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VARIATIONAL ANALYSIS OF AN ELASTIC-THERMO-VISCOPLASTIC
CONTACT PROBLEM WITH NORMAL DAMPED RESPONSE

Mohammed said Ferhat1, Adel Aissaoui, and Khezzani Rimi

ABSTRACT. We consider a quasistatic frictional contact problem between an elastic-
viscoplastic body and an obstacle. The contact is modelled with normal damped
response and a local friction law. The material is elastic-viscoplastic with two in-
ternal variables which may describe a temperature parameter and the damage of
the contacting surface. We provide a variational formulation of the problem and
prove the existence of a unique weak solution to the model. The proof is based on
arguments of evolution equations with monotone operators, a classical existence
and uniqueness result on parabolic inequalities and fixed point.

1. INTRODUCTION

In this work, we deal with a model for the frictional contact between an elastic
viscoplastic body and a reactive obstacle, the so-called foundation. Phenomena of
frictional contact between deformable bodies abound in the industry and everyday
life. A major problem related to the modelling of the contact phenomena which,
currently, is still under investigation, is the choice of the contact boundary condi-
tions. One of the most popular boundary conditions, used both in the engineering
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and the mathematical literature is the normal compliance condition. It was used
in a large number of papers, see [8] and the references therein. Note that these
contact conditions, used in most of the related works on the subject, are formu-
lated in terms of the displacement field. However, when the contact surfaces are
lubricated, normal compliance conditions expressed in terms of the normal veloc-
ity seem to be more appropriate. Such kind of conditions, called normal damped
response conditions, have been used in various papers (see, e.g., [4,9,13,20] and
the references therein).

In the current paper, we assume that the foundation is deformable and that
there exists a thin lubricant layer located on the contact boundary between the
two bodies. Then, a normal damped response contact condition is considered and
the associated frictional law is also included.

The constitutive laws which utilize internal variables to characterize the chang-
ing state of a material during a deformation process have been proposed by several
investigators in recent years. The temperature is one of these internal state vari-
ables, considered by many authors, we can see [3,9,15].

The damage is another internal state variable, it is an extremely important topic
in design engineering, since it affects directly the useful life of the designed struc-
ture or component. There exists a very large engineering literature on it. General
models of mechanical damage, derived from thermodynamical considerations and
the virtual power principle, were introduced in [14]. Contact problems, involving
viscoelastic and viscoplastic materials and including the effect due to the damage,
were studied in [2,8,15].

Various works in the study of elastic-viscoplastic materials can be found in [2,13,
19] and the references therein. Both quasistatic and dynamic problems involving
elastic-viscoplastic materials with thermal effect have studied in recent papers. For
such kinds of materials, the wear of the contacting surface was included in [10],
the contact was modeled with normal compliance in [6], the adhesion field was
considered in [1], the mathematical problem modeled with Tresca’s friction law
was studied in [21]. Then, in this paper we continue in this line of research,
where we extend a part of these results to more contact conditions for elastic-
thermo-viscoplastic materials.
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The aim of this paper is to study a quasistatic frictional contact problem for
general elastic-thermo-viscoplastic materials. For this, we consider a rate-type
constitutive equation with two internal variables of the form

σ(t) = A
(
ε(u̇(t))

)
+ B

(
ε(u(t))

)
+

∫ t

0

G
(
σ(s)−A

(
ε(u̇(s))

)
, ε(u(s)), θ(s), β(s)

)
ds,

in which u, σ represent, respectively, the displacement field and the stress field,
θ represents the temperature, β is the damage field, A and B are nonlinear op-
erators describing the purely viscous and the elastic properties of the material,
respectively, and G is a nonlinear constitutive function which describes the vis-
coplastic behavior of the material.

In this paper the differential inclusion for the evolution of the damage field is

β̇ − k1∆β + ∂ϕK(β) 3 φ
(
σ, ε(u), θ, β

)
,

where K denotes the set of admissible damage functions defined by

K = {ξ ∈ V : 0 ≤ ξ(x) ≤ 1 a.e. x ∈ Ω} ,

k1 represents the damage diffusion constant, assumed positive, ϕK is the indicator
function of the set K and ∂ϕK represents its subdifferential. φ is a given constitutive
function which describes the sources of the damage in the system which results
from tension or compression.

The evolution of the temperature field is governed by the heat equation, ob-
tained from the conservation of energy and defined by a differential equation for
the temperature of the form θ̇−k0∆θ = ψ

(
σ, ε(u̇), θ, β

)
+q, where ψ is a nonlinear

constitutive function which represents the heat generated by the work of internal
forces and q is a given volume heat source.

The rest of the paper is structured as follows. In Section 2 we present the no-
tation we shall we use as well as some preliminaries. In Section 3 we present the
mechanical problem, list the assumptions on the data, give the variational formu-
lation of the problem and state our main existence and uniqueness result, Theorem
3.1. In section 4 we give the proof of Theorem 3.1 based on arguments of evo-
lution equations with monotone operators, a classical existence and uniqueness
result on parabolic inequalities and fixed-point.
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2. NOTATIONS AND PRELIMINARIES

In this section we present the notation and some preliminary material which
will be used in the next sections. For further details, we refer reader to [11,17].

We denote by Sd the linear space of second order symmetric tensors on Rd (d =
2, 3), while ” · ” and | · | represent the inner product and Euclidean norm on Rd

and Sd, respectively.
Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundary Γ and let ν denote

the unit outer normal on Γ. Here and throughout this paper, the indices i and j

run from 1 to d, the summation convention over repeated indices is adopted and
the index that follows a comma represents the partial derivative with respect to
the corresponding component of the independent spatial variable. Next, we use
the standard notation for Lebesgue and Sobolev spaces associated to Ω and Γ and
introduce the spaces

H = L2(Ω)d =
{
u = (ui) |ui ∈ L2(Ω)

}
, H1 = {u ∈ H | ε(u) ∈ H} ,

H =
{
τ = (τij) | τij = τji ∈ L2(Ω)

}
, H1 = {τ ∈ H | τij,j ∈ H} .

These are real Hilbert spaces endowed with the canonical inner products given by

(u,v)H =

∫
Ω

uivi dx ∀u,v ∈ H,

(σ, τ )H =

∫
Ω

σijτij dx ∀σ, τ ∈ H,

(u,v)H1 = (u,v)H + (ε(u), ε(v))H, ∀u,v ∈ H1,

(σ, τ )H1 = (σ, τ )H + (Divσ,Div τ )H , ∀σ, τ ∈ H1.

Here ε : H1 → H and Div : H1 → H are the deformation and divergence operators,
respectively, defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i) Divσ = (σij,j).

The associated norms on the spaces H,H, H1 andH1 are denoted by | · |H , | · |H ,
| · |H1

and | · |H1
, respectively. For every element u ∈ H1 we denote by u its trace

on Γ and by uν and uτ its normal and the tangential components on Γ given by

(2.1) uν = u · ν, uτ = u− uνν.
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Similarly, for a tensor field σ : Ω → Sd we denote by σν and στ its normal and
tangential components on H1, and when σ is a regular function (say C1) then

(2.2) σν = (σν) · ν, στ = σν − σνν.

We recall that the following Green’s formula holds

(2.3) (σ, ε(u))H + (Divσ,u)H =

∫
Γ

σν · u da ∀u ∈ H1.

We recall the following standard result for parabolic variational inequalities
which may be found in [5, p.124] and which will be used in Section 4 of this
paper.

Theorem 2.1. Let V ⊂ H ⊂ V ′ be a Gelfand triple, Let K be a nonempty closed, and
convex set of V , and let a : (., .) : V ×V → R be a continuous and symmetric bilinear
form which satisfies

a(v,v) + c0 |v|2H ≥ κ |v|2V ∀v ∈ V

for some constants κ and c0. Then, for every u0 ∈ K and f ∈ L2(0, T ;H), there exists
a unique function u ∈ L2(0, T ;V ) ∩H1(0, T ;H) which satisfies

u(t) ∈ K ∀t ∈ (0, T ),

(u̇(t),v − u(t))V ′×V + a
(
u(t),v − u(t)

)
≥
(
f(t),v − u(t)

)
H

∀v ∈ K, a.e. t ∈ (0, T ),

u(0) = u0.

We conclude this section with a fixed point result which is a consequence of the
Bannch contraction principle and which will be used in Section 4 of this paper, its
proof can be found in [16].

Lemma 2.1. Given a Bannach space X with a norm | . |X and T > 0, let Λ :

L2(0, T ;X)→ L2(0, T ;X) be an operator such that

|(Λη1)(t)− (Λη2)(t)|2X ≤ C

∫ t

0

|η1(s)− η2(s)|2X ds,

for every η1, η2 ∈ L2(0, T ;X), a.e. t ∈ (0, T ) with a constant C > 0. Then Λ

has a unique fixed point in L2(0, T ;X), in other words, there exists a unique η∗ ∈
L2(0, T ;X) such that Λη∗ = η∗.
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3. PROBLEM STATEMENT AND VARIATIONAL FORMULATION

In this section we describe the model for the process, present its variational
formulation. The physical setting is as follows.

An elastic-thermo-viscoplastic body occupies a domain Ω with a regular surface
Γ, and let Γ1, Γ2, Γ3 be a partition of Γ into three disjoint measurable parts such
that meas (Γ1) > 0. Let T > 0 and let [0, T ] denote the time interval considered.
We assume that the body is fixed on Γ1 × (0, T ) and therefore the displacement
field vanishes there. Surface tractions of density f2 act on Γ2× (0, T ) and a volume
force of density f0 acts on Ω × (0, T ). We admit a possible external heat source
applied in Ω× (0, T ), given by the function q. We suppose that the body forces and
tractions vary slowly in time, and therefore, the accelerations in the system may
be neglected. Neglecting the inertial terms in the equation of motion leads to a
quasistatic approach of the process. Finally, the body is in contact with a reactive
foundation over the potential contact surface Γ3.

We assume that the normal stress σν satisfies a general normal damped response
condition

(3.1) − σν = pν(u̇ν),

where u̇ν represents the normal velocity and pν is a prescribed function.
Equality (3.1) states a general dependence of the normal stress on the normal

velocity. In the case when

(3.2) pν(r) = kr,

with k ≥ 0, the resistance of the foundation to penetration is proportional to the
normal velocity. This type of behavior was considered in [20] when modeling the
motion of a deformable body on sand or a granular material.

The contact is frictional and the associated friction law is chosen as follows

(3.3) − στ = pτ (u̇τ ),

where στ represents the tangential force on the contact boundary, u̇τ denotes the
tangential velocity and pτ is a prescribed vector-valued function.
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We use a thermo-elastic-viscoplastic constitutive law with damage to model the
material’s behavior, and a differential inclusion of parabolic type to describe the
evolution of the damage.

With the assumptions above, the mechanical problem of the quasistatic contact
with normal damped response may be formulated classically as follows.

Problem P Find the displacement field u : Ω × [0, T ] → Rd, the stress field σ :

Ω × [0, T ] → Sd, the damage field β : Ω × [0, T ] → R and the temperature θ :

Ω× [0, T ]→ R such that

σ(t) = A
(
ε(u̇(t))

)
+ B

(
ε(u(t))

)
(3.4)

+

∫ t

0

G
(
σ(s)−A

(
ε(u̇(s))

)
, ε(u(s)), θ(s), β(s)

)
ds, in Ω× (0, T ),

Divσ + f0 = 0, in Ω× (0, T ),(3.5)

θ̇ − k0∆θ = ψ
(
σ, ε(u̇), θ, β

)
+ q, in Ω× (0, T ),(3.6)

β̇ − k1∆β + ∂ϕK(β) 3 φ
(
σ, ε(u), θ, β

)
, in Ω× (0, T ),(3.7)

u = 0 on Γ1 × (0, T ),(3.8)

σν = f2, on Γ2 × (0, T ),(3.9)

− σν = pν(u̇ν), −στ = pτ (u̇τ ), on Γ3 × (0, T ),(3.10)

k0
∂θ

∂ν
+Bθ = 0, on Γ× (0, T ),(3.11)

∂β

∂ν
= 0, on Γ× (0, T ),(3.12)

u(0) = u0, β(0) = β0, θ(0) = θ0, in Ω.(3.13)

This problem represents the quasistatic evolution of damage in thermo-elastic-
viscoplastic materials. Equation (3.4) represents the thermo-elastic-viscoplastic
constitutive law, already introduced in the first section. The relation (3.5) is the
equilibrium equation, we use it here since we assume that process is quasistatic.
Equation (3.6) represents the energy conservation where ψ is a nonlinear consti-
tutive function which represents the heat generated by the work of internal forces
and q is a given volume heat source. Inclusion (3.7) describes the evolution of
damage field, governed by the source damage function φ, where ∂ϕK is the subd-
ifferential of indicator function of the set K of admissible damage functions.
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Conditions (3.8) and (3.9) are the displacement and traction boundary condi-
tions, respectively. (3.10) represents the normal damped response condition and
its associated friction law, described above on the potential contact surface Γ3.
Equation (3.11) represents a Fourier boundary condition for the temperature on
Γ. Equation (3.12) represents an homogeneous Newmann boundary condition for
the damage field on Γ, where ∂β

∂ν
is the normal derivative of β. Finally the functions

u0, β0 and θ0 in (3.13) are the initial data.
To obtain the variational formulation of the problem (3.4)–(3.13), we need

additional notation.
Thus, let V denote the closed subspace of H1 defined by

V = {v ∈ H1 |v = 0 on Γ1} .

Since meas(Γ1) ≥ 0 and Γ is Lipschitz, Korn’s inequality holds that there exists
a posetive constant Ck which depends only on Ω and Γ1 such that

|ε(v)|H ≥ Ck |v|H1
, ∀v ∈ V.(3.14)

The proof of this inequality may be found in [18, p. 79].
We consider on V the inner product and the associated norm given by

(u,v)V = (ε(u), ε(v))H, ∀u,v ∈ V,(3.15)

|v |V = |ε(v)|H , ∀v ∈ V.(3.16)

It follows from (3.14) and (3.15) that | . |H1
and | . |V are equivalent norms on V

and therefore (V, | . |V ) is a real Hilbert space. We note that the assumption that Γ

is Lipschitz continuous is sufficient for our purposes. First, it ensures that the outer
normal ν is defined a.e. on Γ, and then the normal and tangential components of
various functions make sense. Second, it is sufficient for Korn’s inequality (3.14) to
hold true. Moreover, by the Sobolev trace theorem and (3.14), we have a posetive
constant C0 > 0 depending only on Ω, Γ1, and Γ3 such that

|v|L2(Γ3)d ≤ C0 |v|V , ∀v ∈ V.(3.17)

In the study of the mechanical problem (3.4)–(3.13), we consider the following
assumptions
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The viscosity operator A : Ω× Sd → Sd satisfies

(3.18)



(a) There exists a constant LA > 0 such that

|A(x, ε1)−A(x, ε2)| ≤ LA |ε1 − ε2| ,

∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(b) There exists a constant mA > 0 such that

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA |ε1 − ε2|2 ,

∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ A(x, ε) is Lebesgue measurable on Ω,

∀ ε ∈ Sd.

(d) The mapping x 7→ A(x, 0) belongs to H.

The elasticity operator B : Ω× Sd → Sd satisfies

(3.19)



(a) There exists a constant LB > 0 such that

|B(x, ε1)− B(x, ε2)| ≤ LB(|ε1 − ε2| ,

∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(b) The mapping x 7→ B(x, ε) is Lebesgue measurable on Ω,

∀ ε ∈ Sd.

(c) The mapping x 7→ B(x, 0, ) belongs to H.

The plasticity operator G : Ω× Sd × Sd × R× R→ Sd satisfies

(3.20)



(a) There exists a constant LG > 0 such that

|G(x,σ1, ε1, θ1, β1)− G(x,σ2, ε2, θ2, β2)| ≤ LG(|σ1 − σ2|

+ |ε1 − ε2|+ |θ1 − θ2|+ |β1 − β2|),

∀σ1,σ2 ∈ Sd, ∀ ε1, ε2 ∈ Sd, ∀ θ1, θ2 ∈ R, ∀ β1, β2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x 7→ G(x, σ, ε, θ, β) is Lebesgue measurable on Ω,

∀σ, ε ∈ Sd, ∀ θ, β ∈ R.

(c) The mapping x 7→ G(x, 0, 0, 0, 0) belongs to H.
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The nonlinear constitutive function ψ : Ω× Sd × Sd × R× R→ R satisfies

(3.21)



(a) There exists a constant Lψ > 0 such that

|ψ(x,σ1, ε1, θ1, β1)− ψ(x,σ2, ε2, θ2, β2)| ≤ Lψ(|σ1 − σ2|

+ |ε1 − ε2|+ |θ1 − θ2|+ |β1 − β2|),

∀σ1,σ2 ∈ Sd, ∀ ε1, ε2 ∈ Sd, ∀ θ1, θ2 ∈ R, ∀ β1, β2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x 7→ ψ(x,σ, ε, θ, β) is Lebesgue measurable on Ω,

∀σ, ε ∈ Sd, ∀ θ, β ∈ R.

(c) The mapping x 7→ ψ(x, 0, 0, 0, 0) belongs to H.

The damage source function φ : Ω× Sd × Sd × R× R→ R satisfies

(3.22)



(a) There exists a constant Lφ > 0 such that

|φ(x,σ1, ε1, θ1, β1)− φ(x,σ2, ε2, θ2, β2)| ≤ Lφ(|σ1 − σ2|

+ |ε1 − ε2|+ |θ1 − θ2|+ |β1 − β2|),

∀σ1,σ2 ∈ Sd, ∀ ε1, ε2 ∈ Sd, ∀ θ1, θ2 ∈ R, ∀ β1, β2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x 7→ φ(x,σ, ε, θ, β) is Lebesgue measurable on Ω,

∀σ, ε ∈ Sd, ∀ θ, β ∈ R.

(c) The mapping x 7→ φ(x, 0, 0, 0, 0) belongs to H.

The normal contact function pν : Γ3 × R→ R satisfies

(3.23)



(a) There exists a constant Lν > 0 such that

|pν(x, r1)− pν(x, r2)| ≤ Lν |r1 − r2| , ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(b) (pν(x, r1)− pν(x, r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) The mapping x 7→ pν(x, r) is Lebesgue measurable on Γ3,

∀ r ∈ R.

(d) The mapping r 7→ pν(x, r) is continuous on R, a.e. x ∈ Γ3.
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The tangential contact function pτ : Γ3 × Rd → Rd satisfies

(3.24)



(a) There exists a constant Lτ > 0 such that

|pτ (x, r1)− pτ (x, r2)| ≤ Lτ |r1 − r2| ∀ r1, r2 ∈ Rd, a.e. x ∈ Γ3.

(b) (pτ (x, r1)− pτ (x, r2)) · (r1 − r2) ≥ 0 ∀ r1, r2 ∈ Rd, a.e. x ∈ Γ3.

(c) The mapping x 7→ pτ (x, r) is Lebesgue measurable on Γ3,

∀ r ∈ Rd.

(d) The mapping r 7→ pτ (x, r) is continuous on Rd, a.e. x ∈ Γ3.

(e) pτ (x, r).ν(x) = 0 ∀r ∈ Rd such that r.ν(x) = 0, a.e. x ∈ Γ3.

We suppose that the body forces and surface tractions satisfy

f0 ∈ L2(0, T ;H), f2 ∈ L2(0, T ;L2(Γ2)d).(3.25)

The volume heat source satisfies

q ∈ L2(0, T ;L2(Ω)).(3.26)

We also suppose that

B > 0, ki > 0 (i = 0, 1).(3.27)

Finally we assume that the initial data satisfy the following conditions

u0 ∈ V, θ0 ∈ V, β0 ∈ K..(3.28)

Next, we denote by f(t) the element of V ′ given by

(3.29) (f(t),v)V ′×V =

∫
Ω

f0(t).v dx+

∫
Γ2

f2(t).v da ∀v ∈ V.

We note that the conditions (3.25) imply

f ∈ L2(0, T ;V ′).(3.30)

We define the following bilinear forms

a0 : V × V → R, a0(ζ, ξ) = k0

∫
Ω

∇ζ · ∇ξ dx+B

∫
Γ

ζξdγ,(3.31)

a1 : V × V → R, a1(ζ, ξ) = k1

∫
Ω

∇ζ · ∇ξ dx.(3.32)
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We consider the functional j : V × V → R defined by

j(u,v) =

∫
Γ3

(
pν(uν)vν + pτ (uτ ) · vτ

)
da, ∀u,v ∈ V.(3.33)

Keeping in mind (3.23) and (3.24) we observe that the integral in (3.33) is well
defined. Next, we assume that {u,σ} are regular functions satisfying (3.5)-(3.10)
and let v ∈ V, t ∈ [0, T ] . Using Green’s formula (2.3) and (3.5) we have

(3.34) (σ(t), ε(v))H =

∫
Ω

f0(t) · v dx+

∫
Γ

σ(t)ν · v da, ∀v ∈ V.

Applying the boundary conditions (3.8) and (3.9), we have

(3.35)
∫

Γ

σ(t)ν · v da =

∫
Γ2

f2(t) · v da+

∫
Γ3

σ(t)ν · v da.

It now follows from (3.34), (3.35) and (3.29) that

(3.36) (σ(t), ε(v))H = (f(t),v)V ′×V +

∫
Γ3

σ(t)ν · v da, ∀v ∈ V.

On the other hand, from (2.1), (2.2) and (3.10) we obtain

σ(t)ν · v = −pν(u̇ν(t))vν − pτ (u̇τ (t)) · vτ , on Γ3.(3.37)

Finally from (3.33), (3.36) and (3.37) we find

(σ(t), ε(v))H + j(u̇(t),v) = (f(t),v)V ′×V .

Thus, we can obtain the variational formulation of the quasistatic problem with
normal damped response, friction and damage as follows

Problem PV Find the displacement field u : [0, T ]→ V, the stress field σ : [0, T ]→
H, the temperature θ : [0, T ]→ V, the damage field β : [0, T ]→ H1(Ω) such that

σ(t) = A
(
ε(u̇(t))

)
+ B(ε(u(t))(3.38)

+

∫ t

0

G
(
σ(s)−A

(
ε(u̇(s))

)
, ε(u(s)), θ(s), β(s)

)
ds, a.e. t ∈ (0, T ) ,

(σ(t), ε(v))H + j(u̇(t),v) = (f(t),v)V ′×V , ∀v ∈ V, ∀t ∈ [0, T ] ,(3.39)

(θ̇(t),v)V ′×V + a0(θ(t),v) =
(
ψ(σ(t)), ε(u̇(t)), θ(t), β(t),v

)
V ′×V(3.40)

+ (q(t),v)V ′×V ∀v ∈ V, a.e. t ∈ (0, T ) ,
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β(t) ∈ K, (β̇(t), ξ − β(t))L2(Ω) + a1(β(t), ξ − β(t)) ≥(3.41)

(φ
(
σ(t), ε(u(t)), θ(t), β(t), ξ − β(t)

)
L2(Ω)

,

∀ξ ∈ K, a.e. t ∈ (0, T ) ,

u(0) = u0, θ(0) = θ0, β(0) = β0.(3.42)

We notice that the variational problem PV is formulated in terms of displacement
field, stress field, temperature and damage field. Our main result that we state
here and prove in the next section is the following.

Theorem 3.1. Assume that (3.18)–(3.24) hold. Then there exists a unique solution
{u,σ, θ, β} to problem PV. Moreover, the solution has the regularity

u ∈ C1(0, T ;V ),(3.43)

σ ∈ C(0, T ;H1),(3.44)

θ ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;V ),(3.45)

β ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).(3.46)

The quadruple {u,σ, θ, β} which satisfies (3.38)–(3.42) is called a weak solu-
tion to the frictional contact problem P. We conclude that under the stated assump-
tions, problem (3.4)–(3.13) has a unique weak solution satisfying (3.43)–(3.46).

4. PROOF OF THEOREM 3.1

The proof of Theorem 3.1 will be carried out in several steps and is based on
arguments of evolution equations with monotone operators, a classical existence
and uniqueness result on parabolic inequalities and fixed-point.

To this end, we assume in the following that (3.18)–(3.24) hold and, every-
where in this section C will represent a strictly positive constant which may de-
pend on the problem’s data but it is independent on time, and whose value may
change from place to place.

Moreover, for the sake of simplicity, we suppress, in what follows, the explicit
dependence of various functions on x ∈ Ω ∪ Γ.

Let η ∈ L2(0, T ;V ′) be given. In the first step we consider the following varia-
tional problem.
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Problem PVη. Find a displacement field uη : [0, T ]→ V such that(
A(ε(u̇η(t))), ε(v)

)
H + j(u̇η(t),v) + (η(t),v)V ′×V = (f(t),v)V ′×V ,(4.1)

∀v ∈ V a.e. t ∈ (0, T ),

uη(0) = u0.(4.2)

In the study of Problem PVη we have the following result.

Lemma 4.1. There exists a unique solution to problem PVη and it has the regularity
expressed in (3.43). Moreover, if ui represents the solution of problem PVηi for ηi ∈
L2(0, T ;V ′), i = 1, 2 then there exists C > 0 such that

|u1(t)− u2(t)|V ≤ C

∫ t

0

|η1(s)− η2(s)|V ′ .(4.3)

Proof. Using Riesz’s representation theorem we define the operator T : V → V ′

and the element fη(t) ∈ V ′ by

(Tu,v)V ′×V = (A(ε(u)), ε(v))H + j(u,v),(4.4)

(fη(t),v)V ′×V = (f(t),v)V ′×V − (η(t),v)V ′×V ,(4.5)

for all u,v ∈ V, t ∈ [0, T ]. Let u1,u2 ∈ V . Using (4.4) and (3.33) we find

(Tu1 − Tu2,u1 − u2)V ′×V =
(
A(ε(u1))−A(ε(u2)), ε(u1)− ε(u2)

)
H

+

∫
Γ3

(
pν(u1ν)− pν(u2ν)

)
(u1ν − u2ν)da

+

∫
Γ3

(
pτ (u1τ )− pτ (u2τ )

)
.(u1τ − u2τ )da,

and, keeping in mind (3.18)(b), (3.23)(b) and (3.24)(b), we obtain

(Tu1 − Tu2,u1 − u2)V ′×V ≥ mA |u1 − u2|2V .(4.6)

Using again (4.4) and (3.33) it follows that

(Tu1−Tu2,v)V ′×V =
(
A(ε(u1))−A(ε(u2)), ε(v)

)
H

+

∫
Γ3

(
pν(u1ν)− pν(u2ν)

)
(vν)da+

∫
Γ3

(
pτ (u1τ )− pτ (u2τ )

)
.(vτ )da,

for all v ∈ V and, by (3.18)(a), we deduce that

|Tu1 − Tu2|V ′ ≤ LA |u1 − u2|V ∀u1,u2 ∈ V.(4.7)
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Inequality (4.6) shows that T : V → V ′ is a strongly monotone operator. More-
over, inequality (4.7) implies that T is Lipschitz continuous. Therefore, using a
standard result for nonlinear equations (see, e.g., [7]), there exists a unique ele-
ment wη which satisfies

Twη(t) = fη(t) a.e. t ∈ (0, t),(4.8)

wη ∈ C(0, T ;V ),(4.9)

Consider now the function uη : [0, T ]→ V defined by

(4.10) uη =

∫ t

0

wη(s)ds+ u0.

It follows from (4.4), (4.8)–(4.10) that uη is a solution of the equation (4.1)
and it satisfies (3.43).

It remains to show estimate (4.3). Let η1, η2 ∈ L2(0, T, V ′) and use the notation
uηi = ui for i = 1, 2.

Moreover, using (4.1) and subtracting the two obtained equations, by choosing
v = u̇1 − u̇2 as test function, lead to(

A(ε(u̇1(t)))−A(ε(u̇2(t))), ε(u̇1(t))− ε(u̇2(t))

)
H

+ j
(
u̇1(t), u̇1(t)− u̇2(t)

)
− j
(
u̇2(t), u̇1(t)− u̇2(t)

)
(4.11)

=
(
η2(t)− η1(t), u̇1(t)− u̇2(t)

)
V ′×V , ∀t ∈ [0, T ] .

Keeping in mind (3.16) and (3.18)(b) we deduce that(
A(ε(w1(t)))−A(ε(w2(t))), ε(w1(t))− ε(w2(t))

)
H

(4.12)

≥ C |w1(t)−w2(t)|2V , ∀t ∈ [0, T ] .

From (3.33), (3.23) and (3.24), we find

j(w1(t),w1(t)−w2(t))− j(w2(t),w1(t)−w2(t)) ≥ 0, ∀t ∈ [0, T ].(4.13)

Moreover, using Cauchy–Schwartz inequality we obtain(
η2(t)− η1(t), u̇1(t)− u̇2(t)

)
V ′×V ≤ |η2(t)− η1(t)|V ′ |w1(t)−w2(t)|V .(4.14)
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Combining (4.11 )–(4.14) with some algebraic manipulations leads to

|w1(t)−w2(t)|V ≤ C |η1(t)− η2(t)|V ′ .(4.15)

Since ui(t) =
∫ t

0
wi(s)ds+ u0 and u1(0) = u2(0) we have

|u1(t)− u2(t)|V ≤
∫ t

0

|w1(s)−w2(s)|V ds.

From the two previous inequalities we deduce (4.3), which concludes the proof.
�

Let χ ∈ L2(0, T, V ′) be given. In the second step we consider the following
intermediate variational problem.

Problem PVχ. Find the temperature θχ : [0, T ]→ V such that

(θ̇χ(t),v)V ′×V + a0(θχ(t),v) =
(
χ(t) + q(t),v

)
V ′×V(4.16)

∀v ∈ V, a.e. t ∈ (0, T ) ,

θχ(0) = θ0.(4.17)

Lemma 4.2. There exists a unique solution θχ to the auxiliary problem PVχ and
it has the regularity expressed in (3.45). Moreover, if θi represents the solution of
problem PVχi

for χi ∈ L2(0, T ;V ′), i = 1, 2 then there exists C > 0 such that

|θ1(t)− θ2(t)|2V ≤ C

∫ t

0

|χ1(s)− χ2(s)|2V ′ ds.(4.18)

Proof. Using the definition (3.31) of the bilinear form a0, leads to

a0(ξ, ξ) = k0

∫
Ω

|∇ξ|2 dx+B

∫
Γ

|ξ|2 dγ.

By an application of the Friedrichs–Poincaré inequality, we can find a constant
F > 0 such that ∫

Ω

|∇ξ|2 dx+
B

k0

B

∫
Γ

|ξ|2 dγ ≥ F

∫
Ω

|ξ|2 dx.

Thus, there exists a constant C > 0 which satisfies

a0(ξ, ξ) ≥ C |ξ|2V ′ , ∀ξ ∈ V,

which implies that a0 is V-elliptic. Consequently, based on classical arguments of
functional analysis concerning parabolic equations, the variational equation (4.16)
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has a unique solution θχ satisfying (3.45). It remains to show estimate (4.18),
consider χ1, χ2 ∈ L2(0, T ;V ′) and denote θχ = θi for i = 1, 2. If we take the
substitution χ = χ1, χ = χ2 in (4.16) and subtracting the two obtained equations
we obtain, by choosing v = θ1 − θ2 as test function

(θ̇1 − θ̇2, θ1 − θ2)V ′×V + a0(θ1 − θ2, θ1 − θ2) = (χ1 − χ2, θ1 − θ2)V ′×V ,(4.19)

a.e. t ∈ (0, T ).

Keeping in mind the inequality a0(θ1 − θ2, θ1 − θ2) ≥ 0 we find that

(θ̇1 − θ̇2, θ1 − θ2)V ′×V ≤ (χ1 − χ2, θ1 − θ2)V ′×V .(4.20)

Using Cauchy–Schwartz inequality we obtain

(θ̇1 − θ̇2, θ1 − θ2)V ′×V ≤ |χ1 − χ2|V ′ |θ1 − θ2|V .(4.21)

We integrate the previous inequality with respect to time and use the initial
conditions θ1(0) = θ2(0) = θ0 to find that

1

2
|θ1(t)− θ2(t)|2V ≤

∫ t

0

|χ1(s)− χ2(s)|V ′ |θ1(s)− θ2(s)|V ds.(4.22)

Multiplying the members of the previous inequality by 2, and Applying the in-
equality

2ab ≤ a2 + b2 ∀a, b ∈ R,

allow us to find

|θ1(t)− θ2(t)|2V ≤
∫ t

0

|χ1(s)− χ2(s)|2V ′ ds+

∫ t

0

|θ1(s)− θ2(s)|2V ds.

It follows now from a Gronwall-type argument that

|θ1(t)− θ2(t)|2V ≤ C

∫ t

0

|χ1(s)− χ2(s)|2V ′ ds.(4.23)

�

Let µ ∈ L2(0, T ;L2(Ω) be given. In the third step we consider the following
variational problem for the damage field.

Problem PVµ. Find the damage field βµ : [0, T ]→ H1(Ω) such that
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βµ(t) ∈ K,
(
β̇µ(t), ξ − βµ(t)

)
L2(Ω)

+a1

(
βµ(t), ξ − βµ(t)

)
(4.24)

≥
(
µ(t), ξ − β(t)

)
L2(Ω)

∀ξ ∈ V, a.e. t ∈ (0, T ) ,

βµ(0) = β0.(4.25)

We apply Theorem 2.1 to problem PVµ.

Lemma 4.3. There exists a unique solution βµ to the auxiliary problem PVµ sat-
isfying (3.46), Moreover, if βi represents the solution of problem PVµi for µi ∈
L2(0, T ;L2(Ω)), i = 1, 2 then there exists C > 0 such that

|β1(t)− β2(t)|2L2(Ω) ≤ C

∫ t

0

|µ1(s)− µ2(s)|2L2(Ω) ds.(4.26)

Proof. We have H1(Ω) is dense in L2(Ω), and the inclusion map is continuous,
L2(Ω) is identified with (L2(Ω))

′ and it is identified with a subspace of (H1(Ω))
′,

where (L2(Ω))
′ and (H1(Ω))

′ represent the dual of L2(Ω) and H1(Ω), respectively.
The notation (., .)(H1(Ω))′×H1(Ω) denote the duality pairing between (H1(Ω))

′ and
H1(Ω), we can write

H1(Ω) ⊂ L2(Ω) ⊂ (H1(Ω))
′

(β, ξ)(H1(Ω))′×H1(Ω) = (β, ξ)L2(Ω) ∀ξ ∈ H1(Ω),

and we not that K is a closed convex set in H1(Ω). Then, using (3.32) the def-
inition of the bilinear form a1, and the fact that βµ ∈ K in (3.28), it is easy
to see that lemma 4.3 is a straight consequence of Theorem 2.1. Consider now
µ1, µ2 ∈ L2(0, T ;L2(Ω)) and denote βµ = βi for i = 1, 2. If we take the substitution
µ = µ1, µ = µ2 in (4.25) and subtracting the two obtained inequalities we obtain,
by choosing ξ = β1 − β2 as test function

(β̇1− β̇2, β1−β2)L2(Ω) +a1(β1−β2, β1−β2) ≤ (µ1−µ2, β1−β2)L2(Ω) a.e. t ∈ (0, T ).

Taking into account that a1(β1 − β2, β1 − β2) ≥ 0, we obtain

(β̇1 − β̇2, β1 − β2)L2(Ω) ≤ (µ1 − µ2, β1 − β2)L2(Ω).(4.27)

Integrating the previous inequality with respect to time and using the initial
conditions β1(0) = β2(0) = β0, allow us to find
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1

2
|β1(t)− β2(t)|2 L2(Ω) ≤

∫ t

0

(µ1 − µ2, β1 − β2)L2(Ω)ds.(4.28)

Employing Hölder’s and Young’s inequalities, we deduce that

|β1(t)− β2(t)|2L2(Ω) ≤
∫ t

0

|µ1(s)− µ2(s)|2L2(Ω) ds+

∫ t

0

|β1(s)− β2(s)|2L2(Ω) ds.

The previous inequality combined with Gronwall’s inequality lead to

|β1(t)− β2(t)|2L2(Ω) ≤ C

∫ t

0

|µ1(s)− µ2(s)|2L2(Ω) ds.(4.29)

�

In the next step we use uη, θχ and βµ obtained above in lemma 4.1, lemma 4.2
and lemma 4.3, respectively to construct the following problem for the stress field.

Problem PVηχµ. Find the stress field σηχµ : [0, T ]→ H such that

σηχµ(t) = B(ε(uη(t)) +

∫ t

0

G
(
σηχµ(s)−A

(
ε(u̇(s))

)
, ε(uη(s)), θχ(s), βµ(s)

)
ds,

∀t ∈ [0, T ] .(4.30)

In the study of problem PVηχµ we have the following result.

Lemma 4.4. There exists a unique solution of problem PVηχµ and it satisfies σηχµ ∈
W 1,2(0, T ;H). Moreover, if ui, θi, βi and σi, represent the solutions of problem
PVηi , PVχi

, PVµi and PVηiχiµi, respectively, for (ηi, χi, µi) ∈ L2(0, T ;V ′ × V ′ ×
L2(Ω)), i = 1, 2, then there exists C > 0 such that ∀t ∈ [0, T ]

|σ1(t)− σ2(t)|2H ≤ C

(
|u1(t)− u2(t)|2V(4.31)

+

∫ t

0

(|u1(s)− u2(s)|2V + |θ1(s)− θ2(s)|2V + |β1(s)− β2(s)|2L2(Ω))ds

)
.

Proof. Let Ληχµ : L2(0, T ;H)→ L2(0, T ;H) be the operator given by

Ληχµσ(t) = B(ε(uη(t)) +

∫ t

0

G
(
σ(s)−A

(
ε(u̇(s))

)
, ε(uη(s)), θχ(s), βµ(s)

)
ds,

∀σ ∈ L2(0, T ;H), ∀t ∈ (0, T ) .(4.32)
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For σi ∈ L2(0, T ;H), i = 1, 2 we us (4.32), hypothesis (3.20) and Holder’s
inequality to obtain for all t ∈ (0, T )

|Ληχµσ1(t)− Ληχµσ2(t)|H ≤ LG

∫ t

0

|σ1(s)− σ2(s)|H ds.

It follows that

|Ληχµσ1(t)− Ληχµσ2(t)|2H

≤
(
LG

∫ t

0

|σ1(s)− σ2(s)|H ds
)2

≤ (LG)
2T

∫ t

0

|σ1(s)− σ2(s)|2H ds

≤ C

∫ t

0

|σ1(s)− σ2(s)|2H ds.

It follows from lemma 2.1 that there exists a unique element σηχµ ∈ L2(0, T ;H)

such that Ληχµσηχµ = σηχµ. Moreover, σηχµ is the unique solution of problem
PVηχµ and, using (4.32), (3.19), (3.20) and the regularity of uη, θχ, βµ, it follows
that σηχµ ∈ W 1,2(0.T ;H). Consider now (η1, χ1, µ1), (η2, χ2, µ2) ∈ L2(0, T ;V ′×V ′×
L2(Ω)), and for i = 1, 2 denote uηi = ui, θχi

= θi, βµi = βi and σηiχiµi = σi. Thus
we have

σi = B(ε(ui(t)) +

∫ t

0

G
(
σi(s)−A

(
ε(u̇i(s))

)
, ε(ui(s)), θi(s), βi(s)

)
ds, ∀t ∈ (0, T ) ,

and using the properties (3.19) and (3.20) of the operators B and G, we find

|σ1(t)− σ2(t)|2H ≤ C

(
|u1(t)− u2(t)|2V

+

∫ t

0

(|u1(s)− u2(s)|2V + |θ1(s)− θ2(s)|2V )ds(4.33)

+

∫ t

0

(|β1(s)− β2(s)|2L2(Ω) + |σ1(s)− σ2(s)|2H)ds

)
, ∀t ∈ [0, T ] .

Using now a Gronwall argument in the previous inequality we deduce (4.31),
which concludes the proof. �

Finally as a consequence of these results and using the properties of the opera-
tors B and G, and of the functions ψ and φ, we may consider the operator
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L : L2
(
0, T ;V ′ × V ′ × L2(Ω)

)
→ L2

(
0, T ;V ′ × V ′ × L2(Ω)

)
L(η, χ(, µ)(t) =

(
L1(η, χ, µ)(t),L2(η, χ, µ)(t),L3(η, χ, µ)(t)

)
,(4.34)

where, for all t ∈ [0, T ] the mappings L1,L2 and L3 are given by(
L1(η, χ, µ)(t),v

)
V ′×V =

(
B
(
ε(uη(t))

)
(4.35)

+

∫ t

0

G
(
σηχµ(s)−A

(
ε(u̇(s))

)
, ε(uη(s)), θχ(s), βµ(s)

)
ds, ε(v)

)
H
,

L2(η, χ, µ)(t) = ψ
(
σηχµ(t), ε(u̇η(t)), θχ(t), βµ(t)

)
.(4.36)

L3(η, χ, µ)(t) = φ
(
σηχµ(t), ε(uη(t)), θχ(t), βµ(t)

)
.(4.37)

Here, for every (η, χ, µ) ∈ L2
(
0, T ;V ′ × V ′ × L2(Ω)

)
, uη, θχ, βµ and σηχµ repre-

sent the displacement field, the temperature, the damage field and the stress field
obtained in Lemmas 4.1, 4.2, 4.3 and 4.4 respectively and we have the following
result.

Lemma 4.5. The operator L has a unique fixed point, in other words, there exists
a unique element (η∗, χ∗, µ∗) ∈ L2

(
0, T ;V ′ × V ′ × L2(Ω)

)
such that L(η∗, χ∗, µ∗)

= (η∗, χ∗, µ∗).

Proof. In view of Lemmas 4.1, 4.2, 4.3 and 4.4, it is clear that the operator L is
well defined and takes values in L2

(
0, T ;V ′ × V ′ × L2(Ω)

)
.

Let t ∈ |0, T | and (η1, χ1, µ1), (η2, χ2, µ2) ∈ L2
(
0, T ;V ′ × V ′ × L2(Ω)

)
, and for

the sake of simplicity, we write uηi = ui, θχi
= θi, βµi = βi and σηiχiµi = σi, for

i = 1, 2.
Using (3.17), (3.19), (3.20), and elementary algebraic manipulations, we find∣∣L1(η1, χ1, µ1)(t)− L1(η2, χ2, µ2)(t)

∣∣2
V ′
≤

C

(
|u1(t)− u2(t)|2V

+

∫ t

0

(
|u1(s)− u2(s)|2V + |θ1(s)− θ2(s)|2V )ds(4.38)

+

∫ t

0

(|β1(s)− β2(s)|2L2(Ω) + |σ1(s)− σ2(s)|2H
)
ds

)
.
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Furthermore, from definition (4.36), assumptions (3.21) on ψ we obtain

∣∣L2(η1, χ1, µ1)(t)− L2(η2, χ2, µ2)(t)
∣∣2
V ′

≤
∣∣ψ(σ1(t), ε(u̇1(t)), θ1(t), β1(t)

)
− ψ

(
σ2(t), ε(u̇2(t)), θ2(t), β2(t)

)∣∣2
V ′

(4.39)

≤ C

(
|σ1(t)− σ2(t)|2H + |u̇1(t)− u̇2(t)|2V + |θ1(t)− θ2(t)|2V

+ |β1(t)− β2(t)|2L2(Ω)

)
.

Similarly, using definition (4.37), assumptions (3.22) on φ we find∣∣L3(η1, χ1, µ1)(t)− L3(η2, χ2, µ2)(t)
∣∣2
L2(Ω)

≤
∣∣φ(σ1(t), ε(u1(t)), θ1(t), β1(t)

)
− φ
(
σ2(t), ε(u2(t)), θ2(t), β2(t)

)∣∣2
L2(Ω)

,(4.40)

≤ C

(
|σ1(t)− σ2(t)|2H + |u1(t)− u2(t)|2V

+ |θ1(t)− θ2(t)|2V + |β1(t)− β2(t)|2L2(Ω)

)
.

It follows from (4.38)–(4.40) and (4.34) that∣∣∣L(η1, χ1, µ1)(t)− L(η2, χ2, µ2)(t)
∣∣∣2
L2
(

0,T ;V ′×V ′×L2(Ω)
) ≤ C

(
|σ1(t)− σ2(t)|2H

+ |u̇1(t)− u̇2(t)|2V + |u1(t)− u2(t)|2V
+ |θ1(t)− θ2(t)|2V + |β1(t)− β2(t)|2L2(Ω)(4.41)

+

∫ t

0

(|u1(s)− u2(s)|2V + |θ1(s)− θ2(s)|2V )ds

+

∫ t

0

(|β1(s)− β2(s)|2L2(Ω) + |σ1(s)− σ2(s)|2H)ds

)
.

Inserting (4.31) in (4.41) yields

∣∣∣L(η1, χ1, µ1)(t)− L(η2, χ2, µ2)(t)
∣∣∣2
L2
(

0,T ;V ′×V ′×L2(Ω)
)

(4.42)

≤ C

(
|u̇1(t)− u̇2(t)|2V + |u1(t)− u2(t)|2V + |θ1(t)− θ2(t)|2V + |β1(t)− β2(t)|2L2(Ω)
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+

∫ t

0

(|u1(s)− u2(s)|2V + |θ1(s)− θ2(s)|2V + |β1(s)− β2(s)|2L2(Ω))ds

)
.

On the other hand, using (4.3) we can infer that there exists C > 0 such that

|u1(t)− u2(t)|2V ≤ C

∫ t

0

|η1(s)− η2(s)|2V ′ ds.(4.43)

Taking into account that |w1(t)−w2(t)|V ≤ C |η1(t)− η2(t)|V ′ , applying the es-
timates (4.18), (4.26), (4.43) and substituting in (4.42) we obtain

∣∣∣L(η1, χ1, µ1)(t)− L(η2, χ2, µ2)(t)
∣∣∣2
L2
(

0,T ;V ′×V ′×L2(Ω)
)

(4.44)

≤ C

(∫ t

0

(
|η1(s)− η2(s)|2V ′ + |χ1(s)− χ2(s)|2V ′ + |µ1(s)− µ2(s)|2L2(Ω)

)
ds

+

∫ t

0

∫ s

0

(
|η1(s)− η2(s)|2V ′ + |χ1(s)− χ2(s)|2V ′ + |µ1(s)− µ2(s)|2L2(Ω)

)
dr ds

)
,

which implies with some algebraic manipulations, that there exists C > 0 such
that ∣∣∣L(η1, χ1, µ1)(t)− L(η2, χ2, µ2)(t)

∣∣∣2
L2
(

0,T ;V ′×V ′×L2(Ω)
)

≤ C

∫ t

0

∣∣∣(η1, χ1, µ1)(t)− (η2, χ2, µ2)(t)
∣∣∣2
L2
(

0,T ;V ′×V ′×L2(Ω)
)ds.(4.45)

Applying Lemma 2.1, we deduce that The operator L has a unique fixed point
in L2

(
0, T ;V ′ × V ′ × L2(Ω)

)
, i.e. there exists a unique element (η∗, χ∗, µ∗) ∈

L2
(
0, T ;V ′ × V ′ × L2(Ω)

)
such that L(η∗, χ∗, µ∗) = (η∗, χ∗, µ∗). �

We have all the ingredients to prove the Theorem 3.1 which we complete now.

Proof of Theorem 3.1. Let (η∗, χ∗, µ∗) ∈ L2
(
0, T ;V ′×V ′×L2(Ω)

)
be the fixed point

of the operator L defined by (4.34)-(4.37) and let uη∗ , θχ∗ , βµ∗ , ση∗χ∗µ∗ be the
solutions of the problems PVη, PVχ, PVµ and PVηχµ respectively, for η = η∗, χ = χ∗,

and µ = µ∗, and we denote

u = uη∗ , σ = Aε(u̇) + ση∗χ∗µ∗ ,(4.46)
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θ = θχ∗ , β = βµ∗ .(4.47)

We shall prove that the quadruple {u,σ, θ, β} is the unique solution of Problem
PV. Indeed, we write (4.30) for η = η∗, χ = χ∗, and µ = µ∗ and use (4.46) to obtain
that (3.38) is satisfied. Then we use (4.1) for η = η∗ and use the first equality in
(4.46) to find(

A(ε(u̇(t))), ε(v)
)
H + j(u̇(t),v) + (η∗(t),v)V ′×V = (f(t),v)V ′×V ,(4.48)

∀v ∈ V a.e. t ∈ (0, T ).

Using equality L1(η∗, χ∗, µ∗) = η∗ combined with (4.35) leads to

(η∗(t),v)V = B
(
ε(uη(t))

)
H

+

∫ t

0

G
(
σηχµ(s)−A

(
ε(u̇η(s))

)
, ε(uη(s)), θχ(s), βµ(s)

)
ds.(4.49)

We substitute (4.49) in (4.48) and use (3.38) to conclude that (3.39) is satisfied.
Moreover, from equalities L2(η∗, χ∗, µ∗) = χ∗ and L3(η∗, χ∗, µ∗) = µ∗ combined
with (4.36) and (4.37), we find that

χ∗ = ψ
(
σ(t), ε(u̇(t)), θ(t), β(t)

)
.(4.50)

µ∗ = φ
(
σ(t), ε(u(t)), θ(t), β(t)

)
.(4.51)

We write (4.16) for χ = χ∗ and use the first equality in (4.47) we obtain

(θ̇(t),v)V ′×V + a0(θ(t),v) = (χ∗(t) + q(t),v)V ′×V ,(4.52)

∀v ∈ V a.e. t ∈ (0, T ) .

Substituting (4.50) in (4.52) implies that (3.40) is satisfied.
Next, we write (4.25) for µ = µ∗ and use the second equality in (4.47) to find

(
β̇(t), ξ − β(t)

)
L2(Ω)

+ a1

(
β(t), ξ − β(t)

)
≥
(
µ∗(t), ξ − β(t)

)
L2(Ω)

,

∀ξ ∈ V, a.e. t ∈ (0, T ) .(4.53)

We combine now (4.53) and (4.51) to see that (3.41) is satisfied, which con-
cludes the existence part of Theorem 3.1. The uniqueness part of Theorem 3.1
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is a consequence of the uniqueness of the fixed point of the operator L and the
unique solvability of the problems PVη, PVχ, PVµ and PVηχµ which concludes the
proof. �
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