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APPROXIMATING THE SOLUTION OF A FRACTIONAL ORDER MODEL OF
NOVEL CORONAVIRUS (COVID-2019) UNDER CAPUTO–FABRIZIO

DERIVATIVE

Fredrick A. Adie1, Gabriel I. Ogban, Samson E. Ekoro, Oboyi Joseph, and Austine E. Ofem

ABSTRACT. This paper presents a fixed point iteration method for approximating
the solution of a fractional order model of novel coronavirus (COVID-2019) under
Caputo–Fabrizio derivative in Banach spaces. Our result is new and complements
some existing results in the literature.

1. INTRODUCTION

Fixed Point Theory is concerned with solution of the equation

` = T`,(1.1)

where T could be a nonlinear operator defined on a metric space. Any ` that
solves (1.1) is called the fixed point of T and the collection all such elements is
denoted by F (T ). Fixed point theory is an area in nonlinear analysis that has
become very attractive and interesting with a large number of applications in var-
ious fields of mathematics and other branches of science. Fixed point theory has
remained not only a field with a huge development, but also a very helpful means
for solving various problems in different fields of mathematics. It is well known
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that fixed point theorems are used for proving the existence and uniqueness to var-
ious mathematical models like differential, integral and partial differential equa-
tions and variational inequalities etc., representing phenomena arising in different
fields such as steady state temperature distribution, chemical equations, neutron
transport theory, economic theories, epidemics and flow of fluids. Furthermore, it
as also significant in the field of computer science, image processing, artificial in-
telligence, decision making, population dynamics, computer science, operational
research, industrial engineering, pattern recognition, medicine, group health un-
derwriting, management and many others.

Existence theorems are concerned with establishing sufficient conditions in which
the equation (1.1) will have solution, but does not necessarily show how to find it.
On the other hand, iteration method of fixed points is concerned with approxima-
tion or computation of sequences which converge to the solution of (1.1). When
existence of a fixed point of an operator is guaranteed, obtaining constructive
technique for finding such a fixed point is also paramount.

Very recently, Ofem et al. [24] introduced the following four steps iterative
method for approximating the fixed points of almost contraction mappings and
generalized α-nonexpansive mappings:

`0 ∈ Λ,

gs = (1− βs)`s + βsT`s,

ws = (1− δs)T`s + δsTgs,

ζs = Tws,

`s+1 = Tζs,

∀s ≥ 1,(1.2)

where {δs} and {βs} are sequences in (0,1).
Fractional Differential Equations (FDEs) involve fractional derivatives of the

form dν

dxν
, which are defined for ν > 0, where ν is not necessarily an integer.

They are generalization of the ordinary differential equations to a random (non-
integer) order. Fractional differential equations have attracted much attentions
due to their applications to model complex phenomena in engineering, physics,
chemistry, biology and other fields (see [27,37,38]).

On the other hand, COVID-19 pandemic, also known as the coronavirus pan-
demic is an ongoing global pandemic of coronavirus disease 2019 (COVID-19)
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The
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virus was first identified in December 2019 in Wuhan, China. The world Health
Organization declared a Public Health Emergency of International Concern re-
garding COVID-19 on 30 January 2020, and later declared a pandemic on 11
March 2020. As of 26 April, more than 147 million cases have been confirmed,
with 3.11 million death attributed to COVID-19, making it one of the deadliest
pandemic in history.

Since the outbreak of COVID-19, several researchers have given special atten-
tions and efforts to cure the deadly disease. Due to the significance of mathemat-
ical modeling, some coronavirus model have been introduced by Abdo et al. [1],
Chen et al. [5], Hussain et al. [17] and Khan and Atangana [19].

Motivated by the above results, we will find the solution of fractional order
model of novel coronavirus (COVID-2019) under Caputo–Fabrizio derivative using
the efficient iterative method (1.2).

2. PRELIMINARIES

The following definitions and lemmas will be useful in proving our main results.

Lemma 2.1. [33] Let {θs} and {λs} be nonnegative real sequences satisfying the
following inequalities:

θs+1 ≤ (1− σs)θs + λs,

where σs ∈ (0, 1) for all s ∈ N,
∞∑
s=0

σs =∞ and lim
s→∞

λs
σs

= 0, then lim
s→∞

θs = 0.

Lemma 2.2. [31] Let {θs} and {λs} be nonnegative real sequences satisfying the
following inequalities:

θs+1 ≤ (1− σs)θs + σsλs,

where σs ∈ (0, 1) for all s ∈ N,
∞∑
s=0

σs =∞ and λs ≥ 0 for all s ∈ N, then

0 ≤ lim sup
s→∞

θs ≤ lim sup
s→∞

λs.

Definition 2.1. [4] Let φ ∈ H(a, b), b > a, a ∈ (−∞, t) and ν ∈ [0, 1], then the
Caputo-Fabrizio derivative of order ν in the Caputo sense is given as

CFDνφ(t) =
M(ν)

1− ν

∫ t

a

φ′(n) exp

[
−ν(t− n)

1− ν

]
dn,(2.1)
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where M(ν) is a normalization function such that M(0) = M(1) = 1.

The corresponding left fractional integral of CFDν is defined in [2] as:

CFIνφ(t) =
(1− ν)

M(ν)
φ(s) +

ν

M(ν)

∫ t

a

φ(n)dn.(2.2)

Very recently, Hussain et al. [17] proposed a modified mathematical model of
corona virus (COVID-19) as follows:

CFDνSp =
∧
p

−µpSp −
ηpSp(Ip + ΨAp)

Np

− ηwSpM ,

CFDνEp =
ηpSp(Ip + ΨAp)

Np

+ ηwSpM − (1− ϑp)ωpEp − ϑp℘pEp − µpEp,

CFDνIp = (1− ϑp)ωpEp − (τp + µp)Ip,
CFDνAp = ϑp℘pEp − (τap + µp)Ap,

CFDνRp = τpIp + τapAp − µpRp,(2.3)
CFDνMp = βpIp + σpAp − ρM ,

where ν denotes the fractional order parameter and the model variables in (2.3)
are nonnegative and the initial conditions are defined as:

Sp(0) = Sp(0) ≥ 0, Ep(0) = Ep(0) ≥ 0, Ip(0) = Ip(0) ≥ 0

Ap(0) = Ap(0) ≥ 0, Rp(0) = Rp(0) ≥ 0, Mp(0) = Ip(0) ≥ 0.

The model (2.3) can be re-written in the following form:{
CFDνψ(t) = U (t, ψ(t)),

ψ(0) = ψ0, 0 < t < T <∞,
(2.4)

where the vector ψ(t) = (Sp,Ep, Ip,Ap,Rp,Mp) and U in (2.4) stand for the state
variables and a continuous vector function respectively defined as:

U =



U1

U2

U3

U4

U5

U6
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=



∧
p

−µpSp(t)− ηpSp(t)(Ip(t)+ΨAp(t)

Np(t)
− ηwSp(t)M (t)

ηpSp(t)(Ip(t)+ΨAp(t)

Np(t)
+ ηwSp(t)M (t)− (1− ϑp)ωpEp(t)− ϑp℘pEp(t)− µpEp(t)

(1− ϑp)ωpEp(t)− (τp + µp)Ip(t)
ϑp℘pEp(t)− (τap + µp)Ap(t)

τpIp(t) + τapAp(t)− µpRp(t)

βpIp(t) + σpAp(t)− ρM (t)


with the initial conditions ψ0(t) = (Sp(0),Ep(0), Ip(0),Ap(0),Rp(0),Mp(0)).

The problem (2.4) can be reformulated in the following integral equation [17]:

ψ(t) = ψ0 + F (ν)U (t, ψ(t)) + W (ν)

∫ t

a

U (`, ψ(`))d`,(2.5)

where F (ν) = 1−ν
M(ν)

and W (ν) = ν
M(ν)

.
Let 0 ≤ t ≤ T , we define a Banach space by using J = [0, T ] as G = (J,R6) under

the supremum norm given by

‖ψ‖ = sup
t∈J
{|ψ(t)| : ψ ∈ G }.

Theorem 2.1. [see [17]] We assume that the following conditions are satisfied:
(C1) There exists a constant LU > 0 such that

|U (t, ψ1(t))−U (t, ψ2(t))| ≤ LU |ψ1 − ψ2|, for each ψ ∈ G and t ∈ [0, T ]

(C2) (F (ν) + TF (ν))LU < 1.
Then (2.4) has a unique solution.

3. MAIN RESULT

In this section, we approximate the solution of problem (2.4) by utilizing the
iterative method (1.2).

Now we present our main result in this section as follows:

Theorem 3.1. Suppose that all conditions (C1)—(C2) in Theorem 2.1 are fulfilled.
Let δs, βs ∈ [0, 1] be sequences of the iteration process (1.2) such that

∑∞
s=0 δsβs =∞.

Then the problem (2.4) has a solution, say z and the iteration process (1.2) converges
to z.
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Proof. We consider the Banach space G = (J,R6) under the supremum norm given
by

‖ψ‖ = sup
t∈J
{|ψ(t)| : ψ ∈ G }.

Let {`s} be an iterative sequence generated by the iterative algorithm (1.2) for the
operator A : G → G defined by

Aψ(t) = ψ0 + F (ν)U (t, ψ(t)) + W (ν)

∫ t

a

U (`, ψ(`))d`.(3.1)

We will show that `s → z as s→∞.
From (1.2), (3.1) and the assumptions (C1)–(C2) we have

‖gs − z‖ = ‖(1− βs)`s + βsA`s − z‖

≤ (1− βn) max
t∈[0,T ]

|`s(t)− z(t)|+ βn max
t∈[0,T ]

|A`s(t)−Az(t)|

= (1− βs) max
t∈[0,T ]

|`s(t)− z(t)|

+βs max
t∈[0,T ]

∣∣ψ0 + F (ν)U (t, `s(t)) + W (ν)

∫ t

a

U (`, `s(`))d`

−(ψ0 + F (ν)U (t, z(t)) + W (ν)

∫ t

a

U (`, z(`))d`)
∣∣

= (1− βs) max
t∈[0,T ]

|`s(t)− z(t)|

+βs max
t∈[0,T ]

|F (ν)(U (`, `s(t))−U (t, z(t)))

+W (ν)

∫ t

a

(U (`, `s(`))−U (`, z(`)))d`|

≤ (1− βs) max
t∈[0,T ]

|`s(t)− z(t)|

+βs[F (ν) max
t∈[0,T ]

|U (t, `s(t))−U (t, z(t))|

+W (ν) max
t∈[0,T ]

∫ t

a

|(U (`, `s(`))−U (`, z(`)))d`|]

≤ (1− βs) max
t∈[0,T ]

|`s(t)− z(t)|

+βn[F (ν)LU max
t∈[0,T ]

|`s(t))− z(t)|

+W (ν)LU max
t∈[0,T ]

∫ t

a

|`s(`)− z(`)|d`]
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≤ (1− βs)‖`s − z‖(3.2)

+βs[F (ν) + TW (ν)]LU ‖`s − z‖

= {1− βs(1− [F (ν) + TW (ν)LU ])}‖`s − z‖.(3.3)

‖ws − z‖ = ‖(1− δs)A`s + δsAgn − z‖

≤ (1− δs) max
t∈[0,T ]

|A`s(t)−Az(t)|+ δs max
t∈[0,T ]

|Ags(t)−Az(t)|

= (1− δs) max
t∈[0,T ]

∣∣ψ0 + F (ν)U (t, `s(t)) + W (ν)

∫ t

a

U (`, `s(`))d`

−(ψ0 + F (ν)U (t, z(t)) + W (ν)

∫ t

a

U (`, z(`))d`)
∣∣

+δs max
t∈[0,T ]

∣∣ψ0 + F (ν)U (t, gs(t)) + W (ν)

∫ t

a

U (`, gs(`))d`

−(ψ0 + F (ν)U (t, z(t)) + W (ν)

∫ t

a

U (`, z(`))d`)
∣∣

= (1− δs) max
t∈[0,T ]

|F (ν)(U (t, `s(t))−U (t, z(t)))

+W (ν)

∫ t

a

(U (`, `s(`))−U (`, z(`)))d`|

+δs max
t∈[0,T ]

|F (ν)(U (t, gs(t))−U (t, z(t)))

+W (ν)

∫ t

a

(U (` gs(`))−U (`, z(`)))d`|

≤ (1− δs)[F (ν) max
t∈[0,T ]

|U (t, `s(t))−U (t, z(t))|

+W (ν) max
t∈[0,T ]

∫ t

a

|(U (`, `s(`))−U (`, z(`)))d`|]

+δs[F (ν) max
t∈[0,T ]

|U (t, gs(t))−U (t, z(t))|

+W (ν) max
t∈[0,T ]

∫ t

a

|(U (`, gs(`))−U (`, z(`)))d`|]

≤ (1− δs)[F (ν)LU max
t∈[0,T ]

|`s(t))− q(t)|

+W (ν)LU max
t∈[0,T ]

∫ t

a

|`s(`)− z(`)|d`]

+δs[F (ν)LU max
t∈[0,T ]

|gs(t))− z(t)|
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+W (ν)LU max
t∈[0,T ]

∫ t

a

|gs(`)− z(`)|d`]

≤ (1− δs)[F (ν) + TW (ν)LU ]‖`s − z‖

+δs[F (ν) + TW (ν)LU ]‖gs − z‖.(3.4)

‖ζs − z‖ = ‖Aws − z‖ = max
t∈[0,T ]

|Awn(t)−Az(t)|

= max
t∈[0,T ]

∣∣ψ0 + F (ν)U (t, ws(t)) + W (ν)

∫ t

a

U (`, ws(`))d`

−(ψ0 + F (ν)U (t, z(t)) + W (ν)

∫ t

a

U (`, z(`))d`)
∣∣

= max
t∈[0,T ]

|F (ν)(U (t, ws(t))−U (t, z(t)))

+W (ν)

∫ t

a

(U (`, ws(`))−U (`, z(`)))d`|

≤ F (ν) max
t∈[0,T ]

|U (t, ws(t))−U (t, z(t))|

+W (ν) max
t∈[0,T ]

∫ t

a

|(U (`, ws(`))−U (`, z(`)))d`|

≤ F (ν)LU max
t∈[0,T ]

|ws(t))− z(t)|

+W (ν)LU max
t∈[0,T ]

∫ t

a

|ws(`)− z(`)|d`

≤ [F (ν) + TW (ν)LU ]‖ws − z‖.(3.5)

‖`s+1 − z‖ = ‖Aζs − z‖

= max
t∈[0,T ]

|Aζs(t)−Az(t)|

= max
t∈[0,T ]

∣∣ψ0 + F (ν)U (t, yn(t)) + W (ν)

∫ t

a

U (`, ζs(`))d`

−(ψ0 + F (ν)U (t, z(t)) + W (ν)

∫ t

a

U (`, z(`))d`)
∣∣

= max
t∈[0,T ]

|F (ν)(U (t, ζs(t))−U (t, z(t)))

+W (ν)

∫ t

a

(U (`, ζs(`))−U (`, z(`)))d`|
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≤ F (ν) max
t∈[0,T ]

|U (t, ζs(t))−U (t, z(t))|(3.6)

+W (ν) max
t∈[0,T ]

∫ t

a

|(U (x, ζs(`))−U (`, z(`)))d`|

≤ F (ν)LU max
t∈[0,T ]

|ζs(t))− z(t)|

+W (ν)LU max
t∈[0,T ]

∫ t

a

|ζs(`)− z(`)|d`

≤ [F (ν) + TW (ν)LU ]‖ζs − z‖.(3.7)

Using (3.4), (3.5), (3.6) and (3.7), we obtain

‖`s+1 − z‖ ≤ [F (ν) + TW (ν)LU ]3

×{1− δsβs(1− [F (ν) + TW (ν)LU ])}‖`s − z‖.(3.8)

From assumption (C2), (3.8) reduces into

‖`s+1 − q‖ ≤ {1− δsβs(1− [F (ν) + TW (ν)LU ])}‖`s − z‖.(3.9)

Inductively, from (3.9), we have

‖`s+1 − z‖ ≤ ‖`0 − z‖
s∏
r

{1− δrβr(1− [F (ν) + TW (ν)LU ])}.(3.10)

Since δr, βr ∈ [0, 1] for all r ∈ N, then from assumption (C2) we get

1− δrβr(1− [F (ν) + TW (ν)LU ]) < 1.

From classical analysis, we know that 1 − ` ≤ e−` for all ` ∈ [0, 1]. Thus, (3.10)
becomes

‖`s+1 − z‖ ≤ ‖`0 − z‖e−{1−δrβr(1−[F (ν)+TW (ν)LU ])}
∑s
r=0 δrβr

which yields lim
s→∞
‖`s − z‖ = 0. �
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