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GENERAL DECAY OF THE SOLUTION ENERGY OF AN AXIALLY MOVING
VISCOELASTIC BEAM WITH LOGARITHMIC SOURCE TERMS

Tikialine Belgacem!, Abdelkarim Kelleche, and Tedjani Hadj Ammar

ABSTRACT. In this paper, we study the stabilization of an axially moving viscoelas-
tic beam with Logarithmic Source Terms. We obtain an asymptotic stability result
of global solution, for certain class of relaxation functions. The proofs is obtained
by using the multiplier technique. We extend a recent result in Kelleche and Tatar
and Khemmoudj [41]].

1. INTRODUCTION

In recent decades, axially moving systems have been extensively researched.
Many time-dependent physical events are modelled by such equations or systems
with limitations.(se for example [3,20]). A string, a beam, or a plate model can
be used to model axially moving systems. These structures are harmed due to
the presence of transverse vibration as a result of certain factors such as: noise,
non-uniform material properties, erratic speed, or the environment disturbance.

The aim of this work, is studied the stability of an axially moving viscoelastic
structure modeled as an Euler-Bernoulli beam.The problem we are dealing with
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can be formulated as follow
[ p (Wi + 20Wet + V*Wee) + ETWanre
—FEI /tg(t — §)Waze(8)ds = kwin|w|, x € (0,1), t >0,
w(0,t) = wZ(O,t) = wy(l,t) =0, t>0,
pv*w, (1, 1) + Elwg.(1,t) — ET /tg(t — 8)Waae(l, 8)ds
0

= f(w(l,t)), =0,
[ w(z,0) = wo(x), wi(x,0) =wi(x), x € (0,1)

(1.1)

where w = w(z,t) is the transversal displacement of the beam, v is the axial
speed (assumed constant here), ET is the flexural rigidity of the beam and p is
the mass per unit length of the beam and « ia a small positive real number. The
functions wy(z), wy(x) are given and the nonnegative function g represents the
kernel of the memory term or the relaxation function. For more details about the
physical meaning, see [6,|7,/10] and the nonlinear term f will be specified later.
The first term describes the net inertia force where wy, is the local acceleration in
the transversal direction of the beam, w,; is the Coriolis’ acceleration, and w,,, is
the centripetal acceleration. The second term represents the bending stiffness (see
[22]]). The integral term represents the memory term or the viscoelastic damping
term. It is derived from the constitutive relationship between the stress and the
history of the strain according to Boltzmann principle. For more details, we refer
the reader to [3,14}7]].

Many disciplines of physics use this type of problem with the logarithmic source
term. such as inflationary cosmology (see [|30]) and optics (see [32]), quantum
mechanics, and nuclear physics (see [31,33]). Some Many results in the literature
are improved by these writers [34-38]. With all this specific underlying meaning
in physics, the global-intime well-posedness of solution to the problem of evolution
equation with such logarithmic-type nonlinearity captures lots of attention. We
begin our review with Birula and Mycielski’s seminal work [39,40]], studied the
following problem:

Wy — Wep +w = kwln |w|  (z,t) € [a,b] x (0,7T),
(1.2) w(a,t) =w(bt) =0, (0,7),
w(x,0) = wo(x), w(x,0) =wi(x), x € [a,b
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see [1,13,21] for further information on how to compute the time derivative cor-
rectly. The evaluation of the energy derivative using this rule usually gives rise
to new boundary terms whose manipulation is often difficult. If we denote the
partial derivatives by 2 = (.), and 2 = (.), then, the total derivative operator
with respect to time is given by

LA

dt ot Oz

Many authors have addressed the subject of a beam’s stability and stabilization

(1.3)

in the absence of axial movement. Few papers directly dealing with boundary
stabilization of Euler-Bernoulli type beams are cited here,(See, for example, [[4,7,
9,(10,/15,/19]]). There are many other references which we cannot insert here.
This paper is divided into two parts : In the first part, is reserved to some
preliminaries, assumptions on the relaxation function and some useful notation.
We collect the necessary package used in the proof of the main result and give
the well-posedness of the problem. In the second part is concerned with the main
result where an exponential decay result is proved by using the multiplier method.

2. PRELIMINARIES

We prepare the necessary materials for the proof of our result in this section.
First, we’ll go over the following helpful notation.:
For every measurable set A C R, , we define for all t > 0,

1
@1 o) = [ ts)ds
A
and
Ay = ANJ0,1].
The flatness set and the the flatness rate of g are defined by
(2.2) Fy={s€R;:g(s)>0andg¢'(s) =0}
and
Rg = g(‘Fg>7

respectively. We also define

F,={scR,: g(t—s)>0andg(t—s)=0}.
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We now formulate our assumptions on the relaxation function ¢(¢) and the non-
linear term

[e.e]

(A1): g(t)ZOforalltZOand0<k::/ g(s)ds < 1.

0
(A2): ¢'(t) <0 for almost all £ > 0.
(A3): f satisfies the following hypotheses

f0) =0, [f(w) = f)l <m(l+ [ul” + o) Ju— o],
forall u,v € R, a € Ry,
0<F(u) <uf(u), VueR
here F'(z) = Z ds.
where F(z) /Of(s) s

t*
Let t, > 0 be a number such that / g(s)ds = g. > 0. For simplicity, we consider

0
kernels continuous everywhere and continuously differentiable a.e.

We now state a lemma (containing Poincaré inequality) which will be useful
later.

Lemma 2.1. (see [12]) Let ®(x,t) € R be a function defined for x € [0,{] andt € R,
that satisfies the boundary condition

(2.3) ®(0,t)=0, t>0,
then the following inequalities hold
O (z,t) < U], we[01], >0

and
1D < 2@, |]>, t>o0.

If in addition to the function satisfies the boundary condition
®,(0,4)=0, ¢>0,
then the following inequalities also hold
O2(x,t) <1||®p||®, z€0,0], t>0

and
|, |I° < 2| ®,)1%, t>0.
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We introduce the modified energy associated to (1.1) by
2 t
p pu El
&0 = Bl = % el + 55 (1= [ os)ds ) e
2 2 2 0

!
24 + (g 0 wyy) (t)dx + F(w(l)) — g/o lw(s)|* In |w(s)|ds + §||w||2,

2 0
t > 0, where ||.|| is the L?*—norm and
t
(gow) (t) = / gt — 8)Jw(t) — w(s)Pds, t>0.
0

The following lemma will be used repeatedly in the sequel

Lemma 2.2. We have

2

b
ab§(5a2+4—5, a,beR, §>0.

Lemma 2.3. (See [42]) €, € (0, 1)then, there exists d., > 0 such that

(2.5) s|lns| < s* +d,s' 7, Vs> 0.

Lemma 2.4. (See [43,44])(Logarithmic Sobolev inequality) Let w be any function
in H}(0,1) and a > 0 be any number. Then,

t 2
1 a
(2.6) / wIn fw(s)lde < S [lwlPinlw]® + o= llw]® = (1 + tna) w]]*
0
Proposition 2.1. If v? < 2 [2 i 2 }

o2 ,and then EI(1 — k) +
4 a?l?

5 [E—W—Mqﬁ‘*(l%—lna)} > 0, we have

E(t) >0, t>0.

Proof. As w(0,t) = w,(0,t) = 0, it follows from Lemma [2.1] that
lwa|* < 2 wee|*, £ 20,

o] <& f@.)*, t>0,
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and we apply Lemma [2.4] which implies that

K [14 a*>  ln|w|)?

>
£t = 2 27 2

5 +1*(1 +1Ina)

t
+ EI— o — EI/O g(s)ds} Tt

EI [
2.7) + = | (gown) (dw+ L uwi]® + Fw(),
0
B0+ |5 - Ly )|
t > 0. Since v? < e , and
k [1* a®2 *ln|w|?
EIl—k)+ = |=— - (1+1 >0
( )+2{2 5 + (+na)} :
the assertion of Proposition is satisfied. O

Lemma 2.5. (Young’s inequality). Let f € LP(R) and g € LY(R) with 1 < p,q < o0
and 1 =+ ¢. Then (f x g) € L"(R) and

1 * gllr < [ fll ol gl o

Lemma 2.6. (See [28]]) We have for g € C(0,00) and w € C ((0,00); L? (0,1))

/ [ ot s dsdx_;(/otgw)ds)uwwf

b5 o9 [wes - [(Gowar, 120

The well posedness of the problem (1.1)) can be proved using Faedo Galerkin
method (see for instance [18] ). For this, we need to define the following spaces

V={ue H*(0,1), u(0)=u,(0)=0}

and
W ={ueVnH0,0), uz(l) =0}.

Theorem 2.1. Let (wo,w;) € W x L*(0,1) and ¢(t) be a nonnegative summable

4 2
EI(1—k)+ F-#-MHRMM)

kernel, under the hypotheses v* < , the problem

has a unique (weak) solution such that

w e L?:c (07 05 v) ) wy € L?ooc (07 005 V), Wy € L?(?c (07 003 LQ(O’Z)) :
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3. EXPONENTIAL STABILITY

In this section we state and prove our decay result.

Lemma 3.1. The energy £(t) satisfies, along solutions of

Loy < ZL [ (o) (e - Zuz) - 2ouz)

= 2 g W
t
av - (1 [as) et - Hr e wn) o) 120
0

Proof. Notice that if ¢’ < 0, the energy £(t) is nonincreasing and bounded above
uniformly by £(0). The total derivative of £(¢) can be derived as follows (see [22])

C;is /Sa:td:r;Jer( (1)):/0 %g(a:,t)d:v+%F(w(l))

(3.2) :/ 2 E(w,t)da + v E(x, t)‘ + CZF( 1),
where
) = Bupte) - Bt + 2 (1= [ gtopas) uti o
4 % (90 wee) (2,1) — Sw?Infu] + 50?, ze01], +>0

Using the equation in (1.1)), the relation (3.2)) becomes

l t
0 0

l t l EI l
—pv2/ Wywydr + ET (1 — / g(s)ds) / Wpgt Wap dT — 79( )/ w? dx
0 0

2L [ o e - 5 (5 /|w P tnl(s)]) ds

2 (E ) + ) +o | 120
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Integrating by parts and taking into account the boundary conditions in ((1.1) we
get
d
dt

t l t
— EI/ g(t — $)Wyaa (L, s)ds} + EI/ wmt/ g(t — $)wye(s)dsdx
0 0 0

—&(t) = —powi(l) — wi(l) [pUwa(l) + Elwgys (1)

—zw(zlmm@)[wMWMMFfﬁmw/ﬂudx+maﬁ@m»

EI (10 )2
= 5 [ Faou) dx——( /|w )2 In [ >|>

0

+ o (Glel?) —|—v5(3:,t)‘0, t>0,

Next, in view of the boundary conditions in (1.1) and the definition of £(z,t), we
have

- gwf(n = ’%ng(z) - % (1 - /0 tg(s)ds)> w,(0)
ET

(3.3) - 5 (gowg)(0), t>0.

Clearly

% (gow) (x,t) = (¢ owpy) (2,t) — 2Wep (2, 1) /0 g(t — $)wye(z, s)ds

t
(3.4) + 2 (/ g(s)ds) Wt (T, ) Wey(x,t), ¢ > 0.
0

Therefore, taking into account (3.3)), (3.4) and the boundary conditions in (1.1]),
we obtain (3.1)). dJ

To formulate our results, we define the functionals

l o
Uy (t) :p/ wyydx + 7102([), t>0,
0

)= [ v [ ot =)o) - wiisaa, >0
%mle[awww)wm@Ww,tza
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(1) :/Ot (/too glr — s)dT) w2, (I s)ds, > 0.

L(t) = ME(t) + AV (t) + Ua(t) + pWs(t) +yUu(t), t>0

where A, 1 and ~ are positive constants. The first result is to establish an equiva-

and

lence between the modified energy £(¢) and the modified energy functional L(¢).
Br-R+5 | - - L )|

Proposition 3.1. If v? < - , then we have

pl

E(t) < L(t) < C(E(t) + s(t) + yPyu(t)), t>0
for some C > 0 and
(3.5) L'(t)+ a1 &(t) <0, t>0
for some a; > 0.
Proof. First, Young inequality and Poincaré inequality leads to
() < Slwl?®+ 5 el® + S

lp
2

IA

Hth + o (o) w1

Similarly , we get
2

L/ ot
Uy(t) < g lJwi|)* + B/ (/ g(t — s)(w(t) — w(s))ds) dx
o \Jo
pkl*
2 Jo
Then, Lemma [2.2] and Lemma [2.1] allow us to write

< —H we|” + =~ (gowm) (t)dx

Mgkl?
L) < GO0 Nl +§ ot ) b2+ 2
MEI [!
+ — /(gowm)(zﬁ)dx
kl4 l
+ p—+MEI/ g O Wyy) dx——/|w |21n|w (s)|ds
0

+ M\Ijg( )"—’}/\114 t), t>0.
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which implies that there exists a positive constant C' such that £(t) < C(L(t) +
U5(t) + Wy(t)), t > 0. On the other side

L(t) ~ £()
= (M —=1)E@) +AW1(t) + Va(t) + pP3(t) +yVa(t)
4 l
> D00 o+ O - D@ + [0 - 15 - 2] [ gow) i

o Moo (Ba-- o0 MY e o)

_ —H(MQ_ D /Dl lw(s)*In |w(s)|ds + pWs(t) +yWy(t), t>0.

Choosing M large enough we find that L(¢) — £(¢t) > 0. Thus, the first assertion is
proved.

Now, we proceed to show the second assertion.
The total derivative of W, (¢) can be derived as follows

1y 4G (23, T, 0)
Sl = /o% 1(x,t)dx—/0 (E 1(:6,15)) dr + v 1(1;,15)]0

l
, t20,
0

l —~
(3.6) — pllw? +p / wwndz — poww(l) + v (2, 1)
0
where
Uy (z,t) = pw(z, t)w(z,t), t>0.

In virtue of the boundary conditions in ([1.1)) we see that

(3.7) \Ifl(m,t)‘; = pw,(Dw(l), t>0.

The Eq. in (1.1) and an integration by parts lead to

d l
0t < p lwe]|* + QPU/ wewydz + pv? |[we||* = BT [|wy||* — w(l) f (w(1))
0

! ¢ !

(3.8) + EI/ wm,/ g(t — s)wyy(s)dsdr + g / w?(s)In |w(s)|ds, t>0.
0 0 0

We now estimate the second term in the right hand side of (3.8)) as follows

!
(3.9) 2pv/ wewidr < p Hth2 + pv? waHQ, t>0.
0
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The insertion of (3.9) into ([3.8) and the use of Lemma [2.6] we obtain

d k
G0 < 2l + 200 ol - B (1= 5)
EI [ EI [
b EL L = ) s - L [ (g0 we) (e
0 0
l
(3.10) _ w(l)f(w(l))+g/ w?(s) In Juw(s).
0

For Wy (), we have

L) = /liiﬂ 1)d —/l 9 Ba(a,1) ) de + vy t)‘
dt2 —Odt2337 «’L’—Oat2x> T — v¥ol T,

l

0

= = [ [ ot s)00t0) — wtspass = p ([ atsias)

I t
@1y - p/ wt/ gt — 8)(w(t) — w(s))dsdz + U@E(x,t)(;, £>0,
0 0
where
t
(3.12) \/I/\;(:U,t) = —pwt(x,t)/ g(t — s)(w(z,t) —w(x,s))ds, t>0.
0

On the other hand, the boundary conditions in (1.1) yield

l

(3.13) Wyl :—pwt(l)/otg(t—s)(w(l,t)—w(l,s))ds, £>0.

0

69

Using integration by parts and taking into account (3.13)), the total derivative

in (3.11) is equal to
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_/Otg(S)ds) /Olwm/otg(t—s)(wm(t)_wm(s))ds

/0 9(t — 8)(wra(t) — wea(s))ds| da

(

+ EI /0 l
[ [0t )00 0) = o)
=a " [t = 51w = wao)s

o [ [ = w0 —wnasae o ([ a1t )

+ 10) [ gl = ). wit.)ds
+  pow(l) /0 g(t —s)(w(l,t) —w(l,s))ds
(3.14) - m/lwln |w] /tg(t — 8)(w(t) —w(s))dsdz, t>0.

We now estimate the terms in the right hand side of (3.14). For all measurable
sets A and F such that A = R, \F, we have

/ol o /Otg(t — 8)(Waa(t) — Wy (s))dsdx

(3.15) = /Ol Wy </At Gt — 8) (W (t) — waa(s))ds
i /]-"t g(t = s)(wae(t) — w:c:c(s>>d3) dx

</ s [ ot = ) 0at) = st

(3.16) + (/ g(t —s)d )\me —/wm/ (t — S)wye(s)dsdz, t>0.
Fi

Using Lemma [2.2]it is easy to see for ¢ > 0

/ol o /At 9(t = 8)(Waa(t) — Wra(s))dsd
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k l
< a4 [ gt = 8) hona(t) = o) dsde, > 0.
mJo Ja,

and

l 1 k t
—/ wm/ g(t — 8)wy(s)dsdr < = meH2 + —/ g(t —s) me(s)H2 ds.
0 Fi 2 2 Jo

Therefore, from (3.16)) we can deduce that

/wm/ (t = 8)(Wea(t) — Wee(s))dsda

(3.17) < ((2+n1)+k‘9( )) [wy |
2
+ 47710//,4,5 gt — 5) |wee(t) — wee(s)|” dsdz
ko[ )
(3.18) + §/g(t—s) |wee(s)]|"ds, t >0,
0

where §(F) is defined in (2.I)). Similarly

/Oz /Otg(t — 8) (Wee(t) — Wau(s))ds

c (1o Yk [ ot — o) s (6) — o (5)]? dsdr
( 772) //At

(319) + (1+m)k / / (t = ) [wan(t) — wya(s)[* dsdz, s> 0.
Fi

2
dx

For the third term we can write

[ [ ot $)000) = o)y
_ (/Otg(s)ds) ||wz||2+/lwx/0tg(t—s)wx(s)dsdx

1 12k
(3.20) < (——g*) a2 + 2 / gt — ) wan(s)[Pds, £ te 75> 0.
0

2 2

71
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As for the first term, we estimate the fourth term as follows

(3.21)

(3.22)

(3.23)

or

(3.24) < msp|lwi]® +

and

O R e U
= —2pv /Ol wy </At g(t — s)(wy(t) — wy(s))ds

+l[;£ﬂt——s)hyx@)-_u%(snds) i

P / w /A gt = S)(s{t) = ()
opu ( /f gt~ s)ds) / wwsda
+2pv /Ol w; /ﬂg(t — s)wy(s)dsdx

iy / " /A gt = S)(u(t) = (o)

pv21%k

l
/ / ot — 8) [wan(t) — wan(s)* dsdz, ¢ > 0
0 Ay

!
(3.25) — 2pv (/ gt — s)ds) / wiw,dr < pkg(F) HthQ + pv?kg(F) wa||2
Fi 0

I ¢
(3.26) 2,01)/ wt/ g(t — s)w,(s)dsdx §p||wt||2+,012212k/ gt —5) [[wee(s)||* ds
Fi 0

for all t+ > 0. Therefore ([3.23) becomes

(3.27)

(3.28)

—2,01}/ wt/ (t — s)(we(t) — wy(s))dsdz

< p (L +kg(F)) wel® + po*kg(F) [|w, |

t
—mﬁﬂ@/g@—swwm@mﬂm
0

2l2/€ l
13 0o Ja,
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The fifth term may be evaluated by

—p/ol wy /t gt —s)(w(t) —w(s))dsdz

l4
pg4(7(7)) / (¢ owyy) (H)dx, mn4 >0, ¢>0.
4 0

Now, we pass to the nonlinear term, we have

f@ﬂ»ég@—ﬁw&ﬂ—wmﬁﬂs

(3.29) < mup flwel” -

= 160 ([ ate =) (it.0) = w(t )
[ att= )it = u.s)is)
= ) | glt = s)(ult.t) - wit.)ds
~ Fw@) ot = sy, i

(3.30) ([ ote=s)as) wt) o)

or

f@ﬂ»/g@—@((> w(l, 5))ds

< s |f(w(@)? +—//A (t — ) [Wep (1) — Wau(s)] dsdz, t>0
and

-mexémwwm@@m

l 2 l3k3 t
< ) w5 [at=s) fenlds, m>0. tzo0
0

From the hypothesis (A4) and with the help of (2.7) and Lemma [2.1| we entail

[f (@) < 2m*(Jw @) + (D))

(1
2 e}
< 200 [l + (e BO)) sl = 8w
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Therefore, the relation (3.30) becomes

F(w(D) / g(t — $)(w(l, 1) — w(l, 5))ds

lj [ att=s) o as

< (s + )meH +

3
(3.31) +kg(F)w(l) f( ‘llﬂlz// (t — 8) |Waa(t) — Wen(s)|* dsdz.
At

For the Seventh term, we can write
t
pown(l) / gt — $)(w(l, 1) — w(l, $))ds
0

!

(3.32) < flwf(l) + 7)713/<:/ (gowy,)dx, n; >0, t>0.
Uk 0

To estimate the last term, we apply Lemma [2.3|with ¢ = (1/2) and use repeatedly

Young’s, Cauchy-Schwartz’s, and Lemma and the embedding inequalities, as

follows:
i [Lwmud [ ot 9)0) ~ w(s)ass
< / (w7 + d /1) [ 9tt = 9)w(t) — wls))dsis
< H(ng/(wQ—l—deo\/W_l)zdx
b 1 [ ate =)0 — wis)yispa
(3.33) < (l8+l4)|!wm||2+%84 0 (g 0 way) (t)da.

The insertion of (3.18)-(3.20), (3.28), (3.29), (3.31),(3.33), (3.32) into (3.14)
we obtain

d
(3.34) E\IIQ( )

IN

0t [t 1 .
IO [ 0w o+ p (g4 3+ o+ 19()) il
0

4774
b (=gt 5400 ) lunl (G5 ) (= g BT+ (5 + )
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. kkl* !
+ g+ 1Y+ BT (1 — g.) kg(F)} wee|)* + (4—778 + 7 l°k) / (9 0 wye) (t)dx
0

1 t
5 (1 = go) kET + 5p0° Pk + I°k) / g(t — ) | wae(s)] ds

ET

+ (1+4mn) E1kG(F // (t — ) |wea(t) — wm(s)\2dsd:ﬁ+k{(1—g*)
Fi 4m

2[2
+ (1—|— )E[—i— }// (t — ) |we(t) — wm(s)|2dsda§
2 73 4775 A

+ k(Fyw) fw(l) + Z=wd(1), >t >0,

Any
where 3 = 2m?2[3 [1 + (kE§€§2>pU2) ] for some positive constants 7, i = 1,...,7.
On the other hand, a differentiation of W;(t) gives
d t
(3.35) E\Ijg( ) =k || wae | — / gt — 5) || wae (5)||* ds, t > 0.
0
The total derivative of W3(¢) is given by
d Lo~ ~ !
(3.36) E\Pg( )= /0 (a%)(x,t)) dx + v¥3(z,t) .’ t>0,
where

t 00
s(z,t) = / (/ g(T — s)d7'> w? (x,8)ds, t > 0.
0o \Jt
Clearly

d

t l t
aq’g( ) <k JJwes||” — / g(t — s)/ w? (s)dxds + v/ g(t — s)w? (1, s)ds, t > 0.
0 0 0

On the other hand, a differentiation of v,(¢) gives

d t
(3.37) C(t) = ki, (1, 5) ~ / ot — s)u, (1, s)ds, t > 0.
0

From the relations (3.1)), (3.10), (3.35) and (3.37) we have, for t > t,
MEI  g(Ou*\ [t
(3.38) SL) < ( L /0 (¢ 0 ws) (t)dz
+p 2\ + (=g + 1 + (14 n3) + kG(F))] [Jwe])”
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U2|:2)\+( g+ 5 +k:g )} e[

# 41 +m) (0= ) B+ (ay + 5)-4 kol + 1)+ BT (1 - ) i ()

k
A8 (1= 5) o )k f
ki EI : !
+ <L — )\— + 7l k) / (g 0 wyy) (t)dr + (pv — 'y)/ g(t — s)w?, (1, s)ds
4nsg 0 0
EI k !
+ {/\— + 5 [(1—g.) EI+5p0°0 + %] — ,u} / g(t — ) ||wae(s)]| ds
0
+ (1 +mn) EIkg(F // (t — 8) |Wae(t) — Wyu(s)|? dsda
Fi
ET
+k | (1 —g. + |1+ ET
[( 9) Ty 4m ( )

1 272
+<1+—) pr+ ! } / / (t — ) [Wes(t) — Wae(s)|* dsdx
72 3 4775 A,

A RIE D) f (1)) + 2 (— - 1) 2(1).

2 \2n;
We select M large enough so that
MEL _g(0)l' _ MEI
2 An, — 4

As in [21], we introduce for n € N the sets

(3.39)

A, ={seRy :nh'(s) +g(s) <0}, F, =R\ A,
and also
Ap={seR,:0<s<t, nh({t—s)+g(t—s)<0}, neN.
Observe that

UAn = RJr\{‘Fg U '/\[9}7

where N, is the set where ¢’ is not defined and F, is defined. Since F,,.; C F,
for all n and N F, = F,UN,, then lim, .., §(F,) = §(F,). Taking A, := A, ,
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F: := F,, it follows that

%L(t) <IN+ (—gu 1+ (1 +15) + k()] e

1
+pv’ [% + (—g* o+ kﬁ(F))] [

— {[AEI (1 — g) — (% +m) (1 —g.) EI — (&75 + @) — kg (18 +1%)

2 2
— EI(1—g)kg(F)} — (1 + 1)k} [wael

4 EJT !
+ (Hkl — )\— + 777l3k‘) / (g 0 wyy) (t)dx
4ng 0

Hw =) [ gl — sy (1, s)ds

ET k

t
(3.40)+ {/\— +3 (1 — g.) BT+ 5p0% + 18] — u} / g(t — 5) [|wae(s)||* ds
0

+ (1 +m2) ETkg(F / / (t — 8) |Wae(t) — Wee(5)|” dsdz
Fi
El 1 22 ;3 MFEI
+k[(1 ) et <1+ )EI+< >EI+ SR }
4m 72 12 N3 4y 4n

/ /,4 (t — 5) s (1) — wra(5)[ dsd + {~A + k§(F)} w(l) f(w(D))

+7 (2—?77 - 1) 2(1).

1 1
In (3.41), for g, > kg(]—")+§ sufficiently large we take A = % (g* — kg(F) — 3 5).
We infer that

—— — == 4+ (1 +m) EIk§(F,) + 7’k <0

II. In order to ensure the negativity of the coefficient of ||w,,|”, we will need
(we neglect 75 and 7;as will be chosen small enough)

1 k
3 (1—g.) El+§+myg(58+z4) +EI(1—g)kg(F)—AEI <1 - 5) +(p+7)k <0.
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Adding and substraction the term 2 (g, — k§(F) — 2 — ¢) (1 — &) EI, the previ-

ous term becomes

(-3 (-9
+ [g <g*—k§(F)—%—€) (1—§)El

5= 9)BL= 5~ (1= ) ki)~ k| >0

This term is divided into parts.
For the second part, we need

1 ) 1 k
5 (1—g.) EI—I—§+E1 (1 — g4) kg(Fn)+vk < 2 (g* — kg(F) — 5 5) (1 - —) EI,

where
5 p—

2(1—g.) EI(% + 1) + 28 + 47k
- EI,
3

(9s—5—3)(2—k)
and this relation holds when g(F,) < 1/3. For the first part, we need

kg(Fn)

(-

2

and taking into account that the coefficient of term fot g(t — 5) || wae (s)]|* ds must
be negative. We choose ;. such that

1 1 El &
5(9*—k§](}")—§—8)—+§(1—g*)E[+5pv2lz+l3<,u

)
(3.41) ( 5

)
-8) SR )

2

(9- =5 =3)2—k) (1 —g)BI(ZF +1) =29k — B)
2%
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After simplification by replacing § and neglecting ¢, the choice of x4 in the relation
(3.41)) is possible if

(g —E-1@2—k) — (1 —g)EI(ZZ+1)— 27k — B)

(3.42) 1< % )

that is when
2ky+28+ (5 +3)2—k) + EI(2E +1)
2—-k)+ (@5 +1)EI '
Now, is the choice possible?
We know that g, < k and to make possible, we must have
2ky +28+ (5 +3)2—k)+ EI(2E +1)
22—k + (25 +1)EI

(3.43) Gs >

(3.44)

< ge < k.

The previous relation holds provided that £ (0) is so small that

§ < oRE=D 0k

Finally, we choose v > pv. These choices together with (3.41) imply that there
exists a positive constant «; such that

L'(t)+ a1&(t) <0, t>t,.
This completes the proof of the second assertion. O
Theorem 3.1. Under assumptions (A1)-(A3) and if

EI(1—k)+ 45|45 — 2 — Ellull 411 4 Ing)
U2< )

pl?
is sufficiently small, then there exist two positive constants A and o such that

E(t) < Ae™® t>0.

Proof. In view of the equivalence result (3.5), we see that
d aq _
3.45 —L(t) < ——L(t t>t.
(3.45) SL0 < - DLW, t2
An integration of (3.45]) over (¢, ¢) conducts to
Lt) < L(H)e ¢t ¢ >4

Therefore the main result follows again by virtue of (3.5)). O
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