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2D PROBLEM FOR A SPHERE IN THE FRACTIONAL ORDER THEORY
THERMOELASTICITY TO AXISYMMETRIC TEMPERATURE DISTRIBUTION

Satish G. Khavale and Kishor R. Gaikwad1

ABSTRACT. In the present article, we implement the fractional thermoelasticity
theory to a 2D issue for a sphere whose surface is free from traction, subject to
a provided axisymmetric temperature distribution of heat. The medium is sup-
posed to be quiescent initially. A direct method is used to get a solution and the
Laplace transform technique is used. Mathematical models for copper material
are designed as a particular instance. Numerical results are computed with help
of Mathcad software and graphically represented and the fractional-order param-
eter effect has been explained.

Nomenclature:
t Time
T Absolute temperature
ρ Density
λ, µ Lamé’s constants
e Cubical dilation = div u
γ = (3λ+ 2µ)αt

σij Stress tensor components
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u = (u, ϑ, 0) Displacement vector
k Thermal conductivity
k∗ Material constant
c Speed of propagation of isothermal elastic waves
T0 Reference temperature | (T − T0)/T0 |≪ 1

α Constant such that0 ≤ α ≤ 1

αt Coefficient of linear thermal expansion
cE Specific heat per unit mass in the absence of deformation

1. INTRODUCTION

The generalization of the classical coupled theory of thermoelasticity was pre-
sented by Biot [1]. Shulman and Lord [2] presented for the isotropic body the gen-
eralized dynamic thermoelasticity theory with one period of relaxation. Naghdi
and Green [3] introduced the thermoelastic material behavior without energy
dissipation with nonlinear and linear theories. Zong [4] resolved quasi-static
thermoelastic issues with time-dependent boundary conditions for multi-layered
spheres. Povstenko [5, 9, 10] solved some thermoelastic problems based on the
equation of heat conduction in 1D as well as 2D with a time-fractional derivative
and associated thermal stresses. In four distinct thermoelasticity theories, Roushan
Kumar and Mukhopadhyay [6] explored general thermoelastic interactions in un-
bounded elastic media and spherical cavities. Avijit and Kanoria [8] presented
the wide spread thermoelasticity theories of a hollow-sphere with a thermal shock
problem. In the fractional calculus technique, Sherief et. al. [11] introduced the
novel coupling thermoelasticity and widespread thermoelasticity with one relax-
ation cycle. Magdy [12] developed the novel Magneto thermoelasticity model for
a different consideration of the fractional derivative heat conduction. Sherief et.
al. [13] introduced a 1D thermal shock issue with a theory of fractional-order for
a half-space using the Laplace methods and prediction theory compared with cou-
pled as well as generalized thermoelasticity theories. In terms of fractional order
thermoelasticity, Eman [14] solved the thermoelastic issue directly of an infin-
itely long circular cylinder. Raslan et al. [15] addressed the 1D issue utilizing the
Laplace transform technique of the thermoelasticity fractional order of an infin-
itely long cylindrical cavity. Bayatet. al. [16] analyzed the unsteady state thermo-
mechanical problem of the FGM thick sphere. Raslan [17] resolved a 2D problem
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of axisymmetric temperature distribution fractional thermoelasticity order theory
of a thick plate. Tripathi [18] showed the impact of axisymmetric supply of heat on
the diffusion phenomena of an infinite and finite thick thermoelastic platform, and
the theory of widespread thermoelastic diffusion with a one-time interval of relax-
ation. Magdy [19] developed a 3D thermoelasticity model with time-dependent
thermal shock issue, utilizing a fractional thermoelasticity order theory, for a half-
space. Many thermoelastic issues have recently been addressed [20–40]

This study aims for estimating the temperature distribution, displacement, as
well as stress for a sphere, where the surface is free of traction and exposed
to a specified axisymmetric heat temperature distribution. The medium is sup-
posed to be quiescent initially. A direct method is used to get a solution and the
Laplace transform technique is used. Mathematical models for copper material
are designed as a particular instance. Numerical results are computed with help
of Mathcad software and represented graphically as well as the fractional order
parameter effect has been explained.

2. FORMULATION OF THE PROBLEM

We take anisotropic, homogeneous, thermoelastic solid sphere of radius a and
are supposed to be quiescent initially. The spherical polar coordinate (r, ϑ, ϕ) is
introduced with the cavity center as the origin. The sphere surface is free from
traction while subject to axisymmetric heat distribution. Due to the ϑ axis rota-
tional symmetry, all independent quantities of the coordinate ϕ. Therefore, the
vector displacement has form u = (u, ϑ, 0).

The motion equation [3] may be represented as

(1) µ ∇2u + (λ+ µ) grad div u − γgradT = ρ
∂ 2u
∂t2

.

The form of time-fractional heat conduction is given below:

(2) k∗ ∇2T =
∂ 1+α

∂t1+α
(ρ cET + γ T0 e),

where

(3) ∇2 =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
.
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We obtain upon taking the divergence of both sides of equation (1)

(4) (λ+ 2µ)∇2e− γ ∇2T = ρ
∂2e

∂t2

(5) e =
∂u

∂r
+

2u

r
+

1

r sinϑ

∂(ν sinϑ)

∂ϑ
.

The stress tensor components are given by [3]

(6) σrr = 2µ
∂u

∂r
+ λe− γ (T − T0)

(7) σrϑ = µ

(
1

r

∂u

∂ϑ
− ν

r
+

∂ν

∂r

)
.

The following are the non-dimensional variables which are expressed as:

r′ = cηr, u′ = cηu, ν ′ = cην, t′ = c2ηt,

θ′ =
γ (T − T0)

λ+ 2µ
, σ′

ij =
σij

µ
.

where

c =

√
λ+ 2µ

ρ
, η =

ρcE
k

.

The stress components and governing equations adopt the form by putting non-
dimensional quantities in (1)–(7)equations: (drop the primes for simplicity).

(8) ∇2 u + (β2 − 1) grad e− β2grad θ = β2∂
2 u
∂t2

(9) ∇2e − ∇2θ =
1

c2
∂2e

∂t2

(10) c2T ∇2θ =
∂1+α

∂t1+α
( θ + εe )

(11) σrr = 2
∂u

∂r
+ (β2 − 2)e − β2θ

(12) σrϑ =
1

r

∂u

∂ϑ
− ν

r
+

∂ν

∂r

where

β2 =
λ+ 2µ

µ
, ε =

T0γ
2

[(λ+ 2µ) ρcE]
, c2T =

k∗

c2ρcE
.



2D PROBLEM FOR A SPHERE IN THE FRACTIONAL ORDER THEORY 5

The non-dimensional boundary conditions may be expressed as:

(13) θ(a, ϑ, t) = f(ϑ, t)

(14) σrr(a, ϑ, t) = 0, σrϑ(a, ϑ, t) = 0.

It is supposed to be quiescent initially.

3. LAPLACE TRANSFORM DOMAIN SOLUTION

Using Laplace transform characterized by following relationship which is ap-
plied,

(15) f̄(r, ϑ, s) = L[f(r, ϑ, t)] =

∫ ∞

0

e−stf(r, ϑ, t)dt

to equations (8–12), we obtain

(16) ∇2ū+ (β2 − 1) grad ē − β2 grad θ̄ = β2s2ū

(17) (c2T∇2 − sα+1)θ̄ = ε sα+1 ē

(18) (∇2 − s2) ē = ∇2θ̄

(19) σ̄rr = 2
∂ū

∂r
+ (β2 − 2)ē − β2θ̄

(20) σ̄rϑ =
1

r

∂ū

∂ϑ
− ν̄

r
+

∂ν̄

∂r
.

Eliminating ē between equations (19) and (20), we get

(21) { c2T∇4 − (s2c2T + (1 + ε)sα+1)∇2 + s3sα}θ̄ = 0.

After factorization of equation (21) becomes

(22) (∇2 − k2
1)(∇2 − k2

2)θ̄ = 0,

where k2
1, k

2
2 are the characteristic equation roots having positive real parts,

(23) c2Tk
4 − (s2c2T + (1 + ε)sα+1)k2 + s3sα = 0.

Equation solution (22) may be expressed as follows:

(24) θ̄ = θ̄1 + θ̄2,
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where the homogeneous equation (∇2 − k2
i ) θ̄i = 0, solution is denoted by θ̄i is

(25)
1

r2
∂

∂r

(
r2
∂θ̄i
∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂θ̄i
∂ϑ

)
− k2

i θ̄i = 0.

The equation solution (25) may be expressed as follows:

(26) θ̄i =
1√
r

2∑
i=1

∞∑
n=0

Pn(ξ)Ani(k
2
i + s2)In+1/2(kir).

Here ξ = cosϑ, Ani(s), i=1, 2 are some boundary conditions parameters, and
Pn(ξ), In(kir) is the Legendre polynomial of n order as well as the first-order n

updated Bessel function.
Similarly, the solution for ē is compatible with equations (17) and (18) it can be

written as

(27) ē =
1√
r

2∑
i=1

∞∑
n=0

Pn(ξ)Anik
2
i In+1/2(kir).

Putting the values of Eq. (5) into Eq. (9), we get by using the Laplace transform

(28) ∇2ū+
2

r

∂ū

∂r
+

2ū

r2
+ β2s2ū = β2 ∂

∂r
(θ̄ + ē) +

∂ē

∂r
+

2ē

r
.

The equation solution (28) may be expressed as follows:

ū =
1

r
√
r{

∞∑
n=0

Pn(ξ)
2∑

i=1

[kirIn+3/2(kir)− nIn+1/2(kir)] +
∞∑
n=0

cnPn(ξ)In+1/2(β s r)

}
.

(29)

Here cn is a boundary condition determination parameter.
Similarly, from equations (5), (27) and (29), we obtain

ν̄ =
1

r
√
r

∞∑
n=1

Qn(ϑ){
2∑

i=1

nAniIn+1/2(kir) + cn

(
βsr

n+ 1
In+3/2(β s r)− In+1/2(β s r)

)}
,

(30)

where

Qn(ϑ) =
Pn−1(ξ)− ξPn(ξ)

sinϑ
.
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Putting from (29) and (27) equations into (11) and (12) equations, we get

σrr =
1

r2
√
r

·
∞∑
n=0

Pn(ξ)
2∑

i=1

Ani[(β
2s2r2 − 2n(n− 1))In+1/2(kir)− 4kirIn+3/2(kir)]

+
2

r2
√
r

∞∑
n=1

Pn(ξ)cn((n− 1)In+1/2(β s r)− (β s r)In+3/2(β s r))

(31)

σrϑ = − 2

r5/2

∞∑
n=1

nQn(ϑ)

2∑
i=1

Ani[(1− n)In+1/2(kir) + kirIn+3/2(kir)]

− 1

r5/2

∞∑
n=1

Qn(ϑ)

n+ 1
cn((−β2s2r2 + 2n2 − 2)In+1/2(β s r) + 2(βsr)In+3/2(β s r)).

(32)

Apply the boundary conditions (13) and (14), we get

(33)
1√
a

∞∑
n=0

Pn(ξ)
2∑

i=1

Ani(k
2
i − s2)In+1/2(kia) = f̄(ϑ, s)

(34)

∞∑
n=0

Pn(ξ)
2∑

i=i

Ani[(β
2s2a2 − 2n(n− 1))In+1/2(kia)− 4kiaIn+3/2(kia)]

+ 2
∞∑
n=1

Pn(ξ)cn((n− 1)In+1/2(β s a)− (β s a)In+3/2(β s a)) = 0

(35)

2
∞∑
n=1

nQn(ϑ)
2∑

i=1

Ani[(1− n)In+1/2(kia) + kiaIn+3/2(kia)]

+
∞∑
n=1

Qn(ϑ)cn((−β2s2a2 + 2n2 − 2)In+1/2(β s a)

+ 2(β s a)In+3/2(β s a)) = 0.

Equations (33–35) is a linear equations system with Ani(s), cn as an unidentified
parameter. When we solve such equations, we have a perfect solution to the trans-
form domain issue.
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4. NUMERICAL LAPLACE TRANSFORMS INVERSION

Laplace transformation of the continuous f(t) function is presented

(36) f̄(s) =

∫ ∞

0

e−stf(t)dt

for t > 0 and s = x+ iy.
The inversion integral is utilized to identify the actual function f(t) when the

solution is provided in the Laplace domain,

(37) f(t) =

∫ γ+i∞

γ−i∞
e−stf̄(s)ds.

Here, contour should be placed to the right of all f̄(s) singularities. The direct
Equation (37) integration is usually challenging and sometimes not feasible an-
alytically. We use a numerical inverse approach based on the Stehfest for ul-
timate solution of the stress distribution, displacement temperature in the time
domain [41].In the given approach, the inverse f(t) of Laplace f̄(s) is estimated
by the relationship.

(38) f(t) =
ln 2

t

N∑
j=1

Vj F

(
ln 2

t
j

)
,

where the following equation is presented Vj:

(39) Vj = (−1)((N/2)+1)

min(i,N/2)∑
k=(i+1)/2

k((N/2)+1)(2k)!

(N/2− k)! k! (i− k)! (2k − 1)!
.

The N parameter is the summation number (39) of terms and must be maximized
by trial and error. Rising N improves the result accuracy to a point and sub-
sequently decreases accuracy due to increased round-off errors. All parameters’
solutions in the space time domain are therefore provided with

(40) θ(r, ϑ, t) =
ln 2

t

N∑
j=1

Vj θ̄

(
r, ϑ,

ln 2

t
j

)

(41) u(r, ϑ, t) =
ln 2

t

N∑
j=1

Vj ū

(
r, ϑ,

ln 2

t
j

)
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(42) σrr(r, ϑ, t) =
ln 2

t

N∑
j=1

Vj σ̄rr

(
r, ϑ,

ln 2

t
j

)

(43) σrϑ(r, ϑ, t) =
ln 2

t

N∑
j=1

Vj σ̄rϑ

(
r, ϑ,

ln 2

t
j

)

5. NUMERICAL RESULTS AND DISCUSSION

We consider f(ϑ, t) = cos2 ϑH(t) in numerical computations.
By applying Laplace transform of the above mentioned functions, we deduce:

f̄(ϑ, s) =
1

s

[
1

3
P0(cosϑ) +

2

3
P2(cosϑ)

]
.

The copper material has been selected for numerical assessment, and the prob-
lem constants are determined as follows The numerical calculation and the graphs

TABLE 1. Material constants

k = 386 W/(m. K) ρ = 8954 kg/m3 η = 8886.73
λ = 7.76 ·1010 kg/(m. s2) αt = 1.78 · 10−5K−1 T0 = 293 K
cE = 383.1 J/(kg · K) µ = 3.86 · 1010 kg/(m· s2) ε = 0.0168
cT=7.0 m/s β = 2, ϑ = π/N a = 1.5

are done using the PTC Mathcad Prime-3.1 computational mathematical software.
We analyzed the axisymmetric 2D thermoelastic problem of a sphere without

energy dissipation in terms of fractional-order thermoelasticity theory. As an ex-
ample, we performed numeric calculations on a copper material sphere and ana-
lyzed the thermoelastic behavior in the condition for radial temperature, thermal
stress as well as the displacement and at varying t time = 0.1, 0.3, 0.5, 0.7, and
fractional order parameter α = 0, 0.5, 0.75, 1.

Figures 1–4 show the space temperature variation at intervals α = 0.25 for
varied t values. Figure 1 demonstrates radial direction variance in temperature
with varying time parameters. This is apparent that the original temperature at
the center is zero while increases as r rises for different t values. Figure 2 reveals
the displacement variation in radial direction, it is noted that the value of the
displacement decreases within region 0 ≤ r ≤ 0.6 where as rises in the 0.6 ≤ r ≤
1.5 region for distinct t values. Figure 3 reveals the radial stress distribution in
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a radial direction with different time parameters. Initially, radial stress rises to a
maximum close to r ≈ 0.62 and then to zero at r = 1.5.

It is obvious that radial tension produces radial tensile strains for different t val-
ues. The change in the axial stress distribution in the radial direction is exhibited
in Figure 4, it is apparent that the axial stress generates radial compressive stresses
at varying t values.

Figure 1. Temperature distribution at α =

0.25 and different values of t.

Figure 2. Displacement distribution at α =

0.25 and different values of t.

Figure 3. Radial stress distribution at α =

0.25 and different values of t.

Figure 4. Axial stress distribution at α =

0.25 and different values of t.

Figure 5. Temperature Distribution at t =

0.5 and different values of α.

Figure 6. Displacement distribution at t =

0.5 and different values of α.
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Figure 7. Radial stress distribution at t =

0.5 and different values of α.

Figure 8. Axial stress distribution at t = 0.5

and different values of α.

Figures 5-8 show the temperature space variation at instants t = 0.5 for varying
α values. Figure 5 illustrates temperature variations in varying the fractional-
order parameter α values for t = 0.5 along with radial directions. The illustration
indicates that the fractional-order parameter value rises, the magnitude of the
rising temperatures as the radial thickness increases and the center becomes zero.
Figure 6 illustrates the variance in a radial direction of displacement. The initial
displacement to the outer circular edge r = 1.5 is zero and maximal. In Figures
7 and 8, axial and radial stress is shown radial direction, radial stress is obvious
in the tensile nature and axial stress is compressive in nature for fractional order
parameters.

6. CONCLUSION

A 2D axisymmetric thermoelastic issue of a solid sphere has been explored in
this study in terms of the fractional thermoelasticity theory. The sphere surface is
deemed to be free from traction and subject to an axisymmetric temperature dis-
tribution of heat supply. The Laplace transform approach was utilized to achieve
the solution for thermal stress analytically, displacement, and temperature. The
technique employed in this research offers an effective technique to the solution
of thermoelastic issues. The numerical results are compared with varying time
t = =0.1, 0.3, 0.5, 0.7 and fractional order parameter α = 0, 0.5, 0.75, 1. The
evaluation of the findings allows for some final remarks.

(1) In Figures 1 and 2, the body displacement of temperature and heat flow
direction and displacement is directly proportional to each other.
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(2) Figure 3 shows radial tensile stress, whereas Figure 4 exhibits the axial
stress that increases with time to produce radial compressive stresses.

(3) Physical quantities are altered by the fractional-order parameter. The exis-
tence of parameter of fractional-order of the present model is thus impor-
tant.

(4) The temperature, thermal stresses as well as displacement rely heavily on
the parameter of fractional order.

(5) The wave velocity varies for the varying the fractional-order parameter
values.

(6) The material thermal conductivity is exactly proportionate to the parame-
ter of the fractional order.

(7) When α = 1 and 1 + α = 2, we have the wave equations for temperature.
In this case, we have the finite velocity of propagation of the disturbance.

(8) The technique described in this paper is applicable to a broad variety of
thermoelasticity physical engineering issues.
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