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BUFFON’S COIN AND NEEDLE PROBLEMS FOR THE
RHOMBITRIHEXAGONAL TILING

Salvatore Vassallo

ABSTRACT. In this paper we consider the rhombitrihexagonal tiling of the plane 
(3, 4, 6, 4) Archimedean tiling and compute the probability that a random circle 
or a random segment intersects a side of the tiling.

1. INTRODUCTION

A tiling or tessellation in the plane is a collection of disjoint closed sets (the tiles)
that can intersect only on the boundary, which cover the plane. A tiling is said to
be polygonal if the tiles are polygon, a polygonal tiling is said to be edge-to-edge
if two non disjoint tiles have in common or a vertex or a segment that is an edge
for both the polygons. In this case we call any edge of a tile an edge of the tiling.
An edge-to-edge tiling is called regular if it is composed of congruent copies of
a single regular polygon. An Archimedean tessellation (semi-regular or uniform
tessellation) is an edge-to-edge tessellation of the plane made of more than one
type of regular polygon so that the same polygons surround each vertex. There are
eight different Archimedean tilings and we can classify them giving the types of
polygons as they come together at the vertex [10]. The rhombitrihexagonal tiling
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is a tiling such that a triangle, a square, an hexagon and a square come together
(in clockwise order) in any vertex so it can be called a (3, 4, 6, 4) Archimedean
tiling (see Figure 1a).

(a) Rhombitrihexagonal tiling
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(b) The fundamental cell T0

FIGURE 1. The tiling R

Many authors studied Buffon type problems for different lattices of figures or
tilings and different test bodies: See for example [15], [6], [7], [8], [9], [5],
[3], [1], [4], [2], [17], [16], [11], [12], [23].

In particular the cases of the (33, 42), of the (32, 4, 3, 4), of the (82, 4), of the
((3, 6, 3, 6) and of the (34, 6)Archimedean tilings (elongated triangular tiling, snub
square tiling, truncated square tiling, trihexagonal tiling and snub hexagonal tiling)
are studied in [18], [19], [20], [21], and [22], respectively.

We will study Buffon type problems for the rhombitrihexagonal tiling and two
special test bodies: a circle of constant diameter D and a line segment of length l.

Let E2 be the Euclidean plane and let R be the rhombitrihexagonal tiling of E2

given in figure 1a. We denote by T0 the fundamental tile (or cell) of R (see figure
1b) and by Tn one of congruent copies of T0 such that:

(1)
⋃
n∈N Tn = E2,

(2) Int(Ti) ∩ Int(Tj) = ∅, ∀i, j ∈ N and i 6= j,
(3) Tn = γn(T0),∀n ∈ N, where γn are the elements of a discrete subgroup of

the group of motions in E2 that leaves invariant the tiling R.

The body T0 can be expressed as the union of a regular hexagon, three squares
and two equilateral triangles, all of the same side a.

Let us denote by K a convex body (which means here a compact convex set)
which we shall call test body. A general problem of Buffon type can be stated as



BUFFON’S PROBLEMS FOR (3, 4, 6, 4) ARCHIMEDEAN TILING 199

follows: “Which is the probability pK,R that the random convex body K, or more
precisely, a random congruent copy of K, meets some of the boundary points of at
least one of the domains Tn? ”

If we denote byM the set of all test bodies K whose centroid is in the interior
of T0 and by N the set of all test bodies K that are completely contained in one of
the two triangles or in one of the three squares or in the hexagon ABCDEF , we
have

(1.1) pK,R = 1− µ(N )

µ(M)
,

where µ is the Lebesgue measure in the plane E2.

2. THE TEST BODY IS A CIRCLE

Let us suppose that the test body K is a circle of diameter D. Easy geometrical
considerations will lead us to distinguish between the cases D < a√

3
(the diameter

of the circle inscribed in the triangle) , a√
3
≤ D < a (the diameter of the circle

inscribed in the square), a ≤ D < a
√
3 (the diameter of the circle inscribed in the

hexagon) and D ≥ a
√
3 ). It is obvious that if D ≥ a

√
3 the circle always meets

the boundary of one of the bodies Tn, so we have to study the other three cases.

Proposition 2.1. The probability that the circle K of diameter D intersects the tiling
R is given by

(2.1) pK,R =


D[12a−(2

√
3+3)D]

(3+2
√
3)πa2

, if D < a√
3
,

√
3a2+18aD−(

√
3+6)D2

2(3+2
√
3)πa2

, if a√
3
≤ D < a,

(6+
√
3)a2+6aD−

√
3D2

2(3+2
√
3)πa2

, if a ≤ D < a
√
3.

Proof. We compute the measures µ(M) e µ(N ) with help of the elementary kine-
matic measure dK = dx ∧ dy ∧ dφ of E2 (see [13], [14]) where x and y are the
coordinates of the center of K (or the components of a translation), and φ is the
angle of rotation. We have

µ(M) =

∫ π

0

dφ

∫∫
(x,y)∈T0

dxdy = π · area(T0) =
(
3 + 2

√
3
)
πa2.
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Let N1 be the set of circles of diameter D that are contained in the triangle BHK,
N2 be the set of circles of diameter D that are contained in the square BKJC and
N3 be the set of circles of diameterD that are contained in the hexagonABCDEF .
From (1.1) we obtain

(2.2) pK,R = 1− 2µ(N1) + 3µ(N2) + µ(N3)(
3 + 2

√
3
)
πa2

.
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(a) The case D < a√
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(b) The case a√
3
≤ D < a
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(c) The case a ≤ D < a
√
3

FIGURE 2. The case K = circle

From figure 2a it is easy to see that µ(N1) is π times the area of the triangle
B3H3K3 whose sides are parallel to the sides of the triangle BHK at distance D/2
from them (B3 is the center of a disk interior to the triangle BHK and tangent to
the sides BH and BK and so on). Since the side of the triangle is a−D

√
3 we have:
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µ(N1) =
π
√
3

4

(
a−
√
3D
)2
.

In the same way we obtain that µ(N2) = π(a−D)2 and

µ(N3) =
3π
√
3
(
a− D√

3

)2
2

.

Then we have for the case D < a√
3

pK,R =
D
[
12a−

(
2
√
3 + 3

)
D
](

3 + 2
√
3
)
πa2

.

Let a√
3
≤ D < a (see figure 2b). If the center of the circle K is in the triangle

BHK, the circle always intersects one of the side of the triangle so that µ(N1) = 0.

The measures µ(N2) and µ(N3) are as in previous case so:

pK,R =

√
3a2 + 18aD −

(√
3 + 6

)
D2

2
(
3 + 2

√
3
)
πa2

.

Finally, if a ≤ D < a
√
3, we have µ(N1) = µ(N2) = 0, since a circle with the

center in a square (a triangle, respectively) of the tiling, always intersects one of
the side.

As

µ(N3) =
3π
√
3
(
a− D√

3

)2
2

,

we obtain

pK,R =

(
6 +
√
3
)
a2 + 6aD −

√
3D2

2
(
3 + 2

√
3
)
πa2

.

�

The graphic of the probability pK,R is

D/a

pK,R

√
3/3 1

23−12
√

3
3

2(2
√

3 − 3)
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Let us observe that pK,R ≥ 1
2

for D > 10
√
3−
√
118

26
a ≈ 0.24837a i.e. also for “small”

circles.

3. THE TEST BODY IS A LINE SEGMENT

Let us consider now the case K is a line segment of length l. Also in this case
easy geometrical considerations give us six cases: l < a

√
3

2
(the minimal width of

the triangle), a
√
3

2
≤ l < a (the diameter of the triangle = the minimal width of the

square) , a ≤ l < a
√
2 (the diameter of the square), a

√
2 ≤ l < a

√
3 (the minimal

width of the hexagon), a
√
3 ≤ l ≤ 2a (the diameter of the hexagon), and l ≥ 2a.

In the last case the segment always intersects the boundary of one of the bodies
Tn, so we have to study the other cases. We have

Proposition 3.1. The probability that the line segment K of length l intersects the
tiling R is given by

(3.1) pK,R =

=



τ l
[
144a
√
3−

(
π
√
3 + 36

)
l
]

if l < a
√
3

2

τ
[
144al − l2

(
36 + π

√
3
)
−

−27a
√
4l2 − 3a2 + 6

√
3
(
3a2 + 2l2

)
arccos

(
a
√
3

2l

)]
if a
√
3

2
≤ l < a

3τ

[
(12− π

√
3)a2 + 2

√
3
(
3a2 + 2l2

)
arcsin

(
a
√
3

2l

)
+

+(6− π
√
3)l2 − 24a

√
l2 − a2 − 9a

√
4l2 − a2+

24a2 arccos
(a
l

)] if a ≤ l < a
√
2

3τ
[
(6−

√
3)πa2 − π

√
3l2 + 9a

√
4l2 − 3a2+

+ 2
√
3
(
3a2 + 2l2

)
arcsin

(
a
√
3

2l

)]
if a
√
2 ≤ l < a

√
3

τ

[
(9 + 2π

√
3)l2 − 6

√
3
(
l2 + 12a2

)
arcsin

(
a
√
3

l

)
+

+18
(
π(1 + 2

√
3) + 3

)
a2 − 90a

√
l2 − 3a2

] if a
√
3 ≤ l < 2a,



BUFFON’S PROBLEMS FOR (3, 4, 6, 4) ARCHIMEDEAN TILING 203

where τ =
1

6
(
3 + 2

√
3
)
πa2

.

Proof.

i) First of all let us compute the measure µ (N1) of all line segments of length
l contained in the triangle BHK. If l < a

√
3

2
, for a fixed angle φ ∈ [0, π

6
[ we

denote by (see figure 3a)
- B′ the midpoint (in BHK) of the line segment of length l with one

endpoint in B that makes an angle φ with BH;
- H ′ the midpoint of the line segment of length l with endpoints on BH

and HK that makes an angle φ with BH;
- K ′ the midpoint of the line segment of length l with endpoints on HK

and BH that makes an angle φ with the direction of BH.

K

HB

B′

K′

H′

φ

(a) l < a
√
3

2

K

HB

B′

K′

H′

φ

(b) a√
3
≤ l < a

FIGURE 3. The case K = line segment, K in the triangle

We compute

area(B′H ′K ′) =

√
3

4

[
a− 2l√

3
sin

(
2

3
π − φ

)]2
,

and, by symmetry, we obtain

µ (N1)(3.2)

= 6

∫ π/6

0

area(B′H ′K ′)dφ =

∫ π/6

0

√
3

4

[
a− 2l√

3
sin

(
2

3
π − φ

)]2
dφ

=
3
√
3πa2 − 36al +

(
9 + 2

√
3π
)
l2

12
.(3.3)
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Let now a
√
3

2
≤ l < a. With reference to figure 3b it is easy to see that

the line segment can be contained in the triangle BHK only if the angle
φ ∈ [0, π/6[ between the line segment and the side BH satisfies 0 ≤ φ <
π
6
− arccos

√
3a
2l

. Since the length of the side of the equilateral triangle
B′H ′K ′ is a− 2l√

3
sin
(
2
3
π − φ

)
, the measure of the line segments completely

contained in the triangle BHK is, by symmetry,

µ (N1) = 6

∫ π
6
−arccos

√
3a
2l

0

√
3

4

[
a− 2l√

3
sin

(
2

3
π − φ

)]2
dφ =

=
1

12

[
9l2 − 36al + π

√
3
(
3a2 + 2l2

)
+ 27a

√
4l2 − 3a2

−6
√
3
(
3a2 + 2l2

)
arccos

(
a
√
3

2l

)]
.

Finally if l ≥ a the line segment K always intersects at least one side of
the triangle BHK and so N1 = 0.

ii) Let us compute now the measure µ (N2) of the line segments completely
contained in the square BKJC.

If l < a the segment K does not meets the square if its centroid is in the
rectangle B′K ′J ′C ′ whose sides have length a− l cosφ and a− l sinφ (see
figure 4a ).

C B

KJ

C′ B′

J ′ K ′

φ

(a) l < a

C B

KJ

C′ B′

K′J′

arccos(a/l)

(b) a ≤ l < a
√
2

FIGURE 4. The case K = line segment, K in the square

The measure of the line segment completely contained in the square is:
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µ (N2) = 4

∫ π/4

0

(a− l cosψ) (a− l sinψ) dψ = πa2 − 4al + l2.

If a ≤ l < a
√
2 the line segment K can be contained in the square BKJC

only if the angle φ ∈ [0, π/4[ between the line segment and the side BK
satisfies arccos a

l
< φ ≤ π

4
.

Therefore the measure of the line segments completely contained in the
square ACEF is given by:

µ (N2) = 4

∫ π
4

arccos(a/l)

(a− l cosφ) (a− l sinφ) dφ =

= 4a
√
l2 − a2 − l2 + (π − 2)a2 − 4a2 arccos(a/l).

If l > a
√
2 the line segment K always intersects a side of the square.

iii) Finally we calculate the measure N3 of all line segments of length l con-
tained in the hexagon ABCDEF . Let l < a be. If φ ∈

[
0, π

6

]
, we ob-

tain that K is contained in the hexagon ABCDEF if its centroid is in the
hexagon A′B′C ′D′E ′F ′ whose sides have length A′B′ = a− 2l√

3
sin
(
π
3
− φ
)
,

B′C ′ = a− 2l√
3
sinφ, and C ′D′ = a (see figure 5a).

F

AB

C

D E
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(a) N2 = hexagon
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F ′′
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(b) N2 = parallelogram

FIGURE 5. The case K = line segment, K in the hexagon

Then
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area(A′B′C ′D′E ′F ′)

=
3

2
a2
√
3− l

[
2 a sin

(π
3
+ φ
)
− 2

3
l
√
3 sinφ cos

(π
6
+ φ
)]

,

and so we have

µ (N3)

= 6

∫ π/6

0

area(A′B′C ′D′E ′F ′)dφ = −6al + 3

2
l2 +

3

2

√
3a2π − 1

6

√
3l2π.

Let now a ≥ l < a
√
3. The segment K does not intersect the sides of the

hexagon if its centroid is in the hexagon A′B′C ′D′E ′F ′ when the angle φ
satisfies π

3
−arcsin

(
a
√
3

2l

)
≤ φ < π

6
and if its centroid is in the parallelogram

A′C ′D′F ′ when the angle φ is in
[
0, π

3
− arcsin

(
a
√
3

2l

)]
(see Figure 5a and

Figure 5b).
The area of the hexagon A′B′C ′D′E ′F ′ is the same as above; since the

sides of the parallelogram A′C ′D′F ′ have lengths C ′D′ = 2a − 2l sin(π3−φ)√
3

and A′C ′ = 2a− 2l[sin(π3−φ)+sinφ]√
3

and the angle of the parallelogram is π
3

we
obtain

area(A′C ′D′F ′)

= 2 a2
√
3− 2

√
3al cosφ+

1

2

√
3l2 cos2 φ− 1

6

√
3l2 sin2 φ.

The measure of the line segments completely contained in the hexagon
ABCDEF is given by:

µ (N3) = 6

[∫ π
3
−arcsin

(
a
√
3

2l

)
0

area(A′C ′D′F ′)dφ

+

∫ π/6

π
3
−arcsin

(
a
√

3
2l

) area(A′B′C ′D′E ′F ′)dφ
]

=

√
3π

2

(
l2 + 5a2

)
− 9

2
a
√
4l2 − 3a2 −

√
3
(
3a2 + 2l2

)
arcsin

(
a
√
3

2l

)
.

Finally if a
√
3 ≤ l < 2a the segment K does not intersect the hexagon if

and only if its centroid is in the parallelogram A′C ′D′F ′ and the angle φ
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satisfies 0 ≤ φ ≤ arcsin
(
a
√
3
l

)
− π

3
. Since the area of the parallelogram is

the same as above we have:

µ (N3)

= 6

[∫ arcsin
(
a
√
3
l

)
−π

3

0

area(A′C ′D′F ′)dφ

]
=

=
√
3
(
l2 + 12a2

)
arcsin

(
a
√
3

l

)
+ 15a

√
l2 − 3a2 − a2

(
4
√
3π + 9

)
− l2

6

(
9 + 2

√
3π
)
.

If l ≥ 2a the line segment K always meets at least one side of the
hexagon.

Since p(K,R) = 1− 2µ(N1)+3µ(N2)+µ(N3)
M we obtain 3.1. �

This is the probability distribution of pK,R

l/a

pK,R

√
3/2

96 − 12
√

3−π

8(3+2
√

3)π
≈ 0.7684

1

4π
√

3+81π

6(3+2
√

3)π
≈ 0.8434

√
2

≈ 0.951

√
3

(6−
√

3)π+27

2(3+2
√

3)π
≈ 0.9949

Let us observe that pK,R ≤ 1
2

for l ≥ 60
√
3−
√

10800−630
√
3π−294π2

30
√
3+14π

a ≈ 0.3863a i.e.
also for “small” needles.
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