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COMPARISION OF NUMERICAL ACCURACY OF BISECTION, NEWTON
RAPHSON, FALSI-POSITION AND SECANT METHODS

Narendra Deo Dixit and Parveen Kumar Mathur1

ABSTRACT. In this paper we make comparision of numerical accuracy of bisection,
Newton-Raphson, falsi-position and secant methods.

1. INTRODUCTION

A root-finding algorithm is a numerical method, or algorithm, for finding a
value x such that f(x) = 0, for a given function f . Such an x is called a root
of the function f. We are concerned with finding real or complex roots, approx-
imated as floating point numbers. Finding integer roots or exact algebraic roots
are separate problems, whose algorithms have little in common with those dis-
cussed here.Finding a root of f(x) − g(x) = 0 is the same as solving the equation
f(x) = g(x).Here,x is called the unknown in the equation. Conversely, any equa-
tion can take the canonical form f(x) = 0, so equation solving is the same thing
as computing (or finding) a root of a function.

Numerical root-finding methods use iteration, producing a sequence of numbers
that hopefully converge towards a limit (the so called “fixed point") which is a
root. The first values of this series are initial guesses. The method computes
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subsequent values based on the old ones and the function f . The behaviour of
root- finding algorithms is studied in numerical analysis. Algorithms perform best
when they take advantage of known characteristics of the given function. Thus
an algorithm to find isolated real roots of a low-degree polynomial in one variable
may bear little resemblance to an algorithm for complex roots of a "black-box"
function which is not even known to be differentiable. Questions include ability
to separate close roots, robustness in achieving reliable answers despite inevitable
numerical errors, and rate of convergence.

The simplest root-finding algorithm is the bisection method. It works when f is
a continuous function and it requires previous knowledge of two initial guesses,a
and b, such that f(a) and f(b) have opposite signs. Although it is reliable, it
converges slowly, gaining one bit of accuracy with each iteration [1-3]. New-
ton’s method assumes the function f to have a continuous derivative. Newton’s
method may not converge if started too far away from a root. However, when
it does converge, it is faster than the bisection method. Convergence is usually
quadratic, so the number of bits of accuracy doubles with each iteration. New-
ton’s method is also important because it readily generalizes to higher-dimensional
problems. Newton-like methods with higher order of convergence are the House-
holder’s methods. The first one after Newton’s method is Halley’s method with
cubic order of convergence. Replacing the derivative in Newton’s method with a
finite difference, we get the secant method. This method does not require the com-
putation (nor the existence) of a derivative, but the price is slower convergence
(the order is approximately 1.6 )

The false position method, also called the regula falsi method, is like the secant
method. However, instead of retaining the last two points, it makes sure to keep
one point on the either side of the root. The Falsi Position Method is faster than
the bisection method and more robust than the secant method.

The secant method also arises if one approximates the unknown function f by
linear interpolation. When quadratic interpolation is used instead, one arrives at
MÃijller’s method. It converges faster than the secant method. A particular feature
of this method is that the iterates xn may become complex. This can be avoided
by interpolating the inverse of f , resulting in the inverse quadratic interpolation
method. Again, convergence is asymptotically faster than the secant method, but
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inverse quadratic interpolation often behaves poorly [4] when the iterates are not
close to the root.

Finally, Brent’s method is a combination of the bisection method, the secant
method and inverse quadratic interpolation. At every iteration, Brent’s method
decides which method out of these three is likely to do best, and proceeds by
doing a step according to that method. This gives a robust and fast method, which
therefore enjoys considerable popularity.

2. BISECTION METHOD

 

FIGURE 1. A few steps of the bisection method applied over the
starting range [a1, b1]

In mathematics, the bisection method is a root-finding algorithm which repeat-
edly divides an interval in half and then selects the subinterval in which a root
exists. It is a very simple and robust method, but it is also rather slow [5-6].

2.1. The method. Suppose we want to solve the equation

f(x) = 0
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where f is a continuous function. The bisection method starts with two points a
and b such that f(a) and f(b) have opposite signs. The intermediate value theorem
says that f must have at least one root in the interval [a, b]. The method now divides
the interval in two by computing c = (a + b)/2. There are now two possibilities:
either f(a) and f(c) have opposite signs, or f(c) and f(b) have opposite signs. The
bisection algorithm is then applied recursively to the sub-interval where the sign
change occurs. Explicitly, if f(a)f(c) < 0, then the method sets b equal to c, and if
f(b)f(c) < 0, then the method sets a equal to c. In both cases, f(a) and f(b) have
again opposite signs, so the method can start again with the points a and b which
now lie closer to each other.

2.2. Analysis. If f is a continuous function on the interval [a, b] and f(a)f(b) < 0,
then the bisection method converges to a root of f . In fact, the absolute error
is halved at each step. Thus, the method converges linearly, which is quite slow.
On the positive side, the method is guaranteed to converge if f(a) and f(b) have
different signs.

The bisection method gives only a range where the root exists, rather than a
single estimate for the root’s location. Without using any other information, the
best estimate for the location of the root is the midpoint of the range. In that case,
the absolute error after n steps is at most

|b− a|
2n+1

If either endpoint of the interval is used, then the maximum absolute error is

|b− a|
2n

the entire length of the interval.
These formulas can be used to find the number of iterations that the bisection

method needs to converge to a root within a certain tolerance. For instance, using
the second formula for the error, the number of iterations n has to satisfy

n >
log(b− a)− log ε

log 2

to make sure that the error is smaller than the tolerance ε.
If f has several roots in the interval [a, b], then the bisection method finds

the odd-numbered roots with equal, non-zero probability and the even-numbered
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roots with zero probability. More precisely, suppose that f has x2k+1 simple roots
x1 < x2 < < x2k+1 in the interval [a, b] (the number of roots is odd because f(a)

and f(b) have opposite signs). If we assume that the roots are distributed inde-
pendently and uniformly in this interval. Then, the probability that the bisection
method converges to the root xi withi = 1, 2, . . . , 2k + 1 is zero if i is even and
1/(k + 1) if i is odd (Corliss 1977).

3. NEWTON’S METHOD

In numerical analysis, Newton’s method (also known as the Newton-Raphson
method, named after Isaac Newton and Joseph Raphson) is perhaps the best
known method for finding successively better approximations to the zeroes (or
roots) of a real-valued function. Newton’s method can often converge remarkably
quickly, especially if the iteration begins "sufficiently near" the desired root. Just
how near "sufficiently near" needs to be, and just how quickly "remarkably quickly"
can be, depends on the problem. This is discussed in detail below. Unfortunately,
when iteration begins far from the desired root, Newton’s method can easily lead
an unwary user astray with little warning. Thus, good implementations of the
method embed it in a routine that also detects and perhaps overcomes possible
convergence failures.

Newton’s method can also be used to find a minimum or maximum of such a
function, by finding a zero in the function’s first derivative, see Newton’s method
as an optimization algorithm. The algorithm is first in the class of Householder’s
methods, succeeded by Halley’s method.

3.1. Description of the method. The idea of the method is as follows: one starts
with an initial guess which is reasonably close to the true root, then the function
is approximated by its tangent line (which can be computed using the tools of cal-
culus), and one computes the x-intercept of this tangent line (which is easily done
with elementary algebra). This x-intercept will typically be a better approximation
to the function’s root than the original guess, and the method can be iterated.

Let us suppose f : [a, b] −→ R is a differentiable function defined on the interval
[a, b] with values in the real numbers R. The formula for converging on the root
can be easily derived. Suppose we have some current approximation xn. Then
we can derive the formula for a better approximation, xn+1 by referring to the
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FIGURE 2. An illustration of one iteration of Newton’s method (the
function f is shown in blue and the tangent line is in red). Clearly
xn+1 is a better approximation than xn for the root x of the function
f .

diagram on the right. We know from the definition of the derivative at a given
point that it is the slope of a tangent at that point.

That is

f ′(xn) =
rise

run
=

∆y

∆x
=
f(xn)− 0

xn − xn+1

.

Here,f ′ denotes the derivative of the function f . Then by simple algebra we can
derive

xn+1 = xn −
f(xn)

f ′(xn)

We start the process off with some arbitrary initial value x0. (The closer to the
zero, the better. But, in the absence of any intuition about where the zero might
lie, a "guess and check" method might narrow the possibilities to a reasonably
small interval by appealing to the intermediate value theorem.) The method will
usually converge, provided this initial guess is close enough to the unknown zero,
and that f ′(x0)0. Furthermore, for a zero of multiplicity 1, the convergence is at
least quadratic (see rate of convergence) in a neighbourhood of the zero, which
intuitively means that the number of correct digits roughly at least doubles in
every step. More details can be found in the analysis section below.
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3.2. History. Newton’s method was described by Isaac Newton in De analysi per
aequationes numero terminorum infinitas (written in 1669, published in 1711 by
William Jones) and in De metodis fluxionum et serierum infinitarum (written in
1671, translated and published as Method of Fluxions in 1736 by John Colson).
However, his description differs substantially from the modern description given
above: Newton applies the method only to polynomials. He does not compute the
successive approximations xn, but computes a sequence of polynomials and only at
the end, he arrives at an approximation for the root x [15]. Finally, Newton views
the method as purely algebraic and fails to notice the connection with calculus.
Isaac Newton probably derived his method from a similar but less precise method
by FranÃğois ViÃ́lte. The essence of ViÃ́lte’s method can be found in the work of
the Persian mathematician, Sharaf al-Din al-Tusi, while his successor JamshÄńd
al-KÄĄshÄń used a form of Newton’s method to solve xP − N = 0 to find roots
of N (Ypma 1995). A special case of Newton’s method for calculating square roots
was known much earlier and is often called the Babylonian method.

Newton’s method was first published in 1685 in A Treatise of Algebra both His-
torical and Practical by John Wallis. In 1690, Joseph Raphson published a sim-
plified description in Analysis aequationum universalis. Raphson again viewed
Newton’s method purely as an algebraic method and restricted its use to polyno-
mials, but he describes the method in terms of the successive approximations xn
instead of the more complicated sequence of polynomials used by Newton. Finally,
in 1740, Thomas Simpson described Newton’s method as an iterative method for
solving general nonlinear equations using fluxional calculus, essentially giving the
description above. In the same publication, Simpson also gives the generaliza-
tion to systems of two equations and notes that Newton’s method can be used for
solving optimization problems by setting the gradient to zero.

Arthur Cayley in 1879 in The Newton-Fourier imaginary problem was the first
who noticed the difficulties in generalizing the Newton’s method to complex roots
of polynomials with degree greater than 2 and complex initial values. This opened
the way to the study of the theory of iterations of rational functions.
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4. FALSE POSITION METHOD

In numerical analysis, the false position method or regula falsi method is a
root-finding algorithm that combines features from the bisection method and the
secant method.

 

FIGURE 3. The first two iterations of the false position method. The
light curve shows the function f and the blue lines are the secants.

4.1. The method. Like the bisection method, the false position method starts
with two points a0 and b0 such that f(a0) and f(b0) are of opposite signs, which
implies by the intermediate value theorem that the function f has a root in the in-
terval [a0, b0]. The method proceeds by producing a sequence of shrinking intervals
[ak, bk] that all contain a root of f .

At iteration number k, the number

ck =
f(bk)ak − f(ak)bk
f(bk)− f(ak)

is computed.
As explained below, Ck is the root of the secant line through (ak, f(ak), bk, f(bk))

and (bk, f(bk)). If f(ak) and f(ck) have the same sign, then we set ak+1 = ck and
bk+1 = bk, otherwise we set ak+1 = ak and bk+1 = ck. This process is repeated until
the root is approximated sufficiently well [7-8].
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The above formula is also used in the secant method, but the secant method al-
ways retains the last two computed points, while the false position method retains
two points which certainly bracket a root. On the other hand, the only difference
between the false position method and the bisection method is that the latter uses
ck = (ak + bk)/2.

5. FINDING THE ROOT OF THE SECANT

Given ak and bk, we construct the line through the points (ak, f(ak)) and (bk, f(bk),
as demonstrated in the picture on the right. Note that this line is a secant or chord
of the graph of the function f . In point-slope form, it can be defined as [9].

y − f(bk) =
f(bk)− f(ak)

bk − ak
(x− bk).

We now choose ck to be the root of this line, so c is chosen such that

f(bk) +
f(bk)− f(ak)

bk − ak
(ck − bk) = 0.

Solving this equation gives the above equation for ck.

5.1. Analysis. If the initial end-points a0 and b0 are chosen such that f(a0) and
f(b0) are of opposite signs, then one of the end-points will converge to a root of f .
Asymptotically, the other end-point will remain fixed for all subsequent iterations
while the one end- point always being updated. As a result, unlike the bisection
method, the width of the bracket does not tend to zero. As a consequence, the
linear approximation to f(x), which is used to pick the false position, does not
improve in its quality [10].

One example of this phenomenon is the function

f(x) = 2x3 − 4x2 + 3x

on the initial bracket [−1, 1]. The left end,−1, is never replaced and thus the width
of the bracket never falls below 1. Hence, the right endpoint approaches 0 at a
linear rate (with a rate of convergence of 2/3).

While it is a misunderstanding to think that the method of false position is a
good method, it is equally a mistake to think that it is unsalvageable. The failure
mode is easy to detect (the same end-point is retained twice in a row) and easily
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remedied by next picking a modified false position, such as

ck =
1
2
f(bk)ak − f(ak)bk
1
2
f(bk)− f(ak)

or

ck =
f(bk)ak − 1

2
f(ak)bk

f(bk)− 1
2
f(ak)

down-weighting one of the endpoint values to force the next ck to occur on that
side of the function. The factor of 2 above looks like a hack, but it guarantees
superlinear convergence (asymptotically, the algorithm will perform two regular
steps after any modified step). There are other ways to pick the rescaling which
give even better superlinear convergence rates [11].

Ford (1995) summarizes and analyzes the superlinear variants of the modified
method of false position. Judging from the bibliography, modified regula falsi
methods were well known in the 1970s and have been subsequently forgotten or
misremembered in current textbooks.

6. SECANT METHOD

In numerical analysis, the secant method is a root-finding algorithm that uses
a succession of roots of secant lines to better approximate a root of a function f .

The secant method is defined by the recurrence relation

xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)
f(xn)

As can be seen from the recurrence relation, the secant method requires two
initial values, x0 and x1, which should ideally be chosen to lie close to the root.

7. DERIVATION OF THE METHOD

Given xn−1 and xn, we construct the line through the points (xn−1, f(xn−1)) and
(xn, f(xn)), as demonstrated in the picture on the right. Note that this line is a
secant or chord of the graph of the function f . In point-slope form, it can be
defined as

y − f(xn) =
f(xn)− f(xn−1)

xn − xn−1
(x− xn).
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FIGURE 4. The first two iterations of the secant method. The light
curve shows the function f and the blue lines are the secants.

We now choose xn+1 to be the root of this line, so xn+1 is chosen such that

f(xn) +
f(xn)− f(xn−1)

xn − xn−1
(xn+1 − xn) = 0.

Solving this equation gives the recurrence relation for the secant method.

7.1. Convergence. The iterates xn of the secant method converge to a root of
f , if the initial values x0 and x1 are sufficiently close to the root. The order of
convergence is alpha, where

α =
1 +
√

5

2
≈ 1.618

is the golden ratio. In particular, the convergence is superlinear [12].
This result only holds under some technical conditions, namely that f be twice

continuously differentiable and the root in question be simple (i.e., that it not be
a repeated root). If the initial values are not close to the root, then there is no
guarantee that the secant method converges.
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8. COMPARISON WITH OTHER ROOT-FINDING METHODS

The secant method does not require that the root remain bracketed like the
bisection method does, and hence it does not always converge. The false position
method uses the same formula as the secant method. However, it does not apply
the formula on xn−1 and xn, like the secant method, but on xn and on the last
iterate xk such that f(xk) and f(xn) have a different sign. This means that the
false position method always converges [13].

The recurrence formula of the secant method can be derived from the formula
for Newton’s method

xn+1 = xn −
f(xn)

f ′(xn)

by using the finite difference approximation

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1
If we compare Newton’s method with the secant method, we see that Newton’s
method converges faster (order 2 against âL’́L 1.6). However, Newton’s method
requires the evaluation of both f and its derivative at every step, while the secant
method only requires the evaluation of f [14]. Therefore, the secant method may
well be faster in practice. For instance, if we assume that evaluating f takes as
much time as evaluating its derivative and we neglect all other costs, we can do
two steps of the secant method (decreasing the logarithm of the error by a factor
α22.6) for the same cost as one step of Newton’s method (decreasing the logarithm
of the error by a factor 2), so the secant method is faster.

9. PROPOSED WORK

We will develop C/C++ programs for the root finding methods viz. Bisection
method, Newton-Raphson, False Position method and Secant method. With the
help of these computer programs, we will find the square root, cube root, fourth
root and fifth roots of the natural numbers from 1 to 50 up to eight decimal places.
We will compare these values with the exact values to get the numerical accuracy
of the root finding methods described above. We will also try to establish multilin-
ear regression to get the exact values with the help of obtained values. Multilinear
regression equations will enable us to find out the square root, cube root, fourth
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root and fifth roots of the natural numbers using the arithmetical operators ad-
dition and multiplication. Lastly, we will arrange these root finding methods in
order of their numerical accuracy and rate of convergence.
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