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ANALYSIS OF APPROXIMATE SOLUTIONS OF NONLINEAR DIFFERENTIAL
EQUATIONS IN THEIR GENERAL FORM WITH GENERALIZED ORDER

T. Lejdel Ali1, S. Meftah, and L. Nisse

ABSTRACT. In this paper, we dedicate our study on the approximate solutions of
van der Pol equation in their general form. First, we prove the approximate ana-
lytic solutions to this equation by different perturbation methods, simple pertur-
bation method (SPM), Lindstedt-Poincaré method (PLM) and Averaging method
(AM). Then we compare these approximations with each other and with the exact
solution. Second, we introduce a new form of generalized Van Der Pol oscilla-
tor with fractional-order derivatives. Which is analyzed through phase portraits,
Poincaré maps and analytic solutions, we use numerical simulation to illustrate
the behavior of the fractional order system.

1. INTRODUCTION

The Van der Pol equation appeared in 1927 by the electrical engineer Balthazar
van der Pol, see [1], where he described the oscillations of a triode in electri-
cal circuits. He presented it in its mathematical form as second-order nonlinear
oscillatory differential equation. It is one of important useful models in pertur-
bation theory. For understanding of the behavior of this type of equation, many
studies have been carried out in different methods to approximate and find the
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behavior of the best approximate solutions of nonlinear equations, see [13, 14].
Researchers have developed many methods and techniques to study approximate
analytic solutions with different perturbation methods, see [4–8]. After, many sys-
tems display the dynamics of the fractional order, and through previous studies
the researchers found that some of these systems display chaotic movements in
the fractional order. For more details, we refer the reader to [9–11].

In our work, we have devoted the study of Van der pol equation in their general
form. We used the simple perturbation method (SPM), Lindstedt-Poincaré method
(PLM), Averaging method (AM ) and renormalization group method (RGM). Then,
we compared them with the exact solution and with each other to find the best
approximation of these methods. After that, we studied van der Pol systems gener-
alized in fractional order in their general form, where we modeled and simulated
using Matlab software, and analyzed our results.

This paper is organized as follows. In Section 1, we provide the general frame-
work of our study. In section 2, we define different perturbation methods; sim-
ple perturbation method (SPM), Lindstedt-Poincaré method (PLM) and Averaging
method (AM) to prove the approximate analytical solutions of the generalized van
der Pol equation and then we compare these approximations. In section 3, we
demonstrate numerical simulations, such as phase images, Poincare maps and an-
alytical solutions for generalized van der Pol systems in their general form, and
arrive at important new results from this study.

2. APPROXIMATE SOLUTIONS METHODS FOR THE NONLINEAR DIFFERENTIAL

EQUATION

2.1. Simple perturbation method (SPM) [7]. Consider the initial value problem
..
x = f (t, x, ε) , with x (0) given,

t ≥ 0, x ∈ D ⊂ Rn. If we can expend f(t, x, ε) in a Taylor series with respect to ε.
Suppose that the approximate solution is written in the form

x (t, ε) = x0 (t) + εx1 (t) + · · ·+ o(εn).

2.2. Example. We consider the differential equation of the VAN der Pol oscillator
in their general form is:
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(2.1)
..
x+ ε

(
b
.
x
2

+ ax2 − 1
)

.
x+ x = 0. x(0) = A and

.
x(0) = 0, a, b, A ∈ R.

Suppose that the approximate solution is

(2.2) yP (t, ε) = x (t, ε) = x0 (t) + εx1 (t) + ε2x2(t) + o(ε2).

To determine x0(t), x1(t) and x2(t), substituting 2.2 into 2.1, and calculating, we
find

yP (t, ε) = A cos(t)

+ ε

[
(
A3

32
[7a+ 9b]− A

2
) sin(t) + (

A

2
− A3(a+ 3b)

8
)t cos(t)− A3(a− b)

32
sin(3t)

]
+ ε2((− A5

3072
[9(a+ 3b)(a− b) + 9(a− b)(a− 3b) + 24a(a+ 3b) + 18a(a− b)

− (5a− 9b)(a− b)] +
2A3

256
[7a− 3b]) cos(t) + (

A5

256
[(a− 9b)(a− b)− 9(a− b)2

+ 2(a− 9b)(a+ 3b) + 6(a− b)] +
3A3

64
[7b+ a]− A

8
)t sin(t) + (

3A5

128
(a+ 3b)2

+
A

8
− A3

8
(a+ 3b))t2 cos(t) + (

A5

1024
[3(a+ 3b)(a− b) + 3(a− b)(a− 3b)

+ 8a(a+ 3b) + 6a(a− b)]− 2A3

256
[7a− 3b]) cos(3t)− A5

3072
(5a− 9b)(a− b) cos(5t)

+ (
3A5

256
(a− b)(a+ 3b)− 3A3

64
(a− b))t sin(3t)) + o(ε2).

2.3. Lindstedt-Poincaré method [6]. Let be the second order nonlinear differ-
ential equations in the following form

..
y + y = εF (y,

.
y) , ε > 0.

A new variable θ = ωt is introduced, and both y and ω are expanded to powers of
as follows

y (θ, ε) = y0 (θ) + εy1 (θ) + · · ·+ εnyn (θ) + · · ·+ o(εn)

ω (ε) = 1 + εω1 + · · ·+ εnωn + · · ·+ o(εn),

where, at this point, the ωj are unknown constants.
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Note here that the Lindstedt-Poincaré approximations are periodic due to the
following proposition.

Proposition 2.1. Let the equation

(2.3)
..
y + y = G (θ) , y (0) = 0,

.
y (0) = 0.

Here G (θ) = −2ω1
..
y0 + F (y0,

.
y0). The solution to this problem is

y (θ) =

∫ θ

0

sin (θ − τ)G (τ) dτ.

Moreover, the equation (2.3) has a periodic solution y1 (θ), if, and only if,
∫ 2π

0
F (Acosθ,−Asinθ) sinθ dθ = 0,

2πω1A+
∫ 2π

0
F (Acosθ,−Asinθ) cosθ dθ = 0.

2.4. Example. We solving the equation 2.1 by Lindstedt-Poincaré method, with
yL(t, ε) = y (θ, ε), we find

yL(t, ε) =
2√

a+ 3b
cos(θ) + ε(

1

4(a+ 3b)

1√
a+ 3b

(a− b)(3 sin(θ)− sin(3θ)))

+ ε2((
−4a(a− b)

96(a+ 3b)2
√
a+ 3b

− 3(a− b)
32(a+ 3b)

√
a+ 3a

+
45b(a− b)

48(a+ 3b)2
√
a+ 3b

) cos(θ)

+ (
3a(a− b)

32(a+ 3b)2
√
a+ 3b

+
3(a− b)

32(a+ 3b)
√
a+ 3b

− 9b(a− b)
8(a+ 3b)2

√
a+ 3b

) cos(3θ)

+ (− 5a(a− b)
96(a+ 3b)2

√
a+ 3b

+
9b(a− b)

48(a+ 3b)2
√
a+ 3b

) cos(5θ)) + o(ε2)

ω = 1− [
a(a− b)

8(a+ 3b)2
− 3(a− b)

16(a+ 3b)
+

9b(a− b)
8(a+ 3b)2

]ε2 + o(ε2).

The equation
..
y1 + y1 = 2Aω1 cos θ − A(1 − aA2 cos2 θ − bA2 sin2 θ) sin θ has a

periodic solution y1 (θ), if, and only if,
∫ 2π

0
−A(1− aA2 cos2 θ − bA2 sin2 θ) sin2 θ dθ = 0,

2πω1A+
∫ 2π

0
−A(1− aA2 cos2 θ − bA2 sin2 θ) sin θcosθ dθ = 0.

⇒


1
4
aπA3 + 3

4
bπA3 − Aπ = 0,

2ω1Aπ = 0.
⇒

 A = 2√
a+3b

,

ω1 = 0.
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2.5. Averaging method [5]. This method applies to equations of the form
..
x+ ω2x+ εF (x,

.
x) = 0.

For ε 6= 0 small, Krylov and Boyolinbov posed the solution

x (t) = A (t) sin (ωt+ Φ (t)) ,

.
x (t) = A (t)ω cos (ωt+ Φ (t)) .

Let θ = ωt+ Φ, we find
.

A = − ε

2π

∫ 2π

0
cos (θ) f (Asinθ,Aω cosθ) dθ,

.

Φ =
ε

2πAω

∫ 2π

0
sin (θ) f (Asinθ,Aω cosθ) dθ.

We recall that

Im,n =

∫ 2π

0

sinmxcosnxdx = 0, sim,n sont impaires.

and further
Im,n =

m− 1

m+ n
Im−2,n, Im,n =

n− 1

m+ n
Im,n−2.

We arrive at I0,0 = 2π.

2.6. Example. We solving the equation 2.1 by averaging method. The averaging
approximate solution is

yA (t, ε) =
2[(

4
A2

0
− (a+ 3b)

)
e−εt + 1

] 1
2

sin (t+ Φ0) ,

where yA (t, ε) = x (t, ε).

2.7. Renormalization group method [4]. The renormalization group method is
a method for finding the approximate solution of ordinary differential equations
in (Rn) of the form

.
x = Fx+ g(x, t, ε)

(2.4)
.
x = Fx+ εg1(x, t) + ε2g2(x, t) + · · · ; x ∈ Rn.

where ε is an infinitely small positive parameter. For this system, we assume that

(1) F be a square matrix n ∗ n, diagonalizable with imaginary eigenvalues;
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(2) The function g(x, t, ε) is sufficiently differentiable in t, x and ε, the power
series expansion of ε is given by the equation (2.4);

(3) Each gi(x, t) is periodic in t ∈ R and polynomial in x.

Then one might assume there is a similar expansion for the solution

x(t, ε) = x0 + εx1 + ε2
.
x2 + · · · .

2.8. Example. We solving the equation 2.1 by renormalization group method.
For x = (z + z̄) and y = i(z − z̄) the equation (2.1) becomes

.
z = iz + ε

2
[(z − z̄)− a(z + z̄)2(z − z̄) + b(z − z̄)3]

.
z̄ = −iz̄ − ε

2
[(z − z̄)− a(z + z̄)2(z − z̄) + b(z − z̄)3].

It verifies the hypotheses (1-3) with

F =

(
i 0

0 −i

)
.

The two equations of the system being identical, the problem amounts to solving
one of them, with

z(t, ε) = z0 + εz1 + · · · .

z(t, ε) is the solution searched by the renormalization group method which di-
verges for t long because of the last term.

To zero order we have

z0 = z(t, 0) = qeit = qZ(t),

with q the integration constant By setting q = reiθ(ζ) with x = (z + z̄) and y =

i(z − z̄), we find

x(t, ε) = 2r cos(θ(ζ) + t)− rε

2
sin(θ(ζ) + t)

+
ε

2

[(
b−a
2

)
r3 sin 3(θ(ζ) + t) + (a+ 3b)r3 sin(θ(ζ) + t)

]
+O(ε2).

Suppose that yR(t, ε) solution of (2.1) by renormalization group method, then
yR(t, ε) = x(t, ε).

The renormalization group equation becomes:
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dr
dζ

= εr
2

(1− (a+ 3b)r2),

dθ(ζ)
dζ

= 0.

It is easy to prove that EGR has a stable periodic orbit (the limit cycle) of radius
rs =

√
1

a+3b
with a+ 3b >0.

3. COMPARISON OF APPROXIMATE SOLUTIONS

We compare yE(t, 0) the exact solution, yP (t, ε) the approximate solution with
simple perturbation method, yL(θ, ε) the approximate solution with Lindestedt
method and yA(t, ε) the approximate solution with Averaging method of Ven Der
Pol equation.

3.1. Comparison of approximate solutions to order ε2. g(t) is the Taylor se-
ries expansion of yL((1 + [ a(a−b)

8(a+3b)2
− 3(a−b)

16(a+3b)
+ 9b(a−b)

8(a+3b)2
]ε2)t, ε) in the order ε2 in the

neighbourhood of ε = 0.

g(t) =
2√

a+ 3b
cos(t) + ε(

1

4(a+ 3b)

1√
a+ 3b

(a− b)(3 sin(t)− sin(3t)))

+ ε2((
−4a(a− b)

96(a+ 3b)2
√
a+ 3b

− 3(a− b)
32(a+ 3b)

√
a+ 3b

+
45b(a− b)

48(a+ 3b)2
√
a+ 3b

) cos(t) + (
3a(a− b)

32(a+ 3b)2
√
a+ 3b

+
3(a− b)

32(a+ 3b)
√
a+ 3b

− 9b(a− b)
8(a+ 3b)2

√
a+ 3b

) cos(3t)

+ (− 5a(a− b)
96(a+ 3b)2

√
a+ 3b

+
9b(a− b)

48(a+ 3b)2
√
a+ 3b

) cos(5t)

− [
a(a− b)

2(a+ 3b)2
√
a+ 3b

+
3(a− b)

4(a+ 3b)
√
a+ 3b

+
9b(a− b)

2(a+ 3b)2
√
a+ 3b

]t sin(t))

h(t) is the Taylor series expansion of yA(t, ε) in the order ε2 in the neighbourhood
of ε = 0,

h(t) = (A+ (
A

2
− A3(a+ 3b)

8
)εt+ (

3A5

128
(a+ 3b)2 +

A

8
− A3

8
(a+ 3b)) cos(t).

yE(t, 0) = A cos(t).
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FIGURE 1. Comparison of the SPM solution, LPM solution and AM
solution for ε = 0.1 and A = 1

FIGURE 2. Comparison of the SPM solution, LPM solution and AM
solution for ε = 0.9 and A = 1
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FIGURE 3. Comparison of the SPM solution, LPM solution and AM
solution for ε = 0.1 and A = 2

FIGURE 4. Comparison of the SPM solution, LPM solution and AM
solution for ε = 0.9 and A = 2

Remark 3.1. Figures 1- 4 show the analytic approximate solutions to order ε2, ob-
tained by different methods SPM, LPM and AM at different values of ε andA.
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3.2. Comparison of approximate solutions to order ε. To compare the approx-
imate solutions of the first order, we used another approximate solution, which is
the solution by the renormalization group method, and denotes it by yR(t, ε).

FIGURE 5. Comparison of the SPM solution, LPM solution, AM and
solution RGM solution for ε = 0.1, r = 1 and A = 1

FIGURE 6. Comparison of the SPM solution, LPM solution, AM solu-
tion and RGM solution for ε = 0.9, r = 1 and A = 1
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FIGURE 7. Comparison of the SPM solution, LPM solution, AM and
solution RGM solution for ε = 0.1, r = 1 and A = 2

FIGURE 8. Comparison of the SPM solution, LPM solution, AM solu-
tion and RGM solution for ε = 0.9, r = 1 and A = 2
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Remark 3.2. Figures 5- 8 show the approximate analytic solutions up to the order
of ε. Obtained by different methods SPM, LPM, AM and RGM at different values of
ε, r and A.

4. STUDY OF THE GENERALIZED VAN DER POL OSCILLATOR WITH FRACTIONAL

DERIVATIVES

4.1. Definition and approximation of fractional order operators. Fractional
derivative has many definitions [2]. We use the Riemann-Liouville definition of
the fractional-order derivative

aDα
t f(t) =

dn

dtn
Dα−nf(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

f(τ)

(t− τ)α−n+1
dτ, α > 0.

where Γ(.) is a gamma function and n is an integer such that n− 1 ≤ α < n.
For better control and analysis of dynamic systems, we used an alternative defi-

nition through the Laplace transform. We present the definition as follows

L{d
αf(t)

dtα
} = sαL{f(t)} = F (s).

In our study we used the Charef’s approximation frequency method [3] which is
based on transfer functions of 1/sα with different fractional orders, α = 0.1 − 0.9

steps, giving a maximum error of 2dB in the calculations and this is to approximate
the behavior of the fractional system based on the frequency domain arguments.

4.2. Generalized VAN der Pol oscillator with fractional derivatives. The van
der Pol equation is presented in standard form by a second-order nonlinear differ-
ential equation of the type:

(4.1)
..
x+ ε(x2 − 1)

.
x+ x = 0,

where ε is a parameter. The equivalent state space formulation has the form

(4.2)

dx1
dt

= x2
dx2
dt

= −x1 − ε(x21 − 1)x2.

The equation (4.1) has undergone several modifications due to the application
of some fractional powers to the dependent variable x and/or its derivatives. These
nonlinear differential equations are called fractional van der Poel equations.
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Barbosa and al. [12] also suggested the introduction of a fractional-order time
derivative in the state-space equations (4.2) of the standard Ven der pol in the
form dαx1

dtα
= x2

dx2
dt

= −x1 − ε(x21 − 1)x2,

where α is fractional number. This system is analyzed by Barbosa and al. [9].
The generalized van der Pol system which is written asdx1

dt
= x2

dx2
dt

= −x1 − ε(ax21 + bx22 + cx+ d)x2,

where ε, a, b, c, d are parameters. The corresponding fractional order system is

(4.3)

dαx1
dtα

= x2
dx2
dt

= −x1 − ε(ax21 + bx22 + cx+ d)x2,

where α is fractional number.
A modified version of Eq. (4.3) is now proposed. The generalized fractional

order van der Pol system (4.3) is transformed into an generalized fractional order
van der Pol system with the degree of its polynomials,

(4.4)

dαx1
dtα

= x2
dx2
dt

= −x1 − ε(ax21 + bx22 + cx+ d)(x2)
n,

where n ∈ N, 0 < α < 1 and ε > 0.
Note that the system (4.4) reduces to the classical van der Pol system (7) when

α = 1, n = 1, a = 1, b = 0, c = 0, d = −1 and that the total system order is changed
to α + 1 < 2. The differential equation of system (4.4) is given by

(4.5) x(1+α) + ε(ax2 + b(x(α))2 + cx+ d)(x(α))n + x = 0.

In this section, we analyse and present simulation results of the chaotic dynamics
produced from a new generalized fractional van der Pol system (4.5).

4.3. Numerical simulations for the fractional order generalized van der Pol
systems.
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FIGURE 9. Block diagram of the the generalized fractional Van der
Pol system under study.

Figure 9 shows The block diagram representation of system (4.5).

α = 0.4 α = 0.7 α = 0.9

FIGURE 10. Phase portraits of (4.5) α = {0.4, 0.7, 0.9}, n = 1 and ε = 1.

α = 0.4 α = 0.7 α = 0.9

FIGURE 11. Analytical solution of VPO (4.5) such that: α =
{0.4, 0.7, 0.9}, n = 1 and ε = 1.
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ε = 0.5 ε = 4 ε = 16

FIGURE 12. Phase portraits of (4.5): ε = {0.5, 4, 16}, n = 1 and α = 0.8.

ε = 0.5 ε = 4 ε = 16

FIGURE 13. Analytical solution of VPO (4.5) such that: ε =
{0.5, 4, 16}, n = 1 and α = 0.8.

α = 0.6 α = 0.7 α = 0.8

FIGURE 14. Phase portraits of (4.5) α = {0.6, 0.7, 0.8}, n = 3 and ε = 1.
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α = 0.6 α = 0.7 α = 0.8

FIGURE 15. Analytical solution of VPO (4.5) such that: α =
{0.6, 0.7, 0.8}, n = 3 and ε = 1.

ε = 0.9 ε = 2 ε = 4

FIGURE 16. Phase portraits of (4.5): ε = {0.9, 2, 4}, n = 3 and α = 0.6.

ε = 0.9 ε = 2 ε = 4

FIGURE 17. Analytical solution of VPO (4.5) such that: ε =
{0.9, 2, 4}, n = 3 and α = 0.6.
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α = 0.85 α = 0.9 α = 0.95

FIGURE 18. Phase portraits of (4.5) α = {0.85, 0.9, 0.95}, n = 15 and
ε = 0.1.

α = 0.85 α = 0.9 α = 0.95

FIGURE 19. Analytical solution of VPO (4.5) such that: α =
{0.85, 0.9, 0.95}, n = 15 and ε = 0.1.

Figures 10 to 19 show phase space, Poincaré maps, and analytic solutions at
different values of ε, α and n. We investigate important differences in the limit
cycle, revealing a significant influence of ε, α and n on system dynamics.
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