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NONPARAMETRIC KERNEL DISTRIBUTION FUNCTION ESTIMATION NEAR
ENDPOINTS

Nassima Almi and Abdallah Sayah1

ABSTRACT. In this paper, two kernel cumulative distribution function estimators
are introduced and investigated in order to improve the boundary effects, we
will restrict our attention to the right boundary. The first estimator uses a self-
elimination between modify theoretical Bias term and the classical kernel esti-
mator itself. The basic technique of construction the second estimator is kind of
a generalized reflection method involving reflection a transformation of the ob-
served data. The theoretical properties of our estimators turned out that the Bias
has been reduced to the second power of the bandwidth, simulation studies and
two real data applications were carried out to check these phenomena and are
conducted that the proposed estimators are better than the existing boundary cor-
rection methods.

1. INTRODUCTION

The cumulative distribution function F used to determine the probability that a
random observation X that taken from unknown population will be less than or
equal to a certain x-value. Several approaches have been made to estimate this
probability in this paper, we consider the classical kernel estimator Fn proposed
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by Nadaraya [9] defined for X1, X2, ..., Xn a sample of a continuous real random
variable by:

(1.1) Fn(x) =
1

n

n∑
i=1

K

(
x−Xi

h

)
, x ∈ R,

such an estimator arises as an integral of kernel density estimator fn which is
introduced by Rosenblatt [13] and Parzen [10] that has the form:

(1.2) fn(x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
, x ∈ R,

where h := hn is a bandwidth that controls the smoothness of Fn and satisfying
h → 0 also nh → +∞ if n → +∞. The distribution function K is defined from a
kernel function k with the support [−1, 1] as:

(1.3) K(x) =

x∫
−1

k(t)dt.

Many theoretical properties of Fn have been investigated among them, the uni-
form convergence of Fn to F with probability one, was proved by Winter [18] and
Yamato [19], the asymptotic normality of Fn is established by Watson and Lead-
better [17] and an asymptotic expression for the mean squared error of Fn and
the asymptotically optimal smoothing parameter proved by Azzalini [1]. These
properties are satisfactory, but when the support of the variable is bounded kernel
estimation may suffer. It is well know that Fn is a biased estimator near the bound-
ary of its support, due to so-called boundary effects, this fact can be clearly seen
by examining the behavior of Fn at interior points ]h, 1− h] and at right boundary
]1− h, 1].

The value of Bias and Variance of Fn at interior points provided by Azzalini [1]
are respectively:

(1.4)
1

2
f (1)(x)µ2(k)h2 + o(h2),

and

(1.5)
F (x)(1− F (x))

n
+
h

n
f(x)

 1∫
−1

K2(t)dt− 1

+ o

(
h

n

)
,
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where µ2(k) =

∫
t2k(t)dt and f (1) denote the first derivative of f .

However, in the right boundary, we assume x = 1 − ch where 0 ≤ c < 1, then
the Bias and Variance of Fn at x are respectively:

(1.6) − hf(1)

−c∫
−1

K(t)dt+ h2f (1)(1)

c2
2
−

c∫
−1

tK(t)dt+ c

−c∫
−1

K(t)dt

+ o(h2),

and

(1.7)
F (x)(1− F (x))

n
+
h

n
f(1)

−c− 2

−c∫
−1

K(t)dt+

c∫
−1

K2(t)dt

+ o

(
h

n

)
.

In the results, we can see that for densities taking value zero at the endpoints of
the support the first order term in (1.6) disappears and the Bias converges to zero
at the usual rate o(h2). Otherwise, the Bias of Fn is of order o(h2) at interior in-
stead is of order o(h) near the right boundary points this is the boundary problem
of the kernel distribution estimator. In order to correct this problem, many meth-
ods have been proposed for kernel estimation in regression and density function
estimation, among them, reflection of data [14], pseudo-data method [2] and also
the boundary kernel method [3]. However, methods in kernel distribution func-
tion estimation are relatively few, this is due to the extra information F (0) = 0

and F (1) = 1. Karunamuni et al [6] considered this problem in estimating ROC
curves using the transformation method, Tour et al [16] used a Champernowne
transformation for heavy tailed distributions in the left side of the support and
Tenreiro [15] and Zhang et al [20] proposed a boundary kernel method free of
boundary problem. In this paper, we propose two estimators for kernel distribu-
tion function to improve the right boundary effects.

The rest of the paper is organized as follows. Notations and theoretical prop-
erties of the proposed estimators are introduced in Section 2. In Section 3 we
support the theoretical results by simulation studies and two real data applica-
tions. The paper is finalized with some concluding remarks.
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2. ASSUMPTIONS AND MAIN RESULTS

For each result in this section, one at least of the following two assumptions will
be used

- A1 : F is twice continuously differentiable in a neighborhood of x and
f(1) 6= 0.

- A2: The kernel k is a probability density, nonnegative, bounded, symmet-
ric, and has compact support [−1, 1].

Remark 2.1. If x is a point in the right boundary, we can write x = 1 − ch where
c ∈ [0, 1[ therefore we have 1− ch > h.

2.1. Modify Bias of Kernel Estimator. In the context of Bias reduction in distri-
bution estimation, our proposed estimator F̆n consists to subtract the modify of
the theoretical Bias(Fn(x)) term (1.6) from Fn itself when the data near the right
boundary of the support for x = 1− ch defined by

(2.1) F̆n (x) = Fn(x) + hΨ(c)fn(x) + h2αf (1)
n (x),

where f
(1)
n denote to the first derivative of kernel density estimator. Then the

explicit form of our estimator is given by

F̆n (x) =
1

n

n∑
i=1

K

(
x−Xi

h

)
+ hΨ(c)

(
1

nh

n∑
i=1

k

(
x−Xi

h

))

+ h2α

(
1

nh2

n∑
i=1

k(1)
(
x−Xi

h

))
,

where k(1) is the first derivative of kernel k, α is a positive constant and Ψ(c) to be
determined in the following proof in such a way the terms of h in the Bias vanish.

Theorem 2.1. Under the above assumptions A1 and A2 we obtain at x = 1− ch

(2.2) Bias(F̆n(x)) = h2f (1)(1)φ(c) + o(h2),

(2.3) V ar(F̆n(x)) =
F (x)(1− F (x))

n
+
h

n
f(1)ρ(c) + o

(
h

n

)
,
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where

φ(c) =
c2

2
−

c∫
−1

tK(t)dt+

−c∫
−1

cK(t)dt−
1∫

−c

((t+ c)Ψ(c)− α) k(t)dt,

ρ(c) = c−
c∫

−1

K2(t)dt+ 2

−c∫
−1

K(t)dt−
1∫

−c

(
Ψ(c)k(t) + αk(1)(t)

)2
dt

− 2

1∫
−c

(
Ψ(c)k(t) + αk(1)(t)

)
K(t)dt.

Additionally, it can be seen that the optimal bandwidths h∗opt for minimizing Mse is :

h∗opt =

(
f(1)ρ(c)

4n (f (1)(1)φ(c))
2

)1/3

.

Proof. For x ∈]1− h, 1], we have

E(F̆n(x)) = E (Fn) + hΨ(c)E (fn(x)) + h2αE
(
f (1)
n (x)

)
.

We calculate each term separately

E(Fn(x)) =

1∫
0

K

(
x− z
h

)
f(z)dz

= h

1
h
−c∫

c

K(t)f(x− th)dt+ h

c∫
−c

K(t)f(x− th)dt,

by using the remark 2.1, relation 1.3 and the property K(t) = 1 − K(−t) on the
first integration, we have

E(Fn(x)) = F (1− 2ch)− h
−c∫

−1

K(t)f(x+ th)dt+ h

c∫
−c

K(t)f(x− th)dt,
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depending on a Taylor expansion and some algebraic calculation, we have

E(Fn(x)) = F (x)− hf(1)

−c∫
−1

K(t)dt

+ h2f (1)(1)

c2
2
−

c∫
−1

tK(t)dt+ c

−c∫
−1

K(t)dt

+ o(h2).

This is proof the relaion(1.6).
By the same procedure, we have

E (fn(x)) = f(1)

1∫
−c

k(t)dt− hf (1)(1)

1∫
−c

(t+ c)k(t)dt+ o(h),

and

E
(
f (1)
n (x)

)
= f (1)(1)

1∫
−c

k(t)dt+ o(1).

At last, we combine all terms, we obtain

E(F̆n(x)) = F (x) + hf(1)

− −c∫
−1

K(t)dt+ Ψ(c)

1∫
−c

k(t)dt


+ h2f (1)(1)

c2
2
−

c∫
−1

tK(t)dt

+

−c∫
−1

cK(t)dt−
1∫

−c

(Ψ(c)(t+ c)− α) k(t)dt

+ o(h2),

therefore, E(F̆n(x)) can be improved the Bias by letting the terms in h, vanish if
and only if we choice Ψ(c) by

Ψ(c) =

−c∫
−1

K(t)dt

1∫
−c

k(t)dt

.
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This completes the proof of expression (2.2).
On the other hand

gV ar
(
F̆n(x)

)
=

1

n
E

(
K

(
x−Xi

h

)
+ hΨ(c)k

(
x−Xi

h

)
+ αh2k(1)

(
x−Xi

h

))2

− 1

n

(
E

(
K

(
x−Xi

h

)
+ hΨ(c)k

(
x−Xi

h

)
+ αh2k(1)

(
x−Xi

h

)))2

= J11 + J12 + J13 + J14 + J15 + J16,

where

J11 =
1

n
E

(
K2

(
x−Xi

h

))
− 1

n

(
E

(
K

(
x−Xi

h

)))2

=
h

n

1
h
−c∫

−c

K2 (t) f(x− th)dt− 1

n
F 2(x) + o

(
h

n

)

=
h

n

c∫
−c

K2 (t) f(x− th)dt+
h

n

1
h
−c∫

c

(1−K(−t))2 f(x− th)dt

− 1

n
F 2(x) + o

(
h

n

)
,

by Taylor expansion, we have

J11 =
F (x)(1− F (x))

n
+
h

n
f(1)

−c− 2

−c∫
−1

K(t)dt+

c∫
−1

K2(t)dt

+ o

(
h

n

)
= V ar(Fn(x)).

This is proof of the relation (1.7).

J12 =
1

n
E

(
hΨ(c)

(
1

h
k

(
x−Xi

h

)))2

− 1

n
E2

(
hΨ(c)

(
1

h
k

(
x−Xi

h

)))

=
h

n
(Ψ(c))2f(1)

1∫
−c

k2(t)dt+ o

(
h

n

)
,
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J13 =
h4α2

n
E

((
1

h2
k(1)

(
x−Xi

h

)))2

− 1

n

(
E

(
αh2

(
1

h2
k(1)

(
x−Xi

h

))))2

=
hα2

n
f (1)

1∫
−c

(
k(1)(t)

)2
dt+ o

(
h

n

)
,

J14 =
2

n
hΨ(c)

(
E

(
1

h
K

(
x−Xi

h

)
k

(
x−Xi

h

))
−E

(
1

h
K

(
x−Xi

h

))
E

(
k

(
x−Xi

h

)))

=
2

n
hΨ(c)f(1)

1∫
−c

k(t)K(t)dt+ o

(
h

n

)
,

J15 =
2α

n
h2
(
E

(
1

h2
K

(
x−Xi

h

)
k(1)

(
x−Xi

h

))
− E

(
K

(
x−Xi

h

))
E

(
1

h2
k(1)

(
x−Xi

h

)))

=
2αhf (1)

n

 1∫
−c

k
(1)

(t)K (t) dt

+ o

(
h

n

)
,

and

J16 =
2αΨ(c)h3

n

(
E

(
1

h
k

(
x−Xi

h

)
1

h2
k(1)

(
x−Xi

h

)))
− E

(
1

h
k

(
x−Xi

h

))
E

(
1

h2
k(1)

(
x−Xi

h

))

=
2αhΨ(c)

n
f (1)

1∫
−c

k (t) k(1) (t) dt+ o

(
h

n

)
.

This completes the proof of expression (2.3). �

2.2. Reflection Transformation Kernel Estimator. The technique of generalized
reflection method involving reflecting a transformation of the observed data in
kernel distribution estimation used by [6] when the data near the left side of the
support. Our proposed estimator F̂n developed this technique when the data near
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the right boundary of the support, given for x ∈]1− h, 1] by

(2.4) F̂n (x) =
1

n

n∑
i=1

K

(
x− g(Xi)

h

)
+

1

n

n∑
i=1

K

(
x− 2 + g(Xi)

h

)
,

where g is a transformation which is selected from a parametric family, we assume
that verify:

- H1 : g is a continuous and monotonically increasing function from [0, 1] to
[0, 1].

- H2 : g−1 exist and verify g−1(1) = 1 and g(1)(1) = 1 where g−1 and g(1)

denoting respectively the inverse and the first derivative function of g.

It is clear that there are various possible choices available for the function g that
satisfy the above assumptions. Based on extensive simulations, we choose the
following transformation g which well adapts to various shapes of distributions
and improve the Bias

g(t) = t− t(1− t)2
1∫

c

K(t)dt, c ∈ [0, 1[ .

Theorem 2.2. Under the above assumptions A1, A2, H1 and H2, the asymptotic
properties of our proposed estimator F̂n at x = 1− ch are

(2.5) Bias(F̂n(x)) = h2Γ(c) + o(h2),

and

(2.6) V ar(F̂n(x)) =
F (x)(1− F (x))

n
+
h

n
f(1)Ω(c) + o

(
h

n

)
,

therefore, the value of h∗∗opt which is the bandwidth that minimizes the Mse is

h∗∗opt =

(
(f(1)Ω(c))4

4nΓ(c)

)1/3

,

where

Γ(c) =
−c2

2
f (1)(1) +

(
f (1)(1)− g(2)(1)f(1)

)
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·

−2c2 + 2c

−c∫
−1

K(t)dt−
c∫

−c

K(t)(t+ c)dt

 ,

and

Ω(c) = −c+

c∫
−1

K2(t)dt+

−c∫
−1

K(t) (K(t)− 2) dt+ 2

1∫
−c

K(t)K(−2c− t)dt.

Proof. For x ∈]1− h, 1], we have

E(F̂n(x)) = E

(
K

(
x− g(Xi)

h

))
+ E

(
K

(
x− 2 + g(Xi)

h

))

=

1∫
0

K

(
x− g(z)

h

)
f(z)dz +

1∫
0

K

(
x− 2 + g(Xi)

h

)
f(z)dz

= I1 + I2,

where

I1 =

1∫
0

K

(
x− g(z)

h

)
f(z)dz,

= h

1

h
−c∫

−c

K(t)
f(g−1(x− th))

g(1) (g−1(x− th))
dt,

= h

1

h
−c∫

c

K(t)
f(g−1(x− th))

g(1) (g−1(x− th))
dt+ h

c∫
−c

K(t)
f(g−1(x− th))

g(1) (g−1(x− th))
dt,

by using the property K(t) = 1−K(−t) on the first integration we have

I1 = F (g−1(1− 2ch))− h
−c∫

−1

h
+c

K(t)
f(g−1(x+ th))

g(1) (g−1(x+ th))
dt
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+ h

c∫
−c

K(t)
f(g−1(x− th))

g(1) (g−1(x− th))
dt,

we use a Taylor expansion of the function F (g1(.)),

F
(
g−1 (1− 2ch)

)
)

= F (g−1(1))− 2hc
f(g−1 (1))

g(1) (g−1 (1))

+ 2(ch)2

(
f (1) (g−1 (1)) g(1) (g−1 (1))− g(2) (g−1 (1)) f (g−1 (1))

[g(1) (g−1 (1))]
3

)
+ o(h2).

By the existence and continuity of F (2)(.) near 1, we obtain for x = 1− ch

F (1) = F (x) + chf (x) +
1

2
(ch)2 f (1) (x) + o

(
h2
)
.

f (x) = f (1)− chf (1) (1) + o (h)

f (1) (x) = f (1)(1) + o(1).

Therefore

F
(
g−1 (1− 2ch)

)
= F (x)− chf(1) +

3(ch)2

2
f (1)(1)

− 2(ch)2
(
g(2) (1) f (1)

)
+ o(h2).

Eventually, we obtain

I1 = F (x)− (ch)2

2
f (1)(1)− hf(1)

−c∫
−1

K(t)dt+ h2(f (1) (1)− f(1)g(2) (1))

·

−2c2 +

−c∫
−1

(c− t)K(t)dt−
c∫

−c

(c+ t)K(t)dt

+ o(h2).

Similar computation give I2,

I2 =

1∫
0

K

(
x− 2 + g(z)

h

)
f(z)dz = h

−c∫
−1

f(g−1(2− x+ th))

g(1)g−1(2− x+ th)
K(t)dt,
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we use a Taylor expansion of the function
f(g−1(.))

g(1)(g−1(.))
, we obtain

I2 = hf(1)

−c∫
−1

K(t)dt+ h2
(
f (1)(1)− g(2)(1)f(1)

) −c∫
−1

(t+ c)K(t)dt+ o(h2).

We combine I1 and I2 we obtain the expression of Bias(F̂n) (2.5).
To prove (2.6), note that

nV ar(F̂n) = E

(
K

(
x− g(Xi)

h

)
+K

(
x− 2 + g(Xi)

h

))2

−
(
E

(
K

(
x− g(Xi)

h

)
+K

(
x− 2 + g(Xi)

h

)))2

= A1 − A2,

where

A1 = E

(
K

(
x− g(Xi)

h

)
+K

(
x− 2 + g(Xi)

h

))2

,

= A11 + A12 + 2A13.

It can be shown that

A11 =

1∫
0

K2

(
x− g(z)

h

)
f(z)dz

= h

1

h
−c∫

c

K2(t)
f(g−1(x− th))

g(1) (g−1(x− th))
dt+ h

c∫
−c

K2(t)
f(g−1(x− th))

g(1) (g−1(x− th))
dt

= h

1

h
−c∫

c

(1−K(−t))2 f(g−1(x− th))

g(1) (g−1(x− th))
dt+ h

c∫
−c

K2(t)
f(g−1(x− th))

g(1) (g−1(x− th))
dt,

by Taylor expansion, we have

A11 = F (x) + hf(1)

−c+

c∫
−1

K2(t)− 2

−c∫
−1

K(t)dt

+ o(h),
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and similarly, we obtain

A12 =

1∫
0

K2

(
x− 2 + g(z)

h

)
f(z)dz = hf(1)

−c∫
−1

K2(t)dt+ o(h),

and

A13 = hf(1)

1∫
−c

K(t)K(−2c− t)dt+ o(h).

we combine A11, A12 and A13 to obtain A1.
With the expression of the Bias(F̂n), we find:

A2 =

(
E

(
K

(
x− g(Xi)

h

)
+K

(
x− 2 + g(Xi)

h

)))2

= F 2(x) + o(h).

This completes the proof of expression (2.6). �

3. SIMULATION STUDY

A simulation study presented in this section to support the theoretical results of
the proposed estimators, which was made through the comparison of asymptotic
properties of our estimators with the existing estimators summarized in the com-
ing subsection. For each estimator, we evaluate the Bias and Mse at right boundary
from different distributions with support [0, 1] are listed in table 1. To be more spe-
cific, for each distribution we generated {X1, X2, ..., Xn} a sample of size n = 200

and we did r = 1000 replication by using software R. Let θ̂i be estimator of θ based
on the ith generated random numbers of size n then Bias and Mse are estimated
by

Bias(θ̂) =
1

r

r∑
i=1

(
θ̂i(x)− θ(x)

)
,

Mse(θ̂) =
1

r

r∑
i=1

(
θ̂i(x)− θ(x)

)2
.

We ran cross-validation method [11] to choose bandwidth for Epanechnikov ker-
nel, the main reason for this choice is that it provides a fair basis for comparison
among the different estimators without regards to bandwidth effects.
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3.1. Existing estimators used in comparison. In this subsection, we briefly dis-
cuss existing distribution kernel estimators and propose important modifications.

For the first estimator (denote it by F̄n), inspered from the generalized reflection
kernel distribution estimator (Karunamuni et al [7]), we find

F̄n (x) =
1

n

n∑
i=1

K

(
x−Xi

h

)
+

1

n

n∑
i=1

K

(
x− 2 +Xi

h

)
.

The second estimator (denote it by F̃n), considers the boundary modified kernel
distribution function estimator suggested by Zhang et al [20]

F̃n (x) =
1

n

n∑
i=1

Kc

(
x−Xi

h

)
,

where Kc is a kernel distribution function, and kc satisfying
1∫

−c

c+ x

c
kc(x)dx = 1,

for Epanechnikov kernel we choice

kc(t) = 12
1− t

(1 + c)4

(
3c2 − 2c+ 1

2
− t (1− 2c)

)
,−c ≤ t ≤ 1.

To account this estimators for different situations, we use distributions summa-
rized in table 1, Note that the densities function D4,D5 and D6 satisfies f(0) =

f(1) = 0.

TABLE 1. Distributions used in the simulation study

Description Density for x ∈ [0, 1]

D1 Truncated Normal(0,1) exp(−x2/2)/
1∫
0

exp(−x2/2)dx.

D2 Truncated Exponential(3) 3exp(−3x)/(1− exp(−3)).
D3 Truncated Exponential(0.02) (0.02)exp(−0.02x)/(1− exp(−0.02)).
D4 Truncated Beta(2, 2)[ 13 ;1]

4.05x(1− x)

D5 Kumaraswamy(4,2) 8x3(1− x4)
D6 Beta(4,2) 20x3(1− x)
D7 Beta(3,1) 3x2

D8 uniform(0,1) 1
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The simulation results measure the performance of the different estimators in
the meaning of the Bias and Mse, are summarized in tables 1.2 and 1.3.

TABLE 2. Bias values at x=1, Results are re-scaled by the factor 0.001.

Fn F̄n F̃n F̂n F̆n

α = 0.1 10 100
D1 7.3783 2.8055 3.0703 2.7219 7.3780 5.7302 2.9829
D2 5.27695 4.7483 8.70152 0.2531 5.2506 3.4679 0.3246
D3 3.1702 2.19568 2.8583 2.1256 3.1621 3.1548 2.9564
D4 6.2859 6.3277 6.6596 5.0277 6.2836 5.5245 5.0252
D5 1.7211 1.6835 1.6731 1.6720 1.7211 1.7012 1.7005
D6 3.5881 2.4585 2.4521 2.3023 3.5811 2.4012 2.3505
D7 5.2351 3.6521 4.5231 1.6731 5.4587 4.6812 2.6802
D8 0.1404 0.1306 0.1370 0.1285 0.1434 0.1374 0.1298

TABLE 3. Mse values at x=1, Results are re-scaled by the factor 0.001.

Fn F̄n F̃n F̂n F̆n

α = 0.1 10 100
D1 2.5926 1.8345 1.8321 1.8021 2.5912 2.3147 1.8745
D2 1.7097 1.5795 1.5767 1.5710 1.7034 1.6524 1.6314
D3 1.9258 1.9177 1.9124 1.9102 1.9258 1.9247 1.9235
D4 1.8206 1.6904 1.7124 1.6814 1.8204 1.8045 1.7352
D5 0.5641 0.5641 0.5639 0.5635 0.5641 0.5641 0.5638
D6 2.2535 2.2012 2.1540 2.1201 2.2445 2.2354 2.1721
D7 4.1521 3.2155 2.1325 0.1284 4.2354 3.4521 1.2572
D8 0.4441 0.3897 0.3175 0.2210 0.4378 0.4102 0.3548

From Table 2, we can see that all the kernel distribution estimators previously
mentioned have smaller Bias than the classical kernel distribution estimator Fn.
Comparing among the kernel distribution estimators, we see that the reflection
transformation estimator F̂n has a smaller Bias for the almost used distribution,
except in the case of truncated exponential, the boundary distribution kernel es-
timator F̃n has an asymptotically smaller Bias when compared with our proposed
estimator F̂n. The comparison of the modify Bias of kernel estimator F̆n depend
to the choice of the positive constant α. When α is relatively small α=0.1 we can
see that F̆n has roughly the same Bias as Fn and when α increases gradually, F̆n
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improve the performance of the estimator. For the other estimators in generally,
the boundary distribution kernel estimator F̃n has second smaller Bias followed
by the reflection estimator F̄n. From Table 3, our proposed estimator F̂n has an
asymptotically smaller Mse when compared with the other estimators, which they
organised in the sens of Mse by F̃n followed by F̄n followed by F̆n which is less
than Fn for the almost used distribution.

4. REAL DATA APPLICATION

The aim of our applications is to compare the performance of the two pro-
posed kernel distribution estimators given respectively in (2.1) and (2.4) using
the cross-validation method to bandwidth selection for two real data sets, in order
to demonstrate its usefulness in practical application. The first data set X con-
sists of the number of deaths due to COVID-19 recorded from february 29, 2020
to December 31,2020 in 50 states of the United States of America taken from
www.nytimes.com, where Xi ∈ [0, 3808]. The second data set taken from [8] rep-
resents the failure times of the air conditioning system of an airplane, it consists
of 30 observations in [1.68, 6.81]. For each data set we can be mapped onto the
unit interval by the transformation Zi = (Xi − a)/(b − a), where {Xi} a real ob-
servation in [a, b]. The table below gives a basic statistical description of the real
data sets, a quick analysis of this table provides a preliminary insight concerning
the distribution of data.

TABLE 4. Basic statistical description of real data sets

Mean Median Skewness Kurtosis Std.error Std.deviation
First data 0.2972 0.2578 1.0413 3.9265 0.0117 0.2058

Second data 0.5156 0.5263 -0.4167 3.0934 0.0181 0.1985

We have plotted the performance of our estimators and compared them to the pre-
vious mentioned estimators. In figure (1), we denote by red line to the classical
estimator, green line to the modify Bias and bleu line to the reflection transforma-
tion, cyan line to boundary modified and pink line to reflection kernel distribution
estimator. We see that our estimators well distributed over ]1 − h, 1], the perfor-
mance of F̆n estimator improves when the positive constant α is large in this graph
we chose α=10. It is remarkably clear that our estimators remove the boundary
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effect and has improved the performance of the classical estimator when the data
near the right boundary.

FIGURE 1. Performance of different estimators in real applications

5. CONCLUSIONS

The kernel method is an intuitive simple, and useful procedure, especially in
density and distribution function estimation. When the support of the random
variable is bounded, this procedure needs modification. In this paper, we pro-
posed two new kernel distribution estimators to avoid the difficulties near the
right boundary, by using two techniques that have been inspired from boundary
correction methods. Depending on the theoretical and simulation results, it turned
out that our proposed estimators have been reducing the Bias to the second power
of the bandwidth, which is smaller than estimators have considered in this paper.
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