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NUMERICAL QUENCHING FOR A NONLINEAR DIFFUSION EQUATION
WITH SINGULAR BOUNDARY FLUX

Anoh Assiedou Rodrigue1, N’Guessan Koffi, Coulibaly Adama, and Toure Kidjegbo Augustin

ABSTRACT. In this paper, we study the semidiscrete approximation of the solution
of a nonlinear diffusion equation with nonlinear source and singular boundary
flux. We find some conditions under which the solution of the semidiscrete form
quenches in a finite time and estimate its semidiscrete quenching time. We also es-
tablish the convergence of the semidiscrete quenching time to the theoretical one
when the mesh size tends to zero. Finally, we give some numerical experiments
for a best illustration of our analysis.

1. INTRODUCTION

In this paper, we consider the nonlinear diffusion equation with nonlinear source
and singular boundary flux

∂A(u)

∂t
= uxx + (1− u)−α, 0 < x < 1, t > 0,(1.1)

ux(0, t) = 0, ux(1, t) = −B(u(1, t)), t > 0,(1.2)

u(x, 0) = u0(x), 0 ≤ x ≤ 1,(1.3)
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where A(s) is an appropriately smooth function which satisfies

A(0) = 0, A(1) = 1, A′(s) > 0, A′′(s) ≤ 0 ∀s > 0,

B(s) satisfies

B(s) > 0, B′(s) < 0, B′′(s) ≥ 0, for s > 0, lim
s→0+

B(s) = +∞

and u0 : [0, 1] −→ (0, 1) is nonincreasing and satisfies some compatibility condi-
tions and α is a positive constant.

Definition 1.1. We say that the solution u of (1.1)–(1.3) quenches in a finite time
if there exists a finite time Tq such that ‖u(., t)‖∞ < 1 for t ∈ [0, Tq), but

lim
t→T−

q

‖u(., t)‖∞ = 1,

where ‖u(., t)‖∞ = max
0≤x≤1

|u(x, t)|. The time Tq is called quenching time of the solution
u.

When A(u) = um, the problem (1.1)–(1.3) is known as the classical porous
medium equation which shows a number of physical phenomenon in the nature
such as the flow of an isentropic gas through a porous medium [7], [8] and heat
transfer or diffusion.

In recent years, the theoretical study of quenching phenomenon for nonlinear
diffusion equations has been the subject of investigations of many authors. Es-
pecially for singular and degenerate parabolic equations (see [3], [4], [9], [10],
[12], [13] and references therein). Local in time existence and uniqueness of the
solution have been proved (see [2], [11] and references therein ). In [12], the
author suppose that u0 satisfies:

(H1) : u′′0(x) + (1− u0(x))−α ≥ 0

(H2) : u′0(x) ≤ −xB(u0(x)), 0 ≤ x ≤ 1.

He shows that the solution u of (1.1)–(1.3) quenches in finite time Tq and x = 0

is the unique quenching point. He also shows that the time ut blow-up at the
quenching point and he gives a lower bound of the quenching time.

Our aim is to study the numerical quenching phenomenon by semidiscretization
of the solution u. For this, we will be inspired by the work of certain authors who
have investigated in the numerical study using the semidiscrete form (see [1], [5],
[6] ).
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Now we assume that u0 satisfies (H1) and compatibility conditions. Then we
rewrite problem (1.1)–(1.3) into the following form:

ut = γ(u)uxx + γ(u)(1− u)−α, 0 < x < 1, t > 0,(1.4)

ux(0, t) = 0, ux(1, t) = −B(u(1, t)), t > 0,(1.5)

u(x, 0) = u0(x), 0 ≤ x ≤ 1,(1.6)

where γ(u) =
1

A′(u)
. We organise this paper as follows.

In the next section, we give some lemmas which will be used throughout the
paper. In the fourth section, under some hypotheses, we show that the solution of
the semidiscrete problem quenches in a finite time and estimate its semidiscrete
quenching time. In the fifth section, we give a result about the convergence of
the semidiscrete quenching time to the theoretical one when the mesh size goes to
zero. Finally, in the last section, we give some numerical results to illustrate our
analysis.

2. THE SEMIDISCRETE PROBLEM

Let I be a nonnegative integer, we set h =
1

I
, and we define the grid,

xi = ih, i = 0, . . . , I.. We approximate the solution u of the problem (1.4)–(1.6)
by the solution Uh(t) = (U0(t), U1(t), . . . , UI(t))

T . For t ∈ (0, T hq ), we have

dUi(t)

dt
= γ(Ui(t))δ

2Ui(t) + γ(Ui(t))(1− Ui(t))−α, 1 ≤ i ≤ I − 1,(2.1)

dU0(t)

dt
= γ(U0(t))δ

2U0(t) + γ(U0(t))(1− U0(t))
−α,(2.2)

(2.3)
dUI(t)

dt
= γ(UI(t))δ

2UI(t) + γ(UI(t))(1− UI(t))−α −
2γ(UI(t))B(UI(t))

h
,

Ui(0) = ϕi > 0, 0 ≤ i ≤ I,(2.4)

where

δ2Ui(t) =
Ui+1(t)− 2Ui(t) + Ui−1(t)

h2
, 1 ≤ i ≤ I − 1,
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δ2U0(t) =
2U1(t)− 2U0(t)

h2
,

δ2UI(t) =
2UI−1(t)− 2UI(t)

h2
,

δ+ϕi =
ϕi+1 − ϕi

h
, 0 ≤ i ≤ I − 1,

δ+ϕi ≤ 0, 0 ≤ i ≤ I − 1,

γ(Ui(t)) is an approximation of γ(u(xi, t)), 0 ≤ i ≤ I. Here, [0, T hq ) is the maximal
time interval on which ‖Uh(t)‖∞ < 1 where

‖Uh(t)‖∞ = max
0≤i≤I

|Ui(t)|.

When the time T hq is finite, then we say that the solution Uh of (2.1)–(2.4) quenches
in a finite time, and the time T hq is called the quenching time of the solution Uh.

3. PROPERTIES OF THE SEMIDISCRETE PROBLEM

In this section, we give some important results which will be used later.

Lemma 3.1. Let bh(t) ∈ C0([0, T ),RI+1), fh(t) ∈ C0([0, T ),RI+1
+ ) and Vh(t) ∈

C1([0, T ),RI+1) such that

dVi(t)

dt
− fi(t)δ2Vi(t) + bi(t)Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ [0, T ),

Vi(0) ≥ 0, 0 ≤ i ≤ I.

Then Vi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ [0, T ).

Proof. Let T0 < T . Define the vector Zh(t) = eλtVh(t) where λ is such that bi(t)−λ >
0 for t ∈ [0, T0], 0 ≤ i ≤ I. Let m = min

0≤i≤I,0≤t≤T0
Zi(t). For all i ∈ {0, . . . , I}, Zi(t) is

continuous on the compact [0, T0]; there exists i0 ∈ {0, . . . , I} and t0 ∈ [0, T0] such
that m = Zi0(t0).

We observe that:
dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0, 0 ≤ i0 ≤ I,(3.1)

(3.2) δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
≥ 0, 1 ≤ i0 ≤ I − 1,
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δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
≥ 0, i0 = 0,(3.3)

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

h2
≥ 0, i0 = I.(3.4)

Moreover, by a straightforward computation, we get

dZi0(t0)

dt
− fi0(t0)δ2Zi0(t0) + (bi0(t0)− λ)Zi0(t0) ≥ 0.(3.5)

Using (3.1)–(3.4), we deduce from (3.5) that (bi0(t0)−λ)Zi0(t0) ≥ 0, which implies
that Zi0(t0) ≥ 0. We deduce that Vh(t) ≥ 0, ∀t ∈ [0, T0] and the proof is complete.

�

Another form of the maximum principle for semidiscrete equations is the com-
parison lemma below.

Lemma 3.2. Let Vh(t), Wh(t) ∈ C1([0, T ),RI+1) and g ∈ C0(R,R) such that ∀t ∈
[0, T ) and 0 ≤ i ≤ I,

(3.6)
dVi(t)

dt
− γ(Vi(t))δ

2Vi(t) + g(Vi(t)) <
dWi(t)

dt
− γ(Wi(t))δ

2Wi(t) + g(Wi(t)),

Vi(0) < Wi(0).(3.7)

Then Vi(t) < Wi(t), 0 ≤ i ≤ I, t ∈ [0, T ].

Proof. Let Zh(t) a vector such that Zi(t) = Wi(t)−Vi(t) and let t0, be the first t > 0

such that Zi0(t) > 0, ∀t ∈ [0, t0) but Zi0(t0) = 0 for a certain i0 ∈ {0, . . . , I}. We
observe that:

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0, 0 ≤ i0 ≤ I,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
≥ 0, 1 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
≥ 0, i0 = 0,

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

h2
≥ 0, i0 = I.
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This implies that

dZi0(t0)

dt
−γ(Vi0(t0))δ

2Zi0(t0)−γ′(θi0(t0))Zi0(t0)δ2Wi0(t0)+g(Wi0(t0))−g(Vi0(t0)) ≤ 0.

Here θi0 is an intermediate value between Vi0 and Wi0. This inequality contradicts
(3.6) which ends the proof. �

Lemma 3.3. Let Uh be the solution of (2.1)–(2.4). Then we have for t ∈ [0, T hq ) and
0 ≤ i ≤ I − 1,

Ui(t) > Ui+1(t).

Proof. Introduce the vector Zh(t) such that Zi(t) = Ui(t) − Ui+1(t) for t ∈ (0, T hq ),
i ∈ {0, . . . , I − 1}. Let t0, be the first t > 0 such that Zi0(t) > 0, ∀t ∈ [0, t0) but
Zi0(t0) = 0 for a certain i0 ∈ {0, . . . , I − 1}. Without loss of generality, we suppose
that i0 is the smallest integer checking the inequality above. We observe that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0, 0 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
> 0, 1 ≤ i0 ≤ I − 2,

δ2Zi0(t0) =
Z1(t0)− 3Z0(t0)

h2
> 0, i0 = 0,

δ2Zi0(t0) =
ZI−2(t0)− 3ZI−1(t0)

h2
> 0, i0 = I − 1.

Moreover, by a straightforward computation, we get

dZi0(t0)

dt
− γ(Ui0(t0))δ

2Zi0(t0)− γ′(ζi0(t0))Zi0(t0)δ2Ui0+1(t0)

− γ′(ζi0(t0))Zi0(t0)(1− Ui0(t0))−α − αγ(Ui0+1(t0))(1− βi0(t0))−α−1Zi0(t0) < 0,

0 ≤ i0 ≤ I − 2,

dZI−1(t0)

dt
− γ(UI−1(t0))δ

2ZI−1(t0)− γ′(ζI−1(t0))ZI−1(t0)δ2UI(t0)

− γ′(ζI−1(t0))ZI−1(t0)(1− UI−1(t0))−α − αγ(UI(t0))(1− βI−1(t0))−α−1ZI−1(t0)

− 2γ(UI(t0))

h
B(UI(t0)) < 0.
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But these inequalities contradict (2.1)–(2.3) and this proof is complete. �

Lemma 3.4. Let Uh be the solution of (2.1)–(2.4). Then we have

dUi(t)

dt
> 0, 0 ≤ i ≤ I, t ∈ (0, T hq ).

Proof. Consider the vector Zh(t) such that Zi(t) =
dUi(t)

dt
, t ∈ (0, T hq ), i ∈ {0, . . . , I}.

Let t0, be the first t ∈ (0, T qh) such that Zi0(t) > 0, ∀t ∈ [0, t0) but Zi0(t0) = 0 for a
certain i0 ∈ {0, . . . , I}. Without loss of generality, we suppose that i0 is the smallest
integer checking the inequality above. We observe that

dZi0(t0)

dt
= lim

k→0

Zi0(t0)− Zi0(t0 − k)

k
≤ 0, 0 ≤ i0 ≤ I,

δ2Zi0(t0) =
Zi0+1(t0)− 2Zi0(t0) + Zi0−1(t0)

h2
> 0, 1 ≤ i0 ≤ I − 1,

δ2Zi0(t0) =
2Z1(t0)− 2Z0(t0)

h2
> 0, i0 = 0,

δ2Zi0(t0) =
2ZI−1(t0)− 2ZI(t0)

h2
> 0, i0 = I.

Moreover, by a straightforward computation, we get

dZi0(t0)

dt
− γ(Ui0(t0))δ

2Zi0(t0)− γ′(Ui0(t0))Zi0(t0)δ2Ui0(t0)

− αγ(Ui0(t0))(1− Ui0(t0))−α−1Zi0(t0)− γ′(Ui0(t0))(1− Ui0(t0))−αZi0(t0) < 0,

0 ≤ i0 ≤ I − 1,

dZI(t0)

dt
− γ(UI(t0))δ

2ZI(t0)− γ′(UI(t0))δ2UI(t0)ZI(t0)

− αγ(UI(t0))(1− UI(t0))−α−1ZI(t0)− γ′(UI(t0))(1− UI(t0))−αZI(t0)

+
2γ(UI(t))

h
B′(UI(t))ZI(t0) +

2γ′(UI(t0))

h
B(UI(t))ZI(t0) < 0.

But these inequalities contradict (2.1)–(2.3) and this proof is complete. �
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4. SEMIDISCRETE QUENCHING TIME

In this section, we show that under some assumptions, the solution Uh of (2.1)–
(2.4) quenches in a finite time and estimate its semidiscrete quenching time.

Lemma 4.1. Let Uh ∈ RI+1 such that ‖Uh‖∞ < 1 and let p be a positive constant.
Then, we have

δ2(1− Ui)−p ≥ p(1− Ui)−p−1δ2Ui, 0 ≤ i ≤ I.

Proof. Let us introduce f(s) = (1−s)−p. We observe that f is a convex function for
nonnegative values of s. Apply Taylor’s expansion to obtain

δ2f(U0) = f ′(U0)δ
2U0 +

(U1 − U0)
2

h2
f ′′(θ0),

δ2f(Ui) = f ′(Ui)δ
2Ui +

(Ui+1 − Ui)2

2h2
f ′′(θi) +

(Ui−1 − Ui)2

2h2
f ′′(ηi), 1 ≤ i ≤ I − 1,

δ2f(UI) = f ′(UI)δ
2UI +

(UI−1 − UI)2

h2
f ′′(ηI),

where θi is an intermediate between Ui and Ui+1 and ηi the one between Ui−1 and
Ui. We use the fact that ‖Uh‖∞ < 1 to complete the proof. �

Theorem 4.1. Let Uh be a solution of (2.1)–(2.4), and assume that there exist a
nonnegative constant τ ∈ (0, 1] such that the initial data at (2.4) satisfies

γ(ϕi)δ
2ϕi + γ(ϕi)(1− ϕi)−α ≥ τ(1− ϕi)−α, 0 ≤ i ≤ I − 1,(4.1)

γ(ϕI)δ
2ϕI + γ(ϕI)(1− ϕI)−α −

2γ(ϕI)

h
B(ϕI) ≥ τ(1− ϕI)−α.(4.2)

Then, the solution Uh quenches in a finite time T hq and we have the following estimate

T hq ≤
(1− ‖ϕh‖∞)α+1

τ(α + 1)
.

Proof. Let [0, T hq ) be the maximal time interval on which ‖Uh‖∞ < 1. We consider
the function Jh(t) defined as follows

Ji(t) =
dUi(t)

dt
− τ(1− Ui(t))−α, 0 ≤ i ≤ I.(4.3)
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By a straightforward computation we get

dJi(t)

dt
− γ(Ui(t))δ

2Ji(t) =
d

dt

(
dUi(t)

dt
− γ(Ui(t))δ

2Ui(t)

)
+ γ′(Ui(t))

dUi(t)

dt
δ2Ui(t)− τα(1− Ui(t))−α−1

dUi(t)

dt
+ τγ(Ui(t))δ

2(1− Ui(t))−α,

0 ≤ i ≤ I. From Lemma 4.1, we have τδ2(1− Ui(t))−α ≥ ατ(1− Ui(t))−α−1δ2Ui(t),
0 ≤ i ≤ I, which implies that

dJi(t)

dt
− γ(Ui(t))δ

2Ji(t)

≥ d

dt

(
dUi(t)

dt
− γ(Ui(t))δ

2Ui(t)

)
+ γ′(Ui(t))

dUi(t)

dt
δ2Ui(t)

− τα(1− Ui(t))−α−1
dUi(t)

dt
+ ταγ(Ui(t))(1− Ui(t))−α−1δ2Ui(t),

dJi(t)

dt
− γ(Ui(t))δ

2Ji(t) ≥
d

dt

(
dUi(t)

dt
− γ(Ui(t))δ

2Ui(t)

)
− τα(1− Ui(t))−α−1(

dUi(t)

dt
− γ(Ui(t))δ

2Ui(t)) + γ′(Ui(t))
dUi(t)

dt
δ2Ui(t), 0 ≤ i ≤ I.

We get

dJi(t)

dt
− γ(Ui(t))δ

2Ji(t) ≥
d

dt
γ(Ui(t))(1− Ui(t))−α

− τα(1− Ui(t))−α−1γ(Ui(t))(1− Ui(t))−α + γ′(Ui(t))
dUi(t)

dt
δ2Ui(t), 0 ≤ i ≤ I − 1,

dJI(t)

dt
− γ(UI(t))δ

2JI(t) ≥
d

dt

(
γ(UI(t))(1− UI(t))−α −

2γ(UI(t))

h
B(UI(t))

)
− τα(1− UI(t))−α−1(γ(UI(t))(1− UI(t))−α −

2γ(UI(t))

h
B(UI(t)))

+ γ′(UI(t))
dUI(t)

dt
δ2UI(t),

dJi(t)

dt
− γ(Ui(t))δ

2Ji(t) ≥ αγ(Ui(t))(1− Ui(t))−α−1
(
dUi(t)

dt
− τ(1− Ui(t))−α

)
+ γ′(Ui(t))

dUi(t)

dt
(δ2Ui(t) + (1− Ui(t))−α), 0 ≤ i ≤ I − 1,
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dJI(t)

dt
− γ(UI(t))δ

2JI(t) ≥ αγ(UI(t))(1− UI(t))−α−1
(
dUI(t)

dt
− τ(1− UI(t))−α

)
+ γ′(UI(t))

dUI(t)

dt
(δ2UI(t) + (1− UI(t))−α −

2

h
B(UI(t)))

+
2

h
γ(UI(t))(ατ(1− UI(t))−α−1B(UI(t))−B′(UI(t))

dUI(t)

dt
).

Finally, we get

dJi(t)

dt
− γ(Ui(t))δ

2Ji(t) ≥ αγ(Ui(t))(1− Ui(t))−α−1Ji(t)

+ γ′(Ui(t))
dUi(t)

dt
A′(Ui(t))

dUi(t)

dt
,

0 ≤ i ≤ I − 1,

dJI(t)

dt
− γ(UI(t))δ

2JI(t) ≥ αγ(UI(t))(1− UI(t))−α−1JI(t)

+ γ′(UI(t))
dUI(t)

dt
A′(UI(t))

dUI(t)

dt
+

2

h
γ(UI(t))

·
(
ατ(1− UI(t))−α−1B(UI(t))−B′(UI(t))

dUI(t)

dt

)
.

From (4.1)–(4.2), we observe that Ji(0) ≥ 0 for 0 ≤ i ≤ I. We deduce from
Lemma 3.1 that Ji(t) ≥ 0, 0 ≤ i ≤ I. Which implies that

dUi(t) ≥ τ(1− Ui(t))−αdt, 0 ≤ i ≤ I, t ∈ [0, T hq ).

These inequalities can be rewritten as follows

(1− Ui(t))αdUi(t) ≥ τdt, 0 ≤ i ≤ I, t ∈ [0, T hq ).

Integrating the above inequalities over the interval (t, T hq ), we get

T hq − t ≤
(1− Ui(t))α+1

τ(α + 1)
, 0 ≤ i ≤ I, t ∈ [0, T hq ).(4.4)

Taking t = 0 and i = 0, we obtain:

T hq ≤
(1− ϕ0)

α+1

τ(α + 1)
.

Using the fact that ‖ϕh‖∞ = ϕ0 thanks to the Lemma 3.3, we get:

T hq ≤
(1− ‖ϕh‖∞)α+1

τ(α + 1)
.
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We have the desired result. �

Remark 4.1. By replacing t by t0 and i by 0 in (4.4), we obtain

T hq − t0 ≤
(1− ‖Uh(t0)‖∞)α+1

τ(α + 1)
, t0 ∈ [0, T hq ),

and
‖Uh(t0)‖∞ ≤ 1− C1(T

h
q − t0)

1
α+1 ,

where C1 = (τ(α + 1))
1

α+1 .

The Remark 4.1 is crucial to prove the convergence of the semidiscrete quench-
ing time.

5. CONVERGENCE OF SEMIDISCRETE QUENCHING TIME

Theorem 5.1. Assume that the problem (1.4)-(1.6) has a solution u ∈ C4,1([0, 1]×
[0, T ]) such that sup

t∈[0,T ]
‖u(., t)‖∞ = ζ < 1. Suppose that the initial data at (2.4)

verifies

‖ϕh − uh(0)‖∞ = o(1) as h −→ 0.(5.1)

Then, for h small enough, the semidiscrete problem (2.1)–(2.4) has a unique solution
Uh ∈ C1([0, T ],RI+1) such that

max
t∈[0,T ]

‖Uh(t)− uh(t)‖∞ = O(‖ϕh − uh(0)‖∞ + h) as h −→ 0,

where T < min{Tq;T hq }.

Proof. Since u ∈ C4,1([0, 1]× [0, T ]), there exists a positive constant ξ such that

‖uxxx‖∞
3

≤ ξ and
‖uxxxx‖∞

12
≤ ξ.(5.2)

The problem (2.1)–(2.4) has for each h, a unique solution Uh ∈ C1([0, T ],RI+1).
Let t(h) ≤ T the greatest value of t > 0 such that there exists a positive constant β
(with ζ < β < 1) such that

‖Uh(t)− uh(t)‖∞ <
β − ζ

2
for t ∈ (0, t(h)).(5.3)
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The relation (5.1) implies that t(h) > 0 for h small enough. By the triangular
inequality, we obtain

‖Uh(t)‖∞ ≤ ‖u(., t)‖∞ + ‖Uh(t)− uh(t)‖∞ for t ∈ (0, t(h)),

which implies that

‖Uh(t)‖∞ ≤ ζ +
β − ζ

2
=
β + ζ

2
< 1, for t ∈ (0, t(h)).(5.4)

Let eh(t) = Uh(t) − uh(t) be the error of discretization. Using Taylor’s expansion,
we have for t ∈ (0, t(h)) and 0 ≤ i ≤ I − 1,

de0(t)

dt
− γ(u(x0, t))δ

2e0(t)

= [αγ(u(x0, t))(1− β0(t))−α−1 + γ′(η0(t))(1− U0(t))
−α

+ γ′(η0(t))δ
2U0(t)]e0(t) + γ(u(x0, t))h

(
h

12
uxxxx(x̃0, t) +

2

3
uxxx(x0, t)

)
dei(t)

dt
− γ(u(xi, t))δ

2ei(t)

= [αγ(u(xi, t))(1− βi(t))−α−1 + γ′(ηi(t))(1− Ui(t))−α

+ γ′(ηi(t))δ
2Ui(t)]ei(t) + γ(u(xi, t))

h2

12
uxxxx(x̃i, t),

deI(t)

dt
− γ(u(xI , t))δ

2eI(t)

= [αγ(u(xI , t))(1− λI(t))−α−1 + γ′(θI(t))(1− UI(t))−α

+ γ′(θI(t))δ
2UI(t)−

2

h
γ′(θI(t))B(UI(t))−

2

h
γ(u(xI , t))B

′(σI(t))]eI(t)

+ γ(u(xI , t))h

(
h

12
uxxxx(x̃I , t)−

2

3
uxxx(xI , t)

)
.

Using (5.2) and (5.4), there exist M and K nonnegative constants such that

de0(t)

dt
− δ2e0(t) ≤M |e0(t)|+Kh,

dei(t)

dt
− δ2ei(t) ≤M |ei(t)|+Kh2, 1 ≤ i ≤ I − 1,

deI(t)

dt
− δ2eI(t) ≤

M

h
|eI(t)|+Kh.
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Let Zh(t) the vector defined by

Zi(t) = e(M+1)t(||ϕh − uh(0)||∞ +Kh), 0 ≤ i ≤ I.

A simple calculation give

dZ0(t)

dt
− δ2Z0(t) > M |Z0(t)|+Kh,

dZi(t)

dt
− δ2Zi(t) > M |Zi(t)|+Kh2, 1 ≤ i ≤ I − 1,

dZI(t)

dt
− δ2ZI(t) >

M

h
|ZI(t)|+Kh,

Zi(0) > ei(0), 0 ≤ i ≤ I.

From Lemma 3.2, we obtain

Zi(t) > ei(t), t ∈ (0, t(h)), 0 ≤ i ≤ I.

By analogy, we also prove that

Zi(t) > −ei(t), t ∈ (0, t(h)), 0 ≤ i ≤ I.

Hence we have

Zi(t) > |ei(t)|, t ∈ (0, t(h)), 0 ≤ i ≤ I.

We deduce that

‖Uh(t)− uh(t)‖∞ ≤ (‖ϕh − uh(0)‖∞ +Kh)e(M+1)t, t ∈ (0, t(h)).

Next we prove that t(h) = T. Suppose that t(h) < T . From (5.3), we obtain

(5.5)
β − ζ

2
≤ ‖Uh(t(h))− uh(t(h))‖∞ ≤ (‖ϕh − uh(0)‖∞ +Kh)e(M+1)T .

Since (‖ϕh − uh(0)‖∞ + Kh)e(M+1)T −→ 0 as h −→ 0, we deduce that
β − ζ

2
≤ 0,

which is impossible. Hence we have t(h) = T, and the proof is complete. �

Theorem 5.2. Suppose that the solution u of problem (1.4)–(1.6) quenches in a
finite time Tq such that u ∈ C4,1([0, 1]× [0, Tq)) and the initial data at (2.4) satisfies

‖ϕh − uh(0)‖∞ = o(1) as h −→ 0.(5.6)
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Under the assumptions of Theorem 4.1, the solution Uh of (2.1)–(2.4) quenches in
finite time T hq and we have

lim
h→0

T hq = Tq.

Proof. Set 0 < ε < Tq
2
. There exists η = β − ζ (with 0 < ζ < β < 1) such that

(1− %)α+1

τ(α + 1)
≤ ε

2
, % ∈ [1− η, 1).(5.7)

Since lim
t→T−

q

‖u(., t)‖∞ = 1, there exists a time T1 < Tq and |Tq − T1| <
ε

2
such that

1− η
2
≤ ‖u(., t)‖∞ < 1 for t ∈ [T1, Tq). From Theorem 5.1, the problem (2.1)–(2.4)

has for each h, a unique solution Uh such that ‖Uh(t)− uh(t)‖∞ <
η

2
for t ∈ [0, T2]

where T2 = T1+Tq
2

. Using the triangle inequality, we get

‖Uh(t)‖∞ ≥ ‖u(., t)‖∞ − ‖Uh(t)− uh(t)‖∞ ≥ 1− η

2
− η

2
for t ∈ [T1, T2].

which implies that

‖Uh(t)‖∞ ≥ 1− η for t ∈ [T1, T2].

From Theorem 4.1, Uh quenches in a finite time T hq . We deduce from Remark 4.1
and (5.7) that

|T hq − T1| ≤
(1− ‖Uh(T1)‖∞)α+1

τ(α + 1)
≤ ε

2
,

which implies

|T hq − Tq| ≤ |T hq − T1|+ |T1 − Tq| ≤
ε

2
+
ε

2
≤ ε,

and the proof is complete. �

6. NUMERICAL EXPERIMENTS

In this section, we present some numerical approximations of the quenching

time of the problem (1.4)–(1.6) in the case where u0(x) = 0.7 − 1

2
x4, γ(U

(n)
i ) =

(U
(n)
i )(1−p)

p
, B(U

(n)
i ) = (U

(n)
i )−q, 0 ≤ i ≤ I, with 0 < p ≤ 1, q > 0 and α = 4. Firstly,
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we consider the following explicit scheme

U
(n+1)
i − U (n)

i

∆ten
= (U

(n)
i )(1−p)

U
(n)
i+1 − 2U

(n)
i + U

(n)
i−1

ph2
+

(U
(n)
i )(1−p)

p
(1− U (n)

i )−α,

1 ≤ i ≤ I − 1,

U
(n+1)
0 − U (n)

0

∆ten
= (U

(n)
0 )(1−p)

2U
(n)
1 − 2U

(n)
0

ph2
+

(U
(n)
0 )(1−p)

p
(1− U (n)

0 )−α,

U
(n+1)
I − U (n)

I

∆ten
= (U

(n)
I )(1−p)

2U
(n)
I−1 − 2U

(n)
I

ph2
+

(U
(n)
I )(1−p)

p
(1− U (n)

I )−α

− 2(U
(n)
I )(1−p)

ph
(U

(n)
I )−q,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where n ≥ 0, ∆ten = min

{
h2

2
, h2(1− ‖U (n)

h ‖∞)α+1

}
. We also consider the implicit

scheme

U
(n+1)
i − U (n)

i

∆tn
= (U

(n)
i )(1−p)

U
(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

ph2
+

(U
(n)
i )(1−p)

p
(1− U (n)

i )−α,

1 ≤ i ≤ I − 1,

U
(n+1)
0 − U (n)

0

∆tn
= (U

(n)
0 )(1−p)

2U
(n+1)
1 − 2U

(n+1)
0

ph2
+

(U
(n)
0 )(1−p)

p
(1− U (n)

0 )−α,

U
(n+1)
I − U (n)

I

∆tn
= (U

(n)
I )(1−p)

2U
(n+1)
I−1 − 2U

(n+1)
I

ph2
+

(U
(n)
I )(1−p)

p
(1− U (n)

I )−α

− 2(U
(n)
I )(1−p)

ph
(U

(n)
I )−q,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where n ≥ 0, ∆tn = h2(1 − ‖U (n)
h ‖∞)α+1. In the following tables, in rows, we

present the numerical quenching times, the numbers of iterations and the orders
of the approximations corresponding to meshes 16, 32, 64, 128, 256, 512. The nu-

merical quenching time T n =
n−1∑
j=0

∆tj is computed at the first time when

|T n+1 − T n| ≤ 10−16.
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The order s of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

TABLE 1. Numerical quenching times obtained with the explicit
Euler method p = 1, q = 0.5 and α = 4

I T n n s
16 0.00048983809 1292 -
32 0.00048696537 4891 -
64 0.00048624977 18434 2.00

128 0.00048607104 69198 2.00
256 0.00048602636 258629 2.00
512 0.00048601519 961840 2.00

TABLE 2. Numerical quenching times obtained with the implicit
Euler method p = 1; q = 0.5 and α = 4

I T n n s
16 0.00049012477 1292 -
32 0.00048703076 4891 -
64 0.00048626995 18434 2.02

128 0.00048607886 69199 1.99
256 0.00048602982 258631 1.96
512 0.00048601682 961844 1.91

In the following, we also give some plots to illustrate our analysis. For the
different plots, we used both explicit and implicit schemes in the case where I =

64, p = 1, q = 0.5 and α = 4. Figures 1–4 show that the semidiscrete solution
quenches at the first node, which is well known in a theoretical point of view. For
figures 5–6, we see that the semidiscrete solution quenches at finite time close to
4.9× 10−4.
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FIGURE 1. Evolution
of the numerical solu-
tion (explicit
scheme).

FIGURE 2. Evolution
of the numerical solu-
tion (implicit
scheme).

FIGURE 3. The profil
of the approximation
of u(x,T) where, T
is the quenching time
(explicit scheme).

FIGURE 4. The profil
of the approximation
of u(x,T) where, T
is the quenching time
(implicit scheme).
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FIGURE 5. The profil
of the approximation
of ‖U (n)

h ‖∞ (explicit
scheme).

FIGURE 6. The profil
of the approximation
of ‖U (n)

h ‖∞ (implicit
scheme).
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