun + ρλn(Awn − Aun)− p‖2

= ‖(1− ρ)(wn − p) + ρ(un − p) + ρλn(Awn − Aun)‖2

= (1− ρ)2‖wn − p‖2 + ρ2‖un − p‖2 + ρ2λ2
n‖Awn − Aun‖2

+ 2ρ(1− ρ)〈wn − p, un − p〉+ 2λnρ(1− ρ)〈wn − p,Awn − Aun〉

+ 2λnρ
2〈un − p,Awn − Aun〉

= (1− ρ)2‖wn − p‖2 + ρ2‖un − p‖2 + ρ2λ2
n‖Awn − Aun‖2

+ ρ(1− ρ)[‖wn − p‖2 + ‖un − p‖2 − ‖wn − un‖2]

+ 2λnρ(1− ρ)〈wn − p,Awn − Aun〉+ 2λnρ
2〈un − p,Awn − Aun〉

= (1− ρ)‖wn − p‖2 + ρ‖un − p‖2 − ρ(1− ρ)‖wn − un‖

+ ρ2λ2
n‖Awn − Aun‖2 + 2λnρ(1− ρ)〈wn − p,Awn − Aun〉

+ 2λnρ
2〈un − p,Awn − Aun〉

≤ (1− ρ)‖wn − p‖2 + ρ[‖wn − p‖2 − ‖wn − un‖2 − 2λn〈Awn − Aun, un − p〉]

− ρ(1− ρ)‖wn − un‖+ ρ2λ2
n‖Awn − Aun‖2 + 2λnρ(1− ρ)〈wn − p,Awn − Aun〉

+ 2λnρ
2〈un − p,Awn − Aun〉

= ‖wn − p‖2 − ρ(2− ρ)‖wn − un‖2 + ρ2λ2
n‖Awn − Aun‖2
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+ 2λnρ
2〈wn − un, Awn − Aun〉

≤ ‖wn − p‖2 − ρ[2− ρ− µ(2(1− ρ) + µ)]‖wn − un‖2

≤ ‖wn − p‖2,(4.4)

which implies that

‖vn − p‖ ≤ ‖wn − p‖.(4.5)

Also, using Algorithm 3.2, (4.3) and (4.4), we have that

‖(1− αn − βn)(xn − p) + βn(vn − p)‖2

= (1− αn − βn)2‖xn − p‖2 + β2
n‖vn − p‖2y

+ 2(1− αn − βn)βn〈xn − p, vn − p〉

≤ (1− αn − βn)2‖xn − p‖2 + β2
n‖wn − p‖2

+ 2(1− αn − βn)βn‖xn − p‖‖vn − p‖

≤ (1− αn − βn)2‖xn − p‖2 + β2
n‖wn − p‖2 + (1− αn − βn)βn‖xn − p‖2

+ (1− αn − βn)βn‖vn − p‖2

≤ (1− αn − βn)2‖xn − p‖2 + β2
n‖wn − p‖2 + (1− αn − βn)βn‖xn − p‖2

+ (1− αn − βn)βn‖wn − p‖2

= (1− αn − βn)(1− αn)‖xn − p‖2 + (1− αn)βn‖wn − p‖2

≤ (1− αn − βn)(1− αn)‖xn − p‖2 + (1− αn)βn(‖xn − p‖+ αnN1)2

= (1− αn − βn)(1− αn)‖xn − p‖2 + (1− αn)βn‖xn − p‖2

+ 2(1− αn)βnαn‖xn − p‖N1 + (1− αn)βnα
2
nN

2
1

≤ (1− αn)(1− αn)‖xn − p‖2 + 2(1− αn)αn‖xn − p‖N1 + α2
nN

2
1

= [(1− αn)‖xn − p‖+ αnN1]2,(4.6)

which implies that

‖(1− αn − βn)(xn − p) + βn(vn − p)‖ ≤ (1− αn)‖xn − p‖+ αnN1.(4.7)
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We then have that

‖xn+1 − p‖ = ‖(1− αn − βn)(xn − p) + βn(vn − p)− αnp‖

≤ ‖(1− αn − βn)(xn − p) + βn(vn − p)‖+ αn‖p‖

≤ (1− αn)‖xn − p‖+ αnN1 + αn‖p‖

= (1− αn)‖xn − p‖+ αn(N1 + ‖p‖)

≤ max{‖xn − p‖, N1 + ‖p‖}
...

≤ max{‖x1 − p‖, N1 + ‖p‖}.(4.8)

Thus, {xn} generated by Algorithm 3.2 is bounded. �

Lemma 4.3. Let Assumption 3.1 hold and let {xn} be a sequence generated by Algo-
rithm 3.2. Assume that the subsequence {xnk

} of {xn} converges weakly to a point
x∗, and lim

k→∞
‖unk

− wnk
‖ = 0, then, x∗ ∈ Ω.

Proof. By Lemma 2.1 we obtain

〈wnk
− λnk

A(wnk
)− unk

, x− unk
〉 ≤ 0, ∀ x ∈ C,

which implies that

1

λnk

〈wnk
− unk

, x− unk
〉 ≤ 〈A(wnk

), x− unk
〉, ∀ x ∈ C.

Consequently, we have

1

λnk

〈wnk
− unk

, x− unk
〉+ 〈A(wnk

), unk
− wnk

〉

≤ 〈A(wnk
), x− wnk

〉, ∀x ∈ C.(4.9)

Suppose that x ∈ C is fix and using the fact that lim
k→∞
‖wnk

− unk
|| = 0, we have

from (4.9) that

0 ≤ lim inf
k→∞

〈A(wnk
), x− wnk

〉 ∀x ∈ C.(4.10)

Now, choose a sequence {ηk} of positive numbers such that ηk+1 ≤ ηk, ∀ k ∈
N and ηk → 0 as k →∞. Then, for each ηk, we denote by Mk the smallest positive
integer such that

〈A(unj
), x− unj

〉+ ηk ≥ 0 ∀j ≥Mk.(4.11)
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Since {ηk} is decreasing, it follows that {Mk} is increasing. Now, we set for
each k ∈ N, nMk

=
A(wMk

)

‖A(wMk
)‖2 , provided A(wMk

) 6= 0. Then it is easy to see that
〈A(wMk

), nMk
〉 = 1 for each k ∈ N. Using (4.11), we have that

〈A(wMk
), x+ ηknMk

− wMk
〉 ≥ 0,

by the pseudomonotonicity of A, we have that

〈A(x+ ηknMk
), x+ ηknMk

− wNk
〉 ≥ 0.(4.12)

Since {xnk
} converges weakly to x∗, we obtain by our hypothesis that {unk

} and
{wnk

} also converge weakly to x∗. Thus, by the sequentially weakly continuity
of A, we have that {A(wnk

)} converges weakly to A(x∗). If A(x∗) = 0, then x∗ ∈
Ω. On the other hand, if we suppose that A(x∗) 6= 0, then by the weakly lower
semicontinuity of ‖ · ‖, we obtain that

0 < ‖A(x∗)‖ ≤ lim inf
k→∞

‖A(wnk
)‖.

Since {wMk
} ⊂ {wnk

}, we obtain that

0 ≤ lim sup
k→∞

‖ηknMk
‖ = lim sup

k→∞

(
ηk

‖A(wnk
)‖

)
≤

lim sup
k→∞

ηk

lim inf
k→∞

‖A(wnk
)‖

= 0,

which implies that, lim
k→∞
‖ηknMk

‖ = 0. Thus, letting k →∞ in (4.12) yields

〈A(x), x− x∗〉 ≥ 0 ∀x ∈ C,(4.13)

which implies by Lemma 2.1 that x∗ ∈ Ω. �

Theorem 4.1. Let {xn} be the sequence generated by Algorithm 3.2. Then, un-
der the Assumptions 3.1, if lim

n→∞
αn = 0,

∑∞
n=1 αn = ∞, 0 ≤ lim infn→∞ βn ≤

lim supn→∞ βn < 1 and lim
n→∞

θn
αn
‖xn − xn−1‖ = 0. Then, {xn} converges strongly

to p ∈ Ω, where ‖p‖ = min{‖x∗‖ : x∗ ∈ Ω}.
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Proof. Let p ∈ Ω. To start with observe that

‖wn − p‖2 = ‖xn + θn(xn − xn−1)− p‖2

= ‖xn − p‖2 + 2θn〈xn − p, xn − xn−1〉+ θ2
n‖xn − xn−1‖2

≤ ‖xn − p‖2 + 2θn‖xn−1 − p‖‖xn − p‖+ θ2
n‖xn − xn−1‖2

= ‖xn − p‖2 + θn‖xn − xn−1‖[2‖xn − p‖+ θn‖xn − xn−1‖]

= ‖xn − p‖2 + θn‖xn − xn−1‖[2‖xn − p‖+ αn
θn
αn
‖xn − xn−1‖]

≤ ‖xn − p‖2 + θn‖xn − xn−1‖[2‖xn − p‖+ αnN1]

≤ ‖xn − p‖2 + θn‖xn − xn−1‖N2,(4.14)

where N2 := 2‖xn − x∗‖+ αnN1. In addition, we have that

‖(1− βn)xn + βnvn − p‖2

= ‖(1− βn)(xn − p) + βn(vn − p)‖2

= (1− βn)2‖xn − p‖2 + β2
n‖vn − p‖2 + 2(1− βn)βn〈xn − p, vn − p〉

≤ (1− βn)2‖xn − p‖2 + β2
n‖wn − p‖2 + 2(1− βn)βn‖xn − p‖‖vn − p‖

≤ (1− βn)2‖xn − p‖2 + β2
n‖wn − p‖2 + (1− βn)βn‖xn − p‖2

+ (1− βn)βn‖vn − p‖2

≤ (1− βn)2‖xn − p‖2 + β2
n‖wn − p‖2 + (1− βn)βn‖xn − p‖2

+ (1− βn)βn‖wn − p‖2

= (1− βn)‖xn − p‖2 + βn‖wn − p‖2

≤ (1− βn)‖xn − p‖2 + βn[‖xn − p‖2 + θn‖xn − xn−1‖N2]

≤ ‖xn − p‖2 + θn‖xn − xn−1‖N2.(4.15)

More so, we have that

‖xn+1 − p‖2

= ‖(1− αn)[(1− βn)xn + βnvn − p]− [βnαn(xn − vn) + αnp]‖2

≤ (1− αn)2‖(1− βn)xn + βnvn − p‖2 − 2〈βnαn(xn − vn) + αnp, xn+1 − p〉
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≤ (1− αn)2‖(1− βn)xn + βnvn − p‖2

+ 2〈βnαn(xn − vn), xn+1 − p〉+ 2αn〈p, p− xn+1〉

≤ (1− αn)[‖xn − p‖2 + θn‖xn − xn−1‖N2]

+ 2αnβn‖xn − vn‖‖xn+1 − p‖+ 2αn〈p, p− xn+1〉

≤ (1− αn)‖xn − p‖2 + 2αnβn‖xn − vn‖‖xn+1 − p‖

+ αn
θn
αn
‖xn − xn−1‖N2n+ 2αn〈p, p− xn+1〉

= (1− αn)‖xn − p‖2 + αn[2βn‖xn − vn‖‖xn+1 − p‖

+
θn
αn
‖xn − xn−1‖N2 + 2〈p, p− xn+1〉]

= (1− αn)‖xn − p‖2 + αnδn,(4.16)

where δn := 2βn‖xn−vn‖‖xn+1−p‖+ θn
αn
‖xn−xn−1‖N2+2〈p, p−xn+1〉. According to

Lemma 2.2, to conclude our proof, it is sufficient to establish that lim supk→∞ δnk
≤

0 for every subsequence {‖xnk
− p‖} of {‖xn − p‖} satisfying the condition:

lim inf
k→∞

{‖xnk+1 − p‖ − ‖xnk
− p‖} ≥ 0.(4.17)

To establish that lim supk→∞ δnk
≤ 0, we suppose that for every subsequence

{‖xnk
− p‖} of {‖xn − p‖} such that (7) holds. Then,

lim inf
k→∞

{‖xnk+1 − p‖2 − ‖xnk
− p‖2}

= lim inf
k→∞

{(‖xnk+1 − p‖ − ‖xnk
− p‖)(‖xnk+1 − p‖+ ‖xnk

− p‖)} ≥ 0.(4.18)

Now, using Algorithm 3.2, we have

‖xn+1 − p‖2 = ‖(1− αn − βn)xn + βnvn − p‖2

= ‖(1− αn − βn)(xn − p) + βn(vn − p)− αnp‖2

≤ ‖(1− αn − βn)(xn − p) + βn(vn − p)‖2 + α2
n‖p‖2

− 2αn〈(1− αn − βn)(xn − p) + βn(vn − p), p〉
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≤ ‖(1− αn − βn)(xn − p) + βn(vn − p)‖2 + αnM

≤ (1− αn − βn)‖xn − p‖2 + βn‖vn − p‖2

− (1− αn − βn)βn‖vn − xn‖2 + αnM

≤ (1− αn − βn)‖xn − p‖2 + βn‖wn − p‖2

− (1− αn − βn)βn‖vn − xn‖2 + αnM

≤ ‖xn − p‖2 + θn‖xn − xn−1‖N2

− (1− αn − βn)βn‖vn − xn‖2 + αnM,(4.19)

for some M > 0. It implies from (4.18) that

lim sup
k→∞

[(1− αnk
− βnk

)βnk
‖vnk

− xnk
‖2]

≤ lim sup
k→∞

[‖xnk
− p‖2 − ‖xnk+1 − p‖2 + αnk

θnk

αnk

‖xnk
− xnk−1‖N2 + αnk

M ]

≤ − lim inf
k→∞

[‖xnk
− p‖2 − ‖xnk+1 − p‖2] ≤ 0,(4.20)

which gives

lim
k→∞
‖vnk

− xnk
‖ = 0.(4.21)

Also, using Algorithm 3.2 and (4.4), we have

‖xn+1 − p‖2 = ‖(1− αn − βn)xn + βnvn − p‖2

= ‖(1− αn − βn)(xn − p) + βn(vn − p)− αnp‖2

≤ ‖(1− αn − βn)(xn − p) + βn(vn − p)‖2 + α2
n‖p‖2

− 2αn〈(1− αn − βn)(xn − p) + βn(vn − p), p〉

≤ ‖(1− αn − βn)(xn − p) + βn(vn − p)‖2 + αnM

≤ (1− αn − βn)‖xn − p‖2 + βn‖vn − p‖2

− (1− αn − βn)βn‖vn − xn‖2 + αnM

≤ (1− αn − βn)‖xn − p‖2 + ‖wn − p‖2

− ρ[2− ρ− µ(2(1− ρ) + µ)]‖wn − un‖2

− (1− αn − βn)βn‖vn − xn‖2 + αnM.(4.22)
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It can be deduced from (4.18) that

lim sup
k→∞

[ρ[2− ρ− µ(2(1− ρ) + µ)]‖wnk
− unk

‖2]

≤ lim sup
k→∞

[‖xnk
− p‖2 − ‖xnk+1 − p‖2 + αnk

θnk

αnk

‖xnk
− xnk−1‖N2

− (1− αnk
− βnk

)βnk
‖vn − xn‖2 + αnk

M ]

≤ − lim inf
k→∞

[‖xnk
− p‖2 − ‖xnk+1 − p‖2] ≤ 0,(4.23)

which gives

lim
k→∞
‖wnk

− unk
‖ = 0.(4.24)

Notice that as k →∞, we have

‖wnk
− xnk

‖ = θnk
||xnk

− xnk−1|| = αnk
· θnk

αnk

||xnk
− xnk−1|| → 0.(4.25)

In addition, we have the following

‖wnk
− vnk

‖ ≤ ‖wnk
− xnk

‖+ ‖xnk
− vnk

‖ → 0 as k →∞,(4.26)

‖unk
− xnk

‖ ≤ ‖unk
− vnk

‖+ ‖vnk
− xnk

‖ → 0 as k →∞.(4.27)

From the Algorithm 3.2 and (4.21), observe that

‖xnk+1 − vnk
‖ = ‖(1− αn − βn)xnk

+ βnvnk
− vnk

‖

≤ (1− αnk
− βnk

)‖xnk
− vnk

‖+ βnk
‖vnk

− vnk
‖

+ αnk
‖vnk
‖ → 0 as k →∞.(4.28)

Using (4.28) and (4.21), it gives

‖xnk+1 − xnk
‖ ≤ ‖xnk+1 − vnk

‖+ ‖vnk
− xnk

‖ → 0 as k →∞.(4.29)

Since {xn} is bounded, there exists a subsequence {xnkj
} of {xnk

} such that {xnkj
}

converges weakly to x∗ ∈ H1. By (4.21), (4.25) and (4.27), we have that the
subsequences {wnkj

} of {wnk
}, {unkj

} of {unk
} and {vnkj

} of {vnk
}, all converge

weakly to x∗ respectively. From (4.24) and Lemma 4.3, we have that x∗ ∈ Ω.

Since {xnk
} is bounded, it follows that there exists a subsequence {xnkj

} of {xnk
}

that converges weakly to x∗ such that

lim sup
k→∞

〈p, p− xnk
〉 = lim

j→∞
〈p, p− xnkj

〉 = 〈p, p− x∗〉.(4.30)

Hence, since p = PΩ0, we have obtain from (4.30) that
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lim sup
k→∞

〈p, p− xnk
〉 = 〈p, p− x∗〉 ≤ 0,(4.31)

which implies that

lim sup
k→∞

〈p, p− xnk+1〉 ≤ 0.(4.32)

Using using our assumption, (4.21) and (4.32), we have that lim supk→∞ δnk
:=

2βn‖xn − vn‖‖xn+1 − p‖ + θn
αn
‖xn − xn−1‖N2 + 2〈p, p − xn+1〉 ≤ 0. Thus, the last

part of Lemma 2.2 is achieved. Hence, we have that lim
n→∞

‖xn− p‖ = 0. Thus, {xn}
converges strongly to p ∈ Ω. �

5. APPLICATION TO EQUILIBRIUM PROBLEM

In this section, we apply our results to equilibrium problem.
The equilibrium problem is one of the interesting problems in this area of re-

search. Equilibrium problems are special cases of monotone inclusion problems,
saddle point problems, minimization problems, optimization problems, variational
inequality problems, Nash equilibria in noncooperative games, and various forms
of feasibility problems. Let C be a closed convex subset of a real Hilbert space H.
Let F : C × C → R be a bifunction, the equilibrium problem is defined as finding
x ∈ C such that

F (x, y) ≥ 0 ∀ y ∈ C.(5.1)

The solution set for x is denoted by EP (F ). It is well-known that to approximate
the solution of problem (5.1), we assume the bifunction F satisfy the following
well-known conditions:

(1) F (x, x) = 0 ∀x ∈ C,
(2) F is monotone, that is F (x, y) + F (y, x) ≤ 0 ∀ x, y ∈ C,
(3) for each x, y, z ∈ C limt→0+ F (αz + (1− α)x, y) ≤ F (x, y),

(4) for each x ∈ C, y → F (x, y) is convex and lower semi-continuous.

Lemma 5.1. [6] Let C be a nonempty closed convex subset of H and let F be a
bifunction of C × C into R satisfying (1)− (4). Suppose that λ > 0 and x ∈ H, thus,
there exists z ∈ C such that

F (z, y) +
1

λ
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.(5.2)
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In addition, if

JFλ x = {x ∈ C : F (z, y) +
1

λ
〈y − z, z − x〉 ≥ 0, ∀y ∈ C},(5.3)

then the following hold:

(1) JFλ is single valued and firmly nonexpansive,
(2) F (JFλ ) = EP (F ),

(3) EP (F ) is closed and convex.

We note that JFλ is the resolvent of F for λ > 0.

Lemma 5.2. [23] Let C be a nonempty closed convex subset of H and let F be a
bifunction of C ×C into R satisfying (1)− (4). Let BF be a set valued mapping of H
into H defined by

BF =

{z ∈ H : F (x, y) + 〈y − x, z〉 ≥ 0 ∀y ∈ C} if x ∈ C
∅, otherwise.

(5.4)

Then EP (F ) = B−1
F (0) and BF is a maximal monotone operator with Dom(BF ) ⊂

C. Furthermore, for any x ∈ H and λ > 0, the resolvent JFλ of F coincides with the
resolvent of BF , that is

JFλ (x) = (I +BF )−1(x).

Using the above results. Setting A = 0, and JFλ (x) = (I +BF )−1(x) from Lemma
5.2, we obtain the following algorithm and result.

Assumption 5.1. Suppose that the following conditions hold:

(1) The set C is a nonempty closed and convex subset of the real Hilbert space H.
(2) F : C × C → R be a function satisfying conditions (1)− (4).

(3) The solution set Ω = EP (F ) 6= ∅.

Algorithm 5.2. Initialization: Given γ, κ > 0, ρ ∈ (0, 1] and θn, βn, αn, µ, l,∈ (0, 1),

for all n ∈ N, let x0, x1,∈ H be arbitrary.

Iterative step:
Step 1: Given the iterates xn−1 and xn for all n ∈ N, choose θn such that 0 ≤ θn ≤ θ̄n,
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where

θ̄n =


min

{
θ
κ
, εn
||xn−xn−1||

}
, if xn 6= xn−1,

θ
κ
, otherwise,

(5.5)

where θ > 0 and {εn} is a positive sequence such that εn = ◦(αn).

Step 2. Set
wn = xn + θn(xn − xn−1).

Then, compute

un = JFλnwn,(5.6)

where λn is chosen to be the largest λ ∈ {γ, γl, γl2, · · · } satisfying

λ‖Awn − Aun‖ ≤ µ‖wn − un‖.(5.7)

Step 3. Compute

xn+1 = (1− αn − βn)xn + βn((1− ρ)wn + ρun + ρλn(Awn − Aun)).(5.8)

Stopping criterion: Set n := n+ 1 and go back to Step 1.

Theorem 5.3. Let {xn} be the sequence generated by Algorithm 5.2. Then, un-
der the Assumptions 5.1, if lim

n→∞
αn = 0,

∑∞
n=1 αn = ∞, and 0 ≤ lim infn→∞ βn ≤

lim supn→∞ βn < 1. Then, {xn} converges strongly to p ∈ Ω, where ‖p‖ = min{‖x∗‖ :

x∗ ∈ Ω}.

6. NUMERICAL EXAMPLE

In this section, we present some numerical examples in finite dimensional Hilbert
spaces and compare our proposed Algorithm 3.2 with Algorithm 3.1 of [8]. In ad-
dition, we compare our proposed Algorithm 3.2 with Algorithm 3.1 of [27].

Example 1. Let H = L2([0, 1]) and norm ‖x‖ = (
∫ 1

0
|x(t)|dt) 1

2 and the inner product
〈x, y〉 =

∫ 1

0
x(t)y(t)dt for all x, y ∈ L2([0, 1]). Define the operator A : L2([0, 1]) →

L2([0, 1]) by

Ax(t) = max{0, x(t)}.(6.1)
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Suppose that C = {x ∈ H : ‖x‖ ≤ 1} is a unit ball, then

PC(x) =

 x
‖x‖L2

, if ‖x‖L2 > 1,

x, if ‖x‖L2 ≤ 1.
(6.2)

Choose γ = 0.03, l = 1, µ = 0.38, κ = 1, θ = 0.001, αn = 1
n+1

, εn = 1
(n+1)2

, βn =
3n

3n+5
, ρ = 0.38. It is easy to verify that all hypothesis of Theorem 4.1 are satisfied and

the set of solutions to the V I(A,C) (1.1) is given by Ω = {0} 6= ∅. We use different
choices of x0, x1 and test the convergence of our algorithm with ‖xn+1−xn‖ < 10−5 as
stopping criterion. We compare the performance of Algorithm 3.2 with the Algorithm
3.1 of Cholamjiak et al. [8].

(1) Case I: x0(t) = −3te2t

5
, x1(t) = e−2t.

(2) Case II: x0(t) = sin 5t, x1(t) = cos−3t.

(3) Case III: x0(t) = t3 + 1, x1(t) = e2t.

(4) Case IV: x0(t) = e3t, x1(t) = −2 sin 2t.

The computational results are shown in Table 1 and Figure 1.

TABLE 1. Computation result for Example 1.

Algorithm 3.2 Algorithm 3.1 of [8]
Case I No of Iter. 14 12

CPU time (sec) 2.6427 4.0313
Case II No of Iter. 13 12

CPU time (sec) 2.5892 5.3755
Case III No of Iter. 17 17

CPU time (sec) 2.1036 8.2650
Case IV No of Iter. 17 18

CPU time (sec) 3.1534 7.1918

Example 2. Let H = RN , with the Euclidean norm on RN . Suppose that C = {x ∈
H : ‖x‖ ≤ 1} is the unit ball, define the operator A : C → RN by

Ax(t) = x.(6.3)

We have

PC(x) =

 x
‖x‖ , if ‖x‖ > 1,

x, if ‖x‖ ≤ 1.
(6.4)
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FIGURE 1. Example 1, Top Left: Case I; Top Right: Case II; Bottom
Left: case III; Bottom Right: Case IV.

With these given C and A, the set of solutions to the V I(A,C) (1.1) is known to
be Ω = {0} 6= ∅. Choose γ = 0.05, l = 4, µ = 0.38, κ = 0.01, θ = 0.001, αn =

1√
n+1

, εn = 1
(n+1)

, βn = 1
2

+ 2
(2n+4)

, ρ = 0.38 It is easy to verify that all hypothesis of
Theorem 4.1 are satisfied. We use different choices of x0, x1 and test the convergence
of our algorithm with ‖xn+1 − xn‖ < 10−6 as stopping criterion. We compare the
performance of Algorithm 3.2 with the Algorithm 3.1 of Thong et al. [27].

(1) Case I: N = 5.

(2) Case II: N = 10.

(3) Case III: N = 30.

(4) Case IV: N = 50.
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The computational results are shown in Table 2 and Figure 2.

TABLE 2. Computation result for Example 2.

Algorithm 3.2 Algorithm 3.1 of [27]
Case I No of Iter. 11 27

CPU time (sec) 0.0022 0.0042
Case II No of Iter. 12 28

CPU time (sec) 0.0016 0.0027
Case III No of Iter. 12 29

CPU time (sec) 0.0014 0.0049
Case IV No of Iter. 12 29

CPU time (sec) 0.0014 0.0041

7. CONCLUSION

In this work, we introduce a new inertial relaxed Tseng extrapolation method
for approximating the solution of a variational inequality problem in which the
underlying operator is pseudomonotone in the framework of Hilbert space. The
main advantage of this method is the fact that the sequence {xn} generated by
Algorithm 3.2 converges strongly to the minimum-norm of the solution set Ω. In
addition, the proposed iterative algorithm is combination of both the inertial ex-
trapolation step and relaxation parameter, which is known to help speed up the
rate of convergence. Furthermore, we present some examples and numerical ex-
periments to show the efficiency and applicability of our method in the framework
of infinite and finite dimensional Hilbert spaces. The results obtained in this work
extends, generalizes and improves several results in this direction.

ACKNOWLEDGEMENT

The second and third author acknowledges with thanks the bursary and finan-
cial support from Department of Science and Technology and National Research
Foundation, Republic of South Africa Centre of Excellence in Mathematical and
Statistical Sciences (DST-NRF CoE-MaSS) Postdoctoral Fellowship.Opinions stated
and conclusions reached are solely those of the author and should not be ascribed
to the CoE-MaSS in any way.



INERTIAL RELAXED ITERATIVE ALGORITHMS FOR VIP. 3621

0 5 10 15 20 25

Iteration number (n)

0

0.05

0.1

0.15

0.2

0.25

0.3

|x
n -

 x
n-

1
|

Algorithm 3.1
Thong et al.

0 5 10 15 20

Iteration number (n)

0

0.05

0.1

0.15

0.2

0.25

0.3

|x
n -

 x
n-

1
|

Algorithm 3.1
Thong et al.

0 5 10 15 20 25

Iteration number (n)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

|x
n -

 x
n-

1
|

Algorithm 3.1
Thong et al.

0 5 10 15

Iteration number (n)

0

0.05

0.1

0.15

0.2

0.25

|x
n -

 x
n-

1
|

Algorithm 3.1
Thong et al.

FIGURE 2. Example 2, Top Left: Case I; Top Right: Case II; Bottom
Left: case III; Bottom Right: Case IV.
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