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SETTING OF AMPLITUDE WITH MATÉRN PROCESS

Andrianantenainarinoro Tsilavina Ravo Hasina

ABSTRACT. All diffusion processes have default amplitudes that cannot be ad-
justed and we propose an adjustment via the Matérn process in work of Lilly [8].
We use the WASC model of Da Fonseca [2] as a reference model and we intro-
duce in this model the Matérn process. We obtain the adjustment but we have
the major problems that we must solve: we must give the sense of the fractional
integral with respect Matérn process; we church the law of model which is noised
by Matérn process; we church the conditions of market without arbitrage.

1. INTRODUCTION

Let’s consider a real datasets of the daily prices CAC40 and SBF120 (see in a site
of trading www.boursorama.com or m.fr.investing.com). For each index, the time
series start the May 12, 2021 and end the June 15, 2021 and they are presented
by the following figure:
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FIGURE 1. Historical Volume of CAC40 and SBF120 Indexes

Using the WASC model of Da Fonseca [2] estimated by the real datasets above
and the CGMM method (see in the reference [1]), the course evolution of CAC40
and SBF120 in one daily with frequency 15 second (see in the section 6, the tech-
nique to draw the graph) is
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FIGURE 2. The course of WASC model in the one daily with frequency=
15 second

We remark that the graph scale of WASC model is not logic because on the
market, the high value of CAC40 (resp SBF120) of June 15, 2021 is 6655.66 (resp
3393.52). However, according to the last graph, the CAC40 (resp SBF120) of WASC
model in this time can take a big value greater than 6655.66 (resp 3393.52).
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To do this, to adjust the course, we introduce in WASC model the truncated
version of the general Matérn process in work of Lilly [8] of the form:

(1.1) Mt,α,β =

∫ +∞

0

R(t− s, α, β)dWs,

where

(1.2) R(t, α, β) =

{
tαe−βt

G(α+1)
if t ≥ 0

0 otherwise
,

α > −1
2

, β ≥ 0, G is the Gamma function such that G(x) =
∫ +∞

0
ux−1e−udu, where

x > 0 and Wt is a sBm (standard Brownian motion). We referee the obtained
model by Setting of Amplitude with Matérn Process (SAMP) noted SAMP (α, β):

(1.3)


d logSt =

(
r − 1

2
vec[tr(eiiΓt−)]

)
dt+

√
ΓtdZt

dΓt = (νQ′Q+ ΦΓt + ΓtΦ
′)dt+

√
ΓtdB̃t

√
Q′Q+

√
Q′Q(dB̃t)

′√Γt

dZt =
√

1− ρ′ρdMt,α,β + dB̃tρ

with

(i) ν is a positive integer nonzero;
(ii) Q and Φ are n× n dimensional real matrices;

(iii) r is a vector in Rn;
(iv) If a1, . . . , an ∈ R, then vec(ai) = (a1, . . . , an)′ which is a vector in Rn;
(v) eii is n× n dimensional matrix defined by eii = (δijk)j,k=1...n, where

δijk =

{
1 if (j, k) = (i, i)

0 otherwise
;

(vi) Zt is the process which defines the stochastic correlation noise between
the yield logSt and its volatility Γt on the continuous path;

(vii) Mt,α,β is a n–dimensional vector whose components are the truncated Matérn
process above;

(viii) ρ = (ρ1, ρ2, . . . , ρn)′, where ρi ∈ [−1, 1];
(ix) B̃t is a n×n dimensional stochastic matrix whose components are the sBm;
(x) H ′ is the transpose of the matrix H;

(xi) tr(H) is the trace of the matrix H.

Our work is to prove that this technique will fill this gap and the obtained model
will also contribute the pricing option, the hedging problem and even for a wider
class other than financial engineering.
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2. PROPERTY OF MATÉRN PROCESS

Let (Rn, F, (Ft)t≥0, P ) be a filtrate and probability space, where

(i) F is a tribe on Rn representing the global information available on the
market;

(ii) (Ft)t≥0 is a family of sub–tribe of F which is the information available in
time t (natural filtration);

(iii) P is the probability density without risk.

The conditional variance of increment M(t+ h, α, β)−M(t, α, β) is given by

(2.1) V ar(M(t+ h, α, β)−M(t, α, β)|Ft) =
h2α+1c2α,2β(h)

G(α + 1)2
,

where

(2.2) cx,y(h) =

∫ 1

0

uxe−hyudu,

which is integrable for all h ≥ 0, x > −1, y ≥ 0 and

(2.3) 0 ≤ cx,y(h) ≤ 1

x+ 1
for all h ≥ 0, x > −1 and y ≥ 0.

Indeed,

V ar(M(t+ h, α, β)−M(t, α, β)|Ft) =

∫ t+h

t

(t+ h− s)2αe−2β(t+h−s)

G(α + 1)2
ds

=
h2α+1c2α,2β(h)

G(α + 1)2
through the change of

variable by doing u =
t+ h− s

h
.

3. MEANING OF INTEGRAL
∫ T

0

√
ΓsdMs,α,β

In the first equation of model (1.3), we must give the sens of integral∫ T
0

√
ΓsdMs,α,β or

∫ T
0
σkl,tdMl,s, where

√
Γt = (σkl,t)1≤k,l≤n and Ml,t are the com-

ponents of Matérn process Mt,α,β.
Let’s consider

(3.1)
∑
ti∈∆

σkl,ti(Ml,ti+1
−Ml,ti),
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with ∆ = {0 = t0 < t1 < . . . < tm = T} and watch what’s going when ∆ −→ 0.
If α = β = 0, then the Ml,ti are sBm which are martingales. Since the σkl,ti

are adapted continuous, then the sum (3.1) converges to
∫ T

0
σkl,sdBs through [9,

Proposition 122].
Now, suppose that α > 0 and β ≥ 0. The reasoning is based on the work of

Ivan Nourdin [11]. Let’s admit that for all t, t′ ∈ [0, T ] closer, there exist B > 0,
‖ σkl,t′ − σkl,t ‖≤ B | t′ − t | 12 and put T = 1 (to simplify) and ∆ = ∆m =

{k2−m, k = 0, . . . , 2m−1}. If t ∈ ∆m, we denote t′ = t + 2−m and τ = t+t′

2
. Let us

um =
∑
t∈∆m

σkl,t(Mlt′ −Mlt). So, we have

um+1 − um =
∑
t∈∆m

σkl,t(Ml,τ −Ml,t) + σkl,τ (Ml,t′ −Ml,τ )−∑
t∈∆m

σkl,t(Ml,t′ −Ml,τ ) + σkl,t(Ml,τ −Ml,t)

=
∑
t∈∆m

(σkl,τ − σkl,t)(Ml,t′ −Ml,τ ).

Thus

‖ um+1 − um ‖ ≤
∑
t∈∆m

‖ σkl,τ − σkl,t ‖‖Ml,t′ −Ml,τ ‖

≤
∑
t∈∆m

B | τ − t |
1
2

(
E(Ml,t′ −Ml,τ )

2
) 1

2

≤
∑
t∈∆m

B2−(m+1) 1
2 2−(m+1)(α+ 1

2
)

G(α + 1)

=
B2−(m+1)α

2G(α + 1)
−→ 0, as m↗∞.

Hence um converges to the Young integral in [13]
∫ T

0
σkl,sdMls for α > 0 and β ≥ 0.

Now, let’s prove that for all t, t′ ∈ [0, T ] closer, there exist B > 0, ‖ σkl,t′−σkl,t ‖≤
B | t′ − t | 12 .

Let U =
{

(x11,t, . . . , x1n,t, x22,t, . . . , x2n,t, , , , xnn,t) ∈ R
n(n+1)

2

}
, xii > 0 and the

main miners of the symmetric matrix (xkl)k,l=1...n are positives. Let F : U −→ U ,
F (σ11,t, . . . , σ1n,t, σ22,t, . . . , σ2n,t, , , , σnn,t) = (Γ11,t, . . . ,Γ1n,t,Γ22,t, . . . ,Γ2n,t, , , ,Γnn,t),
where Γ..,t are the components of the volatility matrix Γt. Then, F is a global di-
morphism. Indeed, for n = 1, we have U =]0,+∞[, and F (σ) = σ2. Thus DF =

2σ > 0 on U (DF is the derivative of F ). The result follows through [3, Global
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Inversion Theorem]. For n = 2, we have U = {(x11, x12, x22) ∈ R3 : x11, x22 >

0;x11x22 > (x12)2} and F (σ11, σ12, σ22) = ((σ11)2 + (σ12)2, (σ11 + σ22)σ12, (σ22)2 +

(σ12)2).

Thus, we have det(DF ) = det

2σ11 2σ12 0

σ12 σ11 + σ22 σ12

0 2σ12 2σ22

 = 4(σ11 + σ22)(σ11σ22 −

(σ12)2) > 0 for all (σ11, σ12, σ22) ∈ U . The result follows also using the Global
Inversion Theorem. We remain for n = 1; 2 which is the dimension of model that
we used.

So, there exist a function gki : U −→ R of C1 class such that gki(Γt) = σki,t and

dσki,t =
n∑

s,r=1

∂gki(Γt)
∂Γsr,t

dΓsr,t.

Thus, ‖ σkl,t′ − σkl,t ‖≤ B | t′ − t | 12 through to SDE (Stochastic Differential
Equation) of Γt, where

B = A
n∑

k,l=1

Nkl

A = sup
t∈[0,T ]

s,r,p,q=1,...,n

(∣∣∣∣∂gsr(Γt)∂Γpq,t

∣∣∣∣ ; |Γsr,t| ; |gsr(Γt)|) <∞ because the trajectory of

Γt is continuous and the gsr are C1(U) classes.

Nkl =

∣∣∣∣∣ν
n∑
j=1

QkjQjl

∣∣∣∣∣+ A
n∑
i=1

|Φil|+ |Φki|+ A
n∑

i,j=1

|Qjl|+ |Qki|

Φ = (Φkl)kl,
√
Q′Q = (Qkl)kl.

For −1
2
< α ≤ 0 and β ≥ 0. Through to (2.1) and (2.3), the Matérn process is a–

Holder, a ∈ (0, α+ 1
2
). Using [10, Theorem 2.5], the Riemann sum (3.1) converges

into
∫ T

0

√
Γsd

A,ηMs,α,β, called the η–order Newton–Côtes functional corrected by
A of

√
Γt with respect to Mt,α,β, which is the meaning of

∫ T
0

√
ΓsdMs,α,β, where

η ∈ N∗ and A is the a–Levy’s areas of order 2η − 2. But we do not know if it is
possible to construct a Levy area A. Fortunately, through [10, Proposition 3.5], for
α + 1

2
> 1

3
, ∫ T

0

√
Γsd

A,1Ms,α,β =

∫ T

0

√
Γsd

◦Ms,α,β.
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The right integral is integral’s Russo and Vallois [12] defined by

(3.2) lim
ε−→0

ε−1

∫ T

0

√
Γs+ε +

√
Γs

2
(Ms+ε,α,β −Ms,α,β)ds.

4. LAPLACE TRANSFORM OF MODEL

We will use CGMM method to estimate the model parameter and this method
needs Laplace transform.

Let γ be a vector in Rn. The conditional Laplace transform of logST |Ft is defined
by:

(4.1) ΨlogS(γ, t, T ) = E{eγ′ logST |Ft}.

Proposition 4.1. We have

(4.2) ΨlogS(γ, t, T ) = etr(A(h)Γt)+B(h) logSt+C(h)

with h = T − t and A(h), B(h), C(h) are the functions defined by:

A(h) = F (h)−1G(h),

B(h) = γ′,

C(h) = tr

[
rγ′h+−ν

2

(
logF (h) + h

Φ + Φ′

2

)]
where (G(h), F (h)) is defined by:[

G(h)

F (h)

]
= exp

([
Φ+Φ′

2
h −2hQ′Q

Υ1(h) −Φ+Φ′

2
h

])[
0

In

]
;

Υ1(h) = −h
2

n∑
i=1

γieii +
(1− ρ′ρ)h2α+1c2α,2β(h)

2G(α + 1)2
γγ′ −

h

2
(Φ + Φ′)

(√
Q′Q

)−1

(ργ′).

Proof.

ΨlogS(γ, t, T ) = E
[
eγ
′[logSt+

∫ T
t (r− 1

2
vec[tr(eiiΓs)])ds+

∫ T
t

√
ΓsdZs]|Ft

]
= eγ

′(logSt+r(T−t))E
[
eγ
′[
∫ T
t −

1
2
vec[tr(eiiΓs)]ds+

∫ T
t

√
ΓsdZs]|Ft

]
(4.3)

Since the coefficient of logSt is only γ′, then B(h) = γ′ ∀h.
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We have

E
[
eγ
′[
∫ T
t −

1
2
vec[tr(eiiΓs)]ds+

∫ T
t

√
ΓsdZs]|Ft

]
= E

[
e
∫ T
t −

1
2
γ′vec[tr(eiiΓs)]ds+

√
1−ρρ′γ′

∫ T
t

√
Γs−dMs,α,β+γ′

∫ T
t

√
ΓsdB̃sρ|Ft

]
through to dZt =

√
1− ρ′ρdMt,α,β + dB̃tρ

= E
[
e
∫ T
t −

1
2
γ′vec[tr(eiiΓs)]ds+

(1−ρ′ρ)
2G(α+1)2

∫ T
t (T−s)2αe−2β(T−s)γ′Γsγds+

∫ T
t γ′
√

ΓsdB̃sρ|Ft
]

(4.4)

because
∫ T
t

√
ΓsdMs,α,β is Gaussian random variable and Γt is independent of

Mt,α,β. We notice that
∫ T
t

√
ΓsdB̃s remains in function of B̃s after conditionally

because
√

Γt is defined in function of B̃t.
By integrating the SDE (Stochastic Differential Equation) of Γt between (t, T ),

we have

ΓT = Γt + νQ′Q(T − t) +

∫ T

t

(ΦΓs + ΓsΦ
′)ds

+

∫ T

t

(√
ΓsdB̃s

√
Q′Q+

√
Q′Q(dB̃s)

′
√

Γs

)
.

So ∫ T

t

γ′
√

ΓsdB̃sρ =
1

2
γ′ [ΓT − Γt − νQ′Q(T − t)

−
∫ T

t

(ΦΓs + ΓsΦ
′)ds

](√
Q′Q

)−1

ρ.

By inserting the expression of
∫ T
t
γ′
√

ΓsdB̃sρ into (4.4), we have

(4.4) = e−
1
2
γ′Γt(

√
Q′Q)

−1
ρ− ν(T−t)

2
γ′
√
Q′QρE

[
f(ΓT )e−

∫ T
t g(s,Γs)ds|Ft

]
,(4.5)

where

f(ΓT ) = e
1
2
γ′ΓT (

√
Q′Q)

−1
ρ

g(s,Γs) =
1

2
γ′vec[tr(eiiΓs)]−

(1− ρ′ρ)(T − s)2αe−2β(T−s)

2G(α + 1)2
γ′Γsγ+

1

2
γ′(ΦΓs + ΓsΦ

′)
(√

Q′Q
)−1

ρ.
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To obtain the final formula of Ψ, we have need to calculate the following expres-
sion

X(t,Γt) = E
[
f(ΓT )e−

∫ T
t g(s,Γs)ds|Ft

]
.

According the Feynmann–Kac’s argument, X(t,Γt) should fill the following multi-
dimensional partial differential equation

∂X(t,Γt)

∂t
+ tr

[
2ΓtQ

′Q
∂2X(t,Γt)

∂Γ2
+ (νQ′Q+ Φ′Γt + ΓtΦ)

∂X(t,Γt)

∂Γ

]
−

g(t,Γt)X(t,Γt) = 0,(4.6)

with boundary condition X(T,Γt) = f(ΓT ) = e
1
2
γ′ΓT (

√
Q′Q)

−1
ρ.

As Γt is affine, then there exists the functions a(h) and b(h) such that

(4.7) X(t,Γt) = etr[a(h)Γt]+b(h),

where h = T − t, b(0) = 0 and a(0) = 1
2

(√
Q′Q

)−1
ργ′. Through the expression

(4.6) and identifying on the basis vector (1,Γt), we have

∂a(h)

∂h
= 2Q′Qa(h)2 + (Φ + Φ′)a(h)− 1

2

n∑
i=1

γieii +
(1− ρ′ρ)h2αe−2βh

2G(α + 1)2
γγ′

−1

2
(Φ + Φ′)

(√
Q′Q

)−1

ργ′

∂b(h)

∂h
= tr[νQ′Qa(h)].

Hence (4.5) = etr[A(h)Γt+D(h)], where A(h) is solution of SDE:

∂A(h)

∂h
= 2A(h)Q′QA(h) +

Φ + Φ′

2
A(h) + A(h)

Φ + Φ′

2
+ Ξ(h) and

D(h) = tr

(∫ h

0

νQ′QA(u)du

)
,

where Ξ(h) = −1
2

n∑
i=1

γieii+
(1−ρ′ρ)h2αe−2βu

2G(α+1)2
γγ′− 1

2
(Φ+Φ′)(

√
Q′Q)−1(ργ′) and A(0) =

0.
Let us

(4.8) A(h) = F (h)−1G(h) with F (h) ∈ GLn(R) and G(h) ∈Mn(R).

We have 0 = A(0) = F (0)−1G(0). In this case, we take G(0) = 0 and F (0) = In.
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Since ∂[F (h)A(h)]
∂h

= ∂F (h)
∂h

A(h) + F (h)∂A(h)
∂h

, we have

∂G(h)

∂h
− ∂F (h)

∂h
A(h) = F (h)

∂A(h)

∂h

= F (h)Ξ(h) +G(h)
Φ + Φ′

2
+ F (h)

Φ + Φ′

2
A(h) +G(h)(2Q′Q)A(h).

So, {
∂G(h)
∂h

= G(h)Φ+Φ′

2
+ F (h)Ξ(h)

∂F (h)
∂h

= −2G(h)Q′Q− F (h)Φ+Φ′

2
.

Thus,

∂

∂h

[
G(h)

F (h)

]
=

[
Φ+Φ′

2
−2Q′Q

Ξ(h) −Φ+Φ′

2

][
G(h)

F (h)

]
,

and

D(h) = tr

(∫ h

0

νQ′QF (u)−1G(u)du

)
= tr

(∫ h

0

−ν
2
F (u)−1∂F (u)

∂u
− ν

2

Φ + Φ′

2

)
= tr

[
−ν

2

(
logF (h) + h

Φ + Φ′

2

)]
.

�

Let’s see now the impacts of Matérn process. Firstly, the covariance between
yield and its volatility and between yield and its correlation are the same ones of
WASC model in [2]:

cov(d logSi,t, dΓii,t) = 2dtΓii,t

n∑
l=1

Qliρl

cov(d logSp,t, dζpq,t) = dt

√
Γpp,t
Γqq,t

n∑
l=1

Qlqρl(1− ζ2
pq,t),(4.9)

where i = 1, . . . , n; p, q = 1, . . . , n and p 6= q, the ρi are the components of ρ, Si,t
is the price of stock i at time t and ζpq,t is the correlation between Γpp,t and Γqq,t

defined by:

(4.10) ζpq,t =
Γpq,t√

Γpp,tΓqq,t
.
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Secondly, the Matérn process has an influence on the option price, see the Tables
4 and 5.

5. THE MARKET WITH RESPECT MATÉRN PROCESS WITHOUT ARBITRAGE

We know that for a market noised by a fractional Brownian motion, Guasoni [5]
showed that by paying the transaction at a rate ε > 0, the market is without
arbitrage. Nothing says that it is valid for the market noised by a Matérn process,
hence the following Proposition.

Proposition 5.1. Let St = eσMt,α,β+Lt, t ∈ [0, T ] a market with respect Matérn pro-
cess, where α > −1

2
, β > 0, σ > 0 and Lt is a continuous function. Then, the market

is arbitrage free with transaction costs ε > 0 on the finite interval [0, T ].

Proof. Guasoni in [5] showed the equivalence: (a) the absence of arbitrage with
general strategies for arbitrarily small transaction costs ε > 0, (b) the absence
of free lunches with bounded risk for arbitrarily small transaction costs ε > 0,
and (c) the existence of ε–consistent price systems – the analogue of martingale
measures under transaction costs – for arbitrarily small ε > 0. And Guasoni in [6]
showed that if a continuous price process has conditional full support, then it
admits consistent price systems for arbitrarily small trans-action costs. Hence, we
will show that St = eσMt,α,β+Lt, t ∈ [0, T ] satisfies the conditional full support
condition.

According [7, Theorem 3], the topological support of Mt,α,β which is a con-
tinuous Gaussian process with covariance function σ̄(t, s) = cov(Mt,α,β,Ms,α,β) =∫ +∞

0
R(t− u, α, β)R(s− u, α, β)du, is equal to the closure under the uniform norm

of the corresponding Reproducing Kernel Hilbert Space (RKHS) defined by

(5.1) H :=

{
f ∈ C0[0, T ], f(t) =

∫ +∞

0

R(t− s, α, β)g(s)ds, g ∈ L2[0, T ]

}
,

where C0[0, T ] is the set of continuous functions f on [0, T ], f(0) = 0. Thus, it
sufficient to show that H is norm–dense in C0[0, T ].

Let g(s) = sγeβ(t−s), γ > −1
2

. We have
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f(t) =

∫ +∞

0

R(t− s, α, β)g(s)ds =
1

G(α + 1)

∫ t

0

sγ(t− s)αds

= tγ+α+1 G(γ + 1)

G(γ + α + 2)
.

Since γ > −1
2

is arbitrary, thenH contains the algebra of all polynomials with order
greater than one. This algebra separates ]0, T ] and is null only at zero. Through
the Stone–WeierstraB Theorem, H is dense in C0[0, T ]. �

Hence, when we use on the pricing option or hedging, we take r = ι1̌ in the
model (1.3), where ι is the interest rate on the market and 1̌ is the n–dimensional
vector whose components are equal to 1 and the transaction is paid with rate ε > 0.

6. ESTIMATING OF THE PARAMETERS OF MODEL

In the google site on trading (examples, www.bursorama.com or
m.fr.investing.com), we can find the historical values of the course we want (CAC40,
SP500, SBF120, Nasdaq,. . . ). We can also have the high and low value for each
day, the data frequency, the market opening and closing,. . .

We use this information to estimate the parameter of our model. To do this, we
pass by following two-steps to estimate the parameters of the model:

(i) We estimate the parameters Φ, ϕ, ρ, ν and
√
Q′Q using the WASC model,

the CGMM method and the real data with step–time T which is the expira-
tion time of option. That is, the type of data we are going to use depends
on the expiration time T. For instance, if T= 1 day, we use the daily prices;
if T= 1 week, we use the weekly prices and if T=1 month, we use the
monthly prices.

(ii) After, we adjust the course with the parameters α and β to correspond
the reality on the future period [0, T ]. In fact, if T is the expiration of the
market, we take t = 0 the time of signing of contract and t = 1 the time of
its expiration. Thus, we draw the price in [0, 1] and we regulate by graph
the evolution of the price to correspond to the reality. We use the Euler’s
discretization of the SDE (1.3) to draw the graph of future price of model.
To be realistic, this course should not take a value much higher than the
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high value taken by the current real price and likewise, it should not take
a value much lower than the low value taken by the real price. Since we
estimate Γt with the step–time T according to i), then we can take Γt = Γ0

over [0, 1[. What makes it easy to graph the price.

Let’s move on the examples to understand this method.

Example 1. Let’s stay on a market CAC40 previously (see in the Introduction) of
16 June, 2021 which open at 9:00 AM and close at 5:35 PM. We want to know the
price of June 16, 2021 from the opening until the closing of the market according to
our model. To do this, we want the following data: historical daily price of CAC40
and SBF120 (see, Figure 1), high and low value of CAC40 of 15 June, 2021 (high
value: 6655.46; low value: 6634.45), frequency of data (15 second). After collecting
the data, we move on to estimating the model. We skip step 1 of the estimation. An
application of this step can be seen in section 7 above one can consult the theory in
the reference [1]. In the step 2, if we take Γt = Γ0 in [0, 1], then we draw the course
graph in the interval [0, 1] using the step–time = 1

1922
and the Euler’s discretization of

return:

logSl,ti+1
− logSl,ti =

r − 1
2
Γll,0

1922
+

√
1− ρ′ρ

√
c2α,2β( 1

1922
)

1922αG(α + 1)

(√
Γ0Z

)
l
+
(√

Γ0Z̃ρ
)
l
,

where l = 1, 2, ∆ = {0 = t0 < t1 < . . . < t1922 = 1} are the subdivisions of [0, 1],
where 0 = t0 represents the time 9:00 AM, t1 represents the time 9:00:15 AM, t2
represents the time 9:00:30 AM,. . . and 1 = t1922 represents the time 5:35 PM; Z̃ is
the n× n dimensional matrix whose components are the Gaussian random variables
N(0, 1

1922
); Z is the n-dimensional vector whose components are the Gaussian random

variables N(0, 1
1922

);
(√

Γ0Z
)
l

is the l-th line of vector
√

Γ0Z and
(√

Γ0Z̃ρ
)
l

is the

l-th line of vector
√

Γ0Z̃ρ. After, we adjust the course with the parameters α and β
so that it does not take a false value much greater than 6655.46 and much less than
6634.45 on [0, 1].

Example 2. For T= 7 days (1 week), we use the weekly prices to estimate the CGMM
estimators. And the procedure is the same as above but instead of 1922, we subdivide
the interval [0, 1] into 11454.

Remark 6.1. As soon as we take Γt = Γ0 over [0, 1[, the hypothesis is open to criticism
because it is the same as that of Black and Scholes (constancy volatility). So to avoid
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this, we draw the course from the Euler’s discretization of the SDE (1.3) by varying
Γt. It is possible because the obtained Euler’s discretization is a recurring iteration.

7. APPLICATION

Here, we will look the course evolution of CAC40 and SBF120 with SAMP
model. Thus we will estimate the parameters of model using the real data.

Since our return’s dynamic follows the normal distribution, then our model is
more efficient if the density of each yield using data should be also Gaussian. To
do this, we will test the normality of each yield.

FIGURE 3. Histogram of density of log(CAC40)



SETTING OF AMPLITUDE WITH MATÉRN PROCESS 243

FIGURE 4. Histogram of density of log(SBF120)

The normality of sample is represented by these histograms. Now, we will look
in the whole.

TABLE 1. Shapiro-Wilk normality test

Indice Statistic p-value
log (SBF120) 0.96686 0.5668
log (CAC40) 0.9655 0.5343

We see according this test that the normality hypothesis of variables H0 is likely
at most 50 %.

Step 1: Estimating of Φ, ρ, ν and
√
Q′Q

The details of C.GMM method are in the reference [1].
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7.1. Monte Carlo study.
The initial parameters used in the simulation are:

Γ0 =

[
0.0225 −0.0054

−0.0054 0.0144

]
, Φ =

[
−5 −0.5

−0.5 −5

]
;

ρ = (−0.3,−0.4); ν = 15;

√
Q′Q =

[
0.1204 −0.01097

−0.01097 0.09549

]
.

The matrix
√
Q′Q is obtained by using the stationary relationship of WASC

model (cf. [2]):
Γ∞Φ′ + ΦΓ∞ = −νQ′Q.

The annual interest rate ι is taken in the range [0.015, 0.0175] which is a daily
interest rate 0.000045.
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FIGURE 5. C-GMM estimation criterion

The figure show us the values taken by real and imaginary part of the empirical
moment of continuum of C-GMM method. It show us that we can minimize its
function.
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TABLE 2. C-GMM estimator θ̂1.

parameter ρ1 ρ2 Q11 Q12 Q22

estimator 3.797461× 10−4 3.753161× 10−4 0.1 0 0.1

Φ11 Φ12 Φ21 Φ22 ν
−131.7092 −0.1 −0.1 −133.1997 2

with objective 1.077699× 10−5.

The Table 3 below presents the estimated parameters of model with these stan-
dard deviations errors.

TABLE 3. C-GMM estimator θ̂

parameter estimator standard deviation error
ρ1 −0.00294512 2.771415× 10−20

ρ2 −0.00351427 3.204106× 10−21

Q11 0.1 0.2273541
Q12 = Q21 0.079842 0.2298414
Q22 0.1 0.1738339
Φ11 −21.5248763 1.315346
Φ12 −0.1 0.1323577
Φ21 −0.1 0.1074781
Φ22 −20.2548135 0.02805844
ν 2 0.7796776

with objective 1.546725× 10−5.

From the expression of correlations, the asset and its volatility (resp correlation)
are negatively correlated.

Step 2: Estimating of setting parameters α and β
When we calibrate the course, we found α = 0.35 and β = 0 and the course

evolution is
The scale decreases and it is tolerable.

7.2. European call option of the basket CAC40 and SBF120. Let be a European
call of the basket of indexes (CAC40, SBF120) and note by (K1, K2) the strike of
index quoted by points. We use the correlation and spread options in the reference
[4].
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FIGURE 6. The course evolution in the one daily with SAMP(0, 35;
0) and frequency= 15 second

Take N = 622; ε1 = −3; ε2 = 1; strike K = 1409.705 and ū = 38.51832.

TABLE 4. Spread option

Maturity T=1 day 2 3 4 5
WASC 141.1157 141.1641 141.1875 141.191 141.1783
SAMP(0.35, 0) 141.0005 141.2334 141.2558 141.1371 140.9325

For correlation option, we take ū = 40; N = 29; α1 = 0.3 and α2 = 0.4; Strike
(K1, K2) = ( 6610.797, 5223.067).

TABLE 5. Correlation option

Maturity T=1 day 2 3 4 5
WASC 7009.402 12027.28 17294.14 22697.83 28174.37
SAMP(0.35, 0) 5536.392 14967.93 29817.2 49646.92 74155.16

The scale regularization of assets is important because the scale of course is
rectified and the price option changes.

8. CONCLUSION

In this article, we have suggested adjusting the price to reality before using for
the pricing option or hedging. To do this, we use the WASC model and the Matérn
process instead of mBs to do the calibration. So we have a new more realistic
model and we get several theories on the stochastic calculus and the market with-
out arbitrage with respect Matérn process.



SETTING OF AMPLITUDE WITH MATÉRN PROCESS 247

The suggested reparametrization may be useful for a wider class of models be-
yond financial engineering e.g. the management of the smart grid and oil produc-
tion.
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