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EXPERIMENTAL AND 3D NUMERICAL SIMULATION OF THREE SOLAR
PONDS WITH DIFFERENT LEVEL OF TURBIDITY: DOUGLAS-GUNN ADI

APPROACH
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ABSTRACT. In most previous works dealing with the modelling and numerical
simulation of salinity gradient solar ponds, the heat diffusion is 1D or 2D, the dif-
fusion of salt is very slow and that there are small convection movements, which
obviously supposes that the wind speed is negligible. The studies are often limited
to sodium chloride-based ponds where only relatively clear water is considered.
The present work comes to fulfil the lack of 3D thermal behaviour prediction
where, in one hand, we simulated solar ponds by a mixture of three different
techniques, which are stable and well adapted to this type of problem using the
method of finite differences in conjunction with the schemes of ADI-Gunn, Adams-
Bashford and Schneider and al, which finds its first application in this type of prob-
lems. On the other hand, in order to validate our numerical results, we conducted
an experiment on three identical parallelepiped ponds with 2.3040 m2 of area and
1.200 m depth; each one containing the same fungicide salt namely KH2PO4, that
has never been used before.
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1. INTRODUCATION

The technology of solar ponds was discovered by Von-Kalecsinsky in 1902. He
observed lakes where a freshwater layer is superimposed on another denser and
warmer layer [1]. Since, the idea to artificially create salinity gradient solar ponds
has begun. The depletion of fossil fuels with their related pollution problems has
led many scientists to conduct studies and investigations on this topic. Several
works have shown that it is possible to use the solar energy by transforming it
into different forms: (electrical, thermal, chemical,...). Despite this availability,
solar energy could not replace traditional energy sources due to the high cost of
storage [2]. Salinity gradient solar ponds may be the best mean to capture and
store solar energy especially for a relatively long period in thermal form and at
lower cost. A solar pond consists of three zones as illustrated in Figure 1.

(a) An upper convection zone (UCZ) of low and uniform concentration, its
upper surface constitutes an interface between the air and the water of the
pond.

(b) A temperature gradient zone and salinity located in sandwich between the
upper zone and the lower zone. In this zone the temperature and salinity
increase almost linearly in the direction of the basin depth. This zone is
considered as a transparent thermal insulator.

(c) A lower convective zone (LCZ) or the heat storage zone with salinity and
temperature relatively high and uniformly distributed. The bottom of this
zone is painted black to have a maximum absorption coefficient. It is from
this zone that the heat is extracted through hot water and sent towards
the exchangers for various applications such as air conditioning, power
generation, desalination, etc..

In most studies solar ponds modeling is carried out using one-dimensional math-
ematical model, in other words, the heat diffusion is assumed only in the vertical
direction while keeping the temperature along a layer constant. But, in our case,
both the diffusion of horizontal and vertical heat were taken into account and the
results of numerical simulation have shown that the difference of the tempera-
ture within the same layer of NCZ is significant and can reach 5◦ C during one
season. This result shows the important role of three-dimensional modeling in
solving the problem numerically. It should be noted that the experimental solar
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FIGURE 1. Diagram representing the three zones that make up the
solar pond

pond located at the coordinates 36◦54′15′ North and 7◦45′07 east, and having a
surface of 10000 m2 with a depth of 2 m, dug into the ground.

It should be noted, by the way, that the non-homogenization of the saline so-
lution leads to a dilatation that can act with force on the internal walls of the
solar pond, as well as the non-uniform double extraction leads to an internal flow
problem, which allowed us to introduce new parameters of the mechanism. It
is also important to point out that for real large-scale solar ponds, the penetra-
tion,of solar rays is maximum because of their large surface area which hardly
favor any shade, while for experimental ponds, the degree of shading is rather
large because of the inclination of the sun, which negatively affects the penetra-
tion of the amount of solar radiation reaching the bottom of the basin. The main
reason why we had to go to the numirical simulation of large ponds instead of
small ponds. Our work consists of modeling the influence of wind on a solar
pond when the water is clear, medium-turbid and very turbid, over a period of 30
days, coordinated 36◦54′15 North, 7◦45′07 East and of size (100m ×100m ×2m).
The mathematical model proposed is represented by the three-dimensional spatial
heat conduction equation with an energy source outside the system but subject to
wind stress. An average temperature and insolation values for the last twenteen
were obtained using the data provided by Annaba saline station. The numerical
resolution approach of the mathematical model adopted is based on the discretiza-
tion of the heat equation using the finite difference method in conjunction with
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the douglas-Gunn scheme, Adams Bashford and Shneider et al with initial and
boundary conditions. The essential contribution of this work to the study of a
solar pond is to analysis of transient thermal behavior, within the non-convective
pond area (NCZ) was conducted through a three-dimensional numerical simula-
tion study based on the coupling of three different techniques: the Douglas-Gunn
method, Adams Bashford for linear case resolution, and the Shneider et al tech-
nique, which is intended to resolve cases non-linear stationary to make it for tran-
sitional non-linear cases. It should be noted that these different digital techniques
adopted are recommended in the resolution of the three-dimensional parabolic
equations because their stability is good thus allowing several points to be given
and their numerical solutions are simpler compared with the traditional Crank-
Nicolson method which results in a very complex set of equations whose cost is
very high.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

2.1. Assumptions. The developed model depends on the following assumptions:

(1) Thermophysical properties such as specific heat Cp, the thermal conduc-
tivity k and the density ρ vary from one layer to another.

(2) Turbidity is assumed to be uniform.
(3) The attenuation of solar radiation within the basin is described by the

model of Wang and Yagoobi [4].
(4) A statistical average of wind speed and solar radiation was taken into con-

sideration in the last ten years from weather data.
(5) Air and soil temperatures are equal to ambient temperature.

In order to improve the thermal performance of the solar pond, it is essential to
study the effect of water turbidity because it has a direct influence on the quantity
of radiation reaching the storage zone LCZ. There are few works done on the effect
of turbidity. Hull in 1989 [3], in his work on the effect of turbidity on the perfor-
mance of the basin, showed that the presence of solid particles, microorganisms
and their proliferation is harmful because they drastically reduce the transparency
of the water of the pond and therefore the performance of the basin. Wang and
Yagoobi in 1995 [4] considered the effect of water turbidity on the thermal per-
formance of a solar pond and they proposed an empirical correlation which takes
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into account the effect of water turbidity on solar radiation penetration. Nan Li et
al. [6] were interested in the control of the turbidity and specifically in microor-
ganisms that can proliferate in high salinity water. They studied the effectiveness
of the Alum KAl(SO4)2 and 12 H2O to reduce the proliferation of microorganisms
in the brine extracted from the seawater desalination unit. Different salts have
been used for the purpose of comparing their behavior against the turbidity in a
study conducted by Malik et al. (2011) [7]. They used a bittern which is a mixture
of NaCl and MgCl2. It is important to note that almost all research dealing with
turbidity in solar ponds consider the transient thermal behavior is 1D [4]. In other
words, the heat transfer occurs only in the depth direction, but, unfortunately,
these models do not reflect real cases of solar ponds where the heat diffusion oc-
curs in the three directions. The 3D heat conduction equation of a solar pond
transient thermal behavior was solved numerically by Ben Mansour and Alimi [8].
However, in their work, they used the famous software Fluent in which the reso-
lution is based on the finite volume method despite the simple geometric shape of
the solar pond (parallelipedic shape); so in their work one cannot see the details
of the numerical resolution steps. In addition, the mathematical model that they
applied remains very far from reality especially because of the nonrealistic bound-
ary conditions at the pond walls where the insulation was considered as perfect.
Also the simple and inaccurate solar radiation attenuation model does not take
into account the turbidity level. In order to distinguish the present work from
the problematic of reference [14], we display below a brief overview of the latter
followed by the statement of the main objectives of our study.

• Three solar ponds containing three different salts have been investigated
and a comparative study has been made.
• A 2D mathematical model was adopted to give the temperature field vari-

ation in both directions x and z within the solar pond for three different
salts (NaCl, CaCl2 and Na2CO3 ).
• The discretization method used was the 2D Crank-Nicolson scheme where

we had employed only a one discretization step. The attenuation model
of the solar radiation in the pond is the Rabl-Nilson model which does not
take into account the turbidity effect.
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• The obtained results showed that the most efficient among the three in-
vestigated salts is the calcium chloride (CaCl2). Therefore it records the
highest temperature field with respect to other salts. This result could be
explained by the low specific heat per unit volume of this salt solution.
• In addition, the heat losses at the vertical walls along the Y axis have been

neglected in order to get a simplified 2D mathematical model. But, this
simplification although more accurate than the 1D model used by most
authors still remains incomplete, so a 3D model is needed to describe the
real phenomena.

We note that among the most important factors hindering the operational cost
of solar ponds is essentially the turbidity that has a negative influence on the
thermal performance of the solar pond. It should be remarked that generally
in solar ponds, the sodium hypochlorite is often used to destroy microorganisms
which can perturbate the clarity of water pond thus impeding the penetration of
solar radiation. We therefore mention that the aim of this study is twofold:

First, we would like to fill the gap encountered in the specialized scientific liter-
ature dealing with mathematical modeling in the salinity gradient solar ponds.

Second, to improve their thermal efficiency for practical purposes. A new pond
is being investigated with three levels of turbidity and containing one single salt.
This constitutes an originality of this work which shows two aspects:

• A practical aspect represented by increasing the amount of penetrating
solar radiation using a new fungicide salt.
• The second aspect is focused on improving the 1D and 2D models by in-

troducing the 3D mathematical modeling of the pond with a more precise
approach taking into account the reality of the involved phenomena where
the boundary conditions are also more realistic. In addition, the model has
been solved using the 3D Douglas-Gunn ADI scheme [9] for the first time
in the study of solar ponds. A different solar radiation attenuation model
that takes into account the turbidity level in the pond is also being consid-
ered.

Moreover, in the present work a better solution is proposed to enhance the clarity
of the water by injecting a solution of a fungicide salt (monopotassium phosphate,
KH2PO4). This salt has a property to eliminate the microorganisms growth and
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then favors a large improvement in the clarity of the water. The proposed salt
promotes maximum penetration of solar radiation and therefore a rise in temper-
ature at the thermal energy storage zone (LCZ). It is also important to note that,
in almost all modeling of solar ponds, heat losses near the vertical walls are not
considered. Unfortunately, these models are still far from reality especially when
we know that the water in the bottom of the pond can reach a temperature that is
three times or more the temperature of the ground or of the walls, showing that
the walls are a major heat sink absorption.

In order to represent the problem with accuracy, a 3D mathematical model has
been developed with an initial condition and six realistic types of boundary con-
ditions. The present study considers a relatively larger area of 2.3040 m2 than
that used experimentally in our previous work of 1 m2 [14] allowing better solar
radiation collection resulting in higher thermal efficiency operation. This work
is the study of the evolution of the temperature field in spatial directions based
on two different approaches, namely: The first is to simulate numerically over
a period of 30 days three solar ponds of identical geometry size (1.6 m ×1.44m
×1.2m). Each pond contains the same salt (KH2PO4) but with different turbidity
levels: relatively clear water, slightly turbid water and very turbid water, under
the same climatic conditions of Annaba city (Algeria) with coordinates 36◦54′15

North, 7◦45′07 East. The second is devoted to the validation of numerical results
by conducting an experiment on the same ponds described above. The proposed
mathematical model is represented by the 3D heat conduction equation with a
source of generation of energy. An average temperature and insolation values for
the last twenty years were obtained using the data provided by Annaba saline sta-
tion. The numerical resolution approach adopted is based on the discretization
of the heat equation using the finite difference method in conjunction with the
Douglas-Gunn ADI scheme [9] with an initial condition and six boundary condi-
tions. The main contribution of the present work related to the study of a solar
pond lies in:

i. The analysis of the transient thermal behavior within the non-convective
zone (NCZ) of the pond was realized through a 3D numerical simulation
study based on the Douglas-Gunn ADI method that finds its first applica-
tion in a salinity gradient solar pond. It should be emphasized that this
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implicit three steps scheme is recommended for solving 3D parabolic par-
tial differential equations because its stability is better compared to the
explicit schemes. Furthermore, its numerical solution is simpler compared
to the Crank-Nicolson method which leads to a very complex set of equa-
tions whose computational cost is very expensive.

ii. For the first time, an experiment on three small ponds was carried out con-
taining a fungicide salt namely monopotassium phosphate but with three
different levels of turbidity. It should be emphasized that this salt has never
been used before in solar ponds and, having a destructive power against
fungicide, enhances the clarity and transparency of the water. Therefore
this salt decreases the turbidity due to the presence of microorganisms and
hence allowing better penetration of sunlight.

2.2. Mathematical formulation.

2.2.1. Boundary conditions. z1, z2 and z3 are given in Figure 1.

i. At z = z1,

(2.1) T (x, z1, t) = Ta.

ii. At the interface z = z1 + z2, the temperature is calculated on the basis of
energy balance applied to the LCZ:

(2.2) z3Cp
∂T

∂t
= −k∂T

∂z
+ ELCZ −Qout,

where ELCZ represents the insolation entering the storage zone LCZ and
Qout represents the heat loss from the storage zone LCZ.

iii. At x = 0 and y = 0,the temperature is computed from the following equa-
tions respectively

(2.3) −k∂T
∂x

∣∣∣∣
(x=0)

= Cht(T −Ta) , (2.4) −k∂T
∂x

∣∣∣∣
(y=0)

= Cht(T−Ta).

iv. At x = L1 and y = L2 the temperature is computed from the following
equations respectively:

(2.5) −k∂T
∂x

∣∣∣∣
(x=L1)

= Cht(T − Ta) , (2.6) −k∂T
∂x

∣∣∣∣
(y=L1)

= Cht(T − Ta),
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where Cht is the heat transfer coefficient by free convection at the wall
towards the surrounding air; this coefficient is estimated to be around
20W/m2·◦C [12]. k represents the thermal conductivity of the water.

3. DISCRETIZATION OF THE PROBLEM

T n+1 − T n

∆t
=

1

ρCp

[
∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)]
− S

ρCp

− 1

ρCp

(
µ
∂T

∂x
+ ν

∂T

∂y
+ w

∂T

∂z

)
,

where n represented the old time and n + 1 the new time. Let’s introduce the
intermediate time n+ 1

2
we have:

T n+1 − T n+ 1
2

∆t
=

1

ρCp

[
∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)]
− S

ρCp

(3.1)

T n+ 1
2 − T n

∆t
=

1

ρCp

(
µ
∂T

∂x
+ ν

∂T

∂y
+ w

∂T

∂z

)
.(3.2)

Equation (3.1) represents the diffusion contribution and Equation (3.2) represents
the convective transport.

Let’s apply the third order Adams-Bashforth time stepping scheme to Equation
(3.2),

T n+ 1
2 − T n

∆t

=
−23

12

(
µ
∂T

∂x
+ ν

∂T

∂y
+ w

∂T

∂z

)n+ 1
3

+
4

3

(
µ
∂T

∂x
+ ν

∂T

∂y
+ w

∂T

∂z

)n+ 1
6

− 5

12

(
µ
∂T

∂x
+ ν

∂T

∂y
+ w

∂T

∂z

)n

.

In order to discretize the Equation 3.1 let us introduce the intermediate time n+ 3
4

we will have
Linear case:

(3.3)
T n+1 − T n+ 3

4

∆t
=

1

ρCp

(
k
∂T 2

∂x2
+ k

∂T 2

∂y2
+ k

∂T 2

∂z2

)
− S

ρCp
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Nonlinear case:

(3.4)
T n+ 3

4 − T n+ 1
2

∆t
=

1

ρCp

(
∂k

∂x

∂T

∂x
+
∂k

∂y

∂T

∂y
+
∂k

∂z

∂T

∂z

)
In order to solve Equation 3.3 which is parabolic, we have applied the method
ADI (Alternating Direction Implicit) because it is well suited to the resolution of
the parabolic equation, unconditionally stable and convergent and has quadratic
order of convergence.

FIGURE 2. Mesh representation for the 3 space discretisation steps
∆x = ∆y = 1

4
and ∆z = 1

3
corresponding to three time substeps

∆t = 1
3

by applying the ADI Douglas-Gunn scheme.

To overcome this disadvantage and in order to have an unconditional stability
with quadratic convergence order, Douglas and Gunn [9] developed a numerical
technique based on the improvement of the Peaceman-Rachford ADI scheme [13]
by dividing the time step in 3 subtime steps (Figure 2). So this method known as
splitting is intended to solve the 3D parabolic partial differential equations. This
method falls into the category of fractional step methods [9]. We advance with
one third of the step for every iteration to follow the evolution of the temperature
field. The nice feature of this method is the simplicity of the obtained system of
equations which can be solved efficiently in each substep by Thomas tridiagonal
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FIGURE 3

matrix algorithm [9]. Dividing the x spatial domain [0, L1] = [0, 100m] into M

sections having each a length of ∆x = L1

M
= 100m

M
, the y spatial domain [0, L2] =

[0, 100m] into N sections having each a length of ∆y = L2

N
= 100m

N
and the z spatial

domain [0, L3] = [0, 2.40m] into P sections having each a length of ∆z = L3

P
=

2.40m
P

. The time domain [0, T ] = [0, 30days] is divided into Q segments, each of
duration ∆t = T

Q
= 30days

Q
. Letting xi = i∆x for i = 1, 2, . . . ,M, yj = j∆y for

j = 1, 2, . . . , N, Zl = l∆Z for l = 1, 2, . . . , P and tn = n∆t for n = 1, 2, . . . , Q,
therefore Equation (3.3) can be rewritten as follows:

T n+1 − T n+ 3
4 =

k∆t

2ρCp

∂2
x

(∆x)2

(
T n+1 + T n+ 3

4

)
+

k∆t

2ρCp

∂2
y

(∆y)2

(
T n+1 + T n+ 3

4

)
+
k∆t

2ρCp

∂2
z

(∆z)2

(
T n+1 + T n+ 3

4

)
+

∆T

ρCp

dE

dZ
,

with the notation:

∂2
xT

n+1 = T n+1
i−1,j,l − 2T n+1

i,j,l + T n+1
i+1,j,l

∂2
yT

n+1 = T n+1
i,j−1,l − 2T n+1

i,j,l + T n+1
i,j+1,l

∂2
zT

n+1 = T n+1
i,j,l−1 − 2T n+1

i,j,l + T n+1
i,j,l+1,

∂2
x, ∂

2
x and ∂2

x are the central difference operators in x, y and z direction respec-
tively.
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Putting rx = k∆t/(ρCp∆x
2), ry = k∆t/(ρCp∆y

2) and rz = k∆t/(ρCp∆z
2), we

get:

T n+1 − T n+ 3
4 = rx

∂2
x

2

(
T n+1 + T n+ 3

4

)
+ ry

∂2
y

2

(
T n+1 + T n+ 3

4

)
+ rz

∂2
z

2

(
T n+1 + T n+ 3

4

)
+

∆T

ρCp

dE

dZ
,(3.5)

Instead of directly solving (3.5) at every time step n, we solve the same equa-
tions for three subtime steps for each time step n.

We give below the description of each subtime step.
Step 1:

(3.6) T n+ 5
6 −T n+ 3

4 = rx
∂2
x

2

(
T n+ 5

6 + T n+ 3
4

)
+ry∂

2
yT

n+ 3
4 +rZ∂

2
ZT

n+ 1
2 +

∆T

ρCp

[
dE

dt

]n
Step 2:

T n+ 11
12 − T n+ 3

4 = rx
∂2
x

2

(
T n+ 5

6 + T n+ 3
4

)
+ ry

∂2
y

2

(
T n+ 11

12 + T n+ 3
4

)
+ rZ∂

2
ZT

n+ 3
4 +

∆T

ρCp

[
dE

dt

]n+ 5
6

(3.7)

Step 3:

T n+ 11
12 − T n+ 3

4 = rx
∂2
x

2

(
T n+ 5

6 + T n+ 3
4

)
+ ry

∂2
y

2

(
T n+ 11

12 + T n+ 3
4

)
+ rZ

∂2
Z

2

(
T n+1 + T n+ 3

4

)
+

∆T

ρCp

[
dE

dt

]n+ 11
12

.(3.8)

In this work we will introduce two parameters, the dilation β and the vortex ω,
which they are strongly depend on the velocity field by the following relations:

rotV = ω, divV = β, {∇2V = β − rotω}.

Note that the dilation represents a force called source-like acting strongly on the
vertical and horizontal walls of the pond, while the vortex acts strongly on the
stratified salt layers and having the role of destroying the stability of the pond.
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The discretization of Equation ( 3.4) gives:

T
n+ 3

4
i,j,l =

∆t

ρCp

[
Ki− 1

2
,j,l

(∆x)2
T

n+ 1
2

i−1,j,l +
Ki,j− 1

2
,l

(∆y)2
T

n+ 1
2

i,j−1,l +
Ki,j,l− 1

2

(∆z)2
T

n+ 1
2

i,j,l−1

]

+

[
1− ∆t

ρCp

(
Ki+ 1

2
,j,l

(∆x)2
+
Ki,j+ 1

2
,l

(∆y)2
+
Ki,j,l+ 1

2

(∆z)2
+
Ki− 1

2
,j,l

(∆x)2

+
Ki,j− 1

2
,l

(∆y)2
+
Ki,j,l− 1

2

(∆z)2

)]
T

n+ 1
2

i,j,l +
∆t

ρCp

[
Ki+ 1

2
,j,l

(∆x)2
T

n+ 1
2

i+1,j,l

+
Ki,j+ 1

2
,l

(∆y)2
T

n+ 1
2

i,j+1,l +
Ki,j,l+ 1

2

(∆z)2
T

n+ 1
2

i,j,l+1

]

4. NUMERICAL RESOLUTION

4.1. Systems of equations. Using step 1 in Equation (3.6), we solve numerically
the model by fixing j and l and varying i from 1 to M , we therefore get a sim-
ple system of linear equations with a tridiagonal structure. The first system has
as unknowns the temperature at time n + 1

3
that will be solved as a function of

temperature at time n. The second system comes from step 2 and Equation (3.7)
has as unknowns the temperature at time n + 2

3
that will be solved as a function

of temperature at times n and n + 1
3
, and the third system derives from Equation

(3.8) and includes as unknowns the temperature at time n+1 which will be solved
as a function of the temperature at times n+ 1

3
, n+ 2

3
and n.

4.2. Implementation of the initial and boundary conditions. We give below
the discretization of the boundary conditions:

• at the pond water surface, the temperatures T n+1
i,j,0 , for i = 1, 2, . . . ,M, j =

1, 2, . . . .N , are calculated by the 1st boundary condition in Equation (2.1).
• at the interface z = z1 + z2 corresponding to l = P , the discretization of

the Equation (2.2) for i = 1, 2, . . . ,M and j = 1, 2, . . . , N gives:

T
n+ 1

3
i,j,l+1 = T n

i,j,l+1

[
1− k∆t

ρCρ∆zZ3

]
+

k∆tT n
i,j,l

ρCρ∆zZ3

+
(ELCZ −Qout)∆t

Z3CP

.
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In our case T n
i,j,l+1 = T n

i,j,l since the temperature of the LCZ is equal to
the temperature of the last layer NCZ. Qout represents about 14% of the
incident energy [14].
• At x = 0 corresponding to i = 1, the discretization of the Equation (2.3)

gives:

T
n+ 1

3
0,j,l =

k

k − Cht∆x

(
T

n+ 1
3

1,j,l

)
−
(
Cht∆xTa
k − Cht∆x

)
.

• At x = L1 corresponding to i = M the discretization of the Equation (2.5)
gives:

T
n+ 1

3
M+1,j,l =

(
k − Cht∆x

k

)(
T

n+ 1
3

M,j,l

)
+

(
Cht∆xTa

k

)
.

• At y = 0 corresponding to j = 1, we obtain after the discretization of the
Equation (2.4):

T
n+ 2

3
i,0,l =

(
k

k − Cht∆y

)(
T

n+ 2
3

i,1,l

)
−
(
Cht∆yTa
k − Cht∆y

)
.

• At y = L2 corresponding to j = N , we obtain after the discretization of the
Equation (2.6):

T
n+ 2

3
i,N+1,l =

(
k − Cht∆y

k

)(
T

n+ 2
3

i,N,l

)
+

(
Cht∆yTa

k

)
.

Finally, by adopting the same reasoning for step 2 and step 3, we obtain three
linear systems of equations where the matrix in each system is tridiagonal. The
MATLAB [R2006a] of LANOS laboratory has been used for the numerical solution.

5. EXPERIMENTAL PROCEDURE

5.1. Establishment of salinity gradient and turbidity. Three galvanized steel,
parallelepiped shaped experimental basins with an area of 1.6 x 1.44 m and a
depth of 1.2 m were used to perform the experiments. Each basin contains the
same salt namely KH2PO4. The walls are not insulated; the pond bottom is black
painted to enhance solar radiation absorption. Four different solutions with their
salt concentrations (6%, 12%, 18% and 24%) have been carefully prepared in the
laboratory and are poured gradually with a plastic diffuser to ensure a perfect
stratification to avoid turbulence causing layer mixing. Concerning slightly turbid
and very turbid pond, the water used is extracted from stagnant lakes in two
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different places of Annaba city to ensure that they are natural and contain all
kinds of factors causing turbidity such as microorganisms, algae and particles. It
should be noted that the three different turbidity levels used in this experiment
are: Θ = 0.5 NTU for relatively clear water. Θ = 1.5 NTU for an slightly turbid
water. Θ = 4 NTU for a very turbid water. The thicknesses of the three zones of
every experimental basin are given as follows: 0, 15 m for the upper zone UCZ.
0, 80 m for the non convective zone NCZ which in turn is divided into 4 layers of
0.20 m each, 0, 25 m for the storage area whose LCZ.

5.2. Measurement procedure. To measure temperatures in the non-convective
zone NCZ, 5 thin transparent plastic strips, each one containing 16 thermocouples
were installed according to the following locations:

(1) One strip S1 is in the center of the basin along the vertical line.
(2) Four other remaining strips S2, S3, S4 and S5 are located in the vertical

central line of the four side walls of the basin in the vertical direction (see
Fig 4).

Temperatures are recorded every two hours for a period of 30 days using a DATA-
LOGGER manufactured in the laboratory. A digital thermometer outside the solar
pond is used to follow the changes in the ambient temperature of the site.

FIGURE 4. Experimental setup of the SGSP: 1- bottom of the pond,
2- strip, 3- thermocouples position, 4- stratified solutions, 5- Data-
logger
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6. RESULTS AND DISCUSSION

6.1. 3D model and temperature profile. The 3D temperature profiles as func-
tion of the different turbidity levels are given by Figure 5.

FIGURE 5. 3D temperature profiles visualization for different levels
of turbidity: a- Relatively clear water (θ = 0.5 NTU). b- Slightly
turbid water (θ = 1.5 NTU). c- Very turbid water (θ = 4 NTU)

It is apparent from Figure 5 that the relatively clear water pond becomes in a
short time sufficiently hot to be exploited compared to the other ponds. We first
notice that the temperature varies in all three directions as shown in fig 5. This
result shows that in real solar ponds the temperature varies in all directions con-
trary to what have been assumed by many authors who consider that the temper
ature varies only along the z depth. For each horizontal plane, the temperature is
not the same as shown in Figure 6 which invalidates the main hypothesis of 1D
models which assume that the temperature along a horizontal plane is constant.

FIGURE 6. Isotherms at section plane z = 0.8 m for different levels
of turbidity: a) relatively clear water; b) slightly turbid water; c)
very turbid water.
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The effect of the turbidity level is very apparent in Figures 5 and 6. The higher
this level is, the weaker is the radiation penetration power in water and hence the
lower is the reached temperature. This is due to the absorption of a part of this
radiation by the suspension of minerals or microorganisms. The temperature is
higher at the central region of the section at any horizontal plane. For example, at
z = 0.8 m, the maximum temperature reached is 78.04◦C for relatively clear water,
60.63◦C for slightly turbid water and 58.50◦C for very turbid water. This heating
can be also presented as 1D vertical Z temperature profile for every (x, y) coordi-
nates. For example, in the vertical central line (Figure 7) at (x = 0.8 m, y = 0.72

m) coordinates in the basin, the temperature increases in the z direction attaining
a maximum near the bottom. These values are greater, by about 5◦C, than those
existing in the vertical walls lines (Figures 8, 9 and 10). Thus confirming the
importance of the 3D approach models of real case solar ponds. We must note,
in this work, that only the relatively clear water pond had recorded the highest
temperature because of the good penetration of solar radiation followed in second
place by the slightly turbid water and finally by the pond of very turbid water in
third place. Because of the existence of an horizontal temperature difference and
under the Soret effect [14], there must exist an horizontal salt migration within
the same layer from vertical central line towards the walls. On the other hand,
upward vertical salt migration is less important in the center than at the walls,
therefore even in LCZ there is more decrease in salt concentration at the walls
than at its center and this suggests the location of the right point of salt injection
for pond maintenance. This Soret effect causes non uniform upward mass diffu-
sion of salt from LCZ. This would be a factor causing non-uniformity of natural
convection flows within LCZ and can negatively affect stability.

6.2. Comparison between experimental and numerical results. Case A: rela-
tively clear water (Figure 8) The experimental results of temperature profile in the
z direction for the lines A, B and C coincide approximately with the numerical re-
sults. The maximum temperatures obtained near the bottom under this condition
are: 73.02◦C corresponding to line A, 74.12◦C to line B and 78.04◦C to line C. The
rise in temperature is explained by the fact that the solar radiation penetration is
so easy because there is no turbidity effect reducing the intensity along the paths
within the pond.
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FIGURE 7. Different lines used to compare the temperature variation
in z direction (depth): a symmetry in temperature profiles exists
between A,A lines; B,B lines.

FIGURE 8. Comparison between experimental and numerical tem-
perature variation in z direction (depth) for relatively clear water

Case B: slightly turbid water (Figure 9) In the case of slightly turbid water we
distinguish two facts. In the first, we remark that the experimental and numerical
curves coincide starting from the top surface of the pond till the middle depth of
the pond. However, in the second fact, the curves do not coincide and there is
even a divergence as the depth increases. For example, the maximum difference
between the two curves can reach 18◦C as the depth becomes more important.
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These two facts mean that the mathematical model is no longer valid in this zone
and also underline the clarifying effect of fungicide salt KH2PO4 used in the ex-
periment which has the property of destroying microorganisms. It is important to
note that the experimental measurements are almost identical to those obtained
for the relatively clear water. The experimental temperature reaches also a max-
imum value near the middle depth then it begins to decrease for greater depth
as remarked above in the case of the numerical results. The recorded maximum
temperatures are of the order of: 57.56◦C to line A, 58.22◦C to line B and 60.63◦C

at line C.

FIGURE 9. Comparison between experimental and numerical tem-
perature variation in z direction (depth) for slightly turbid water.

Case C: very turbid water (Figure 10) We note that the experimental values
in this case are almost the same as those of relatively clear water. The numeri-
cal model gives a curve that is of the same shape as slightly turbid water which
reaches a maximum temperature near the middle of the depth and then begins to
decrease for deeper zones. The recorded temperatures are as follows: 55.07◦C to
line A, 55.86◦C to line B and 58.5◦C to line C. When the pond water is very turbid,
the difference between experimental and numerical temperature values can reach
20◦C. This difference is explained by the fact that the turbidity is caused by the
presence of solid particles and microorganisms that find favorable conditions for
proliferation. Under gravitation effect, the solid particles deposit in the bottom
of the pond where the microorganisms will be killed by the use of fungicide salt
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(KH2PO4) leaving the pond water relatively clear. Thus allowing maximum pen-
etration of solar radiation reaching the lower convective zone (LCZ) of the pond
and therefore increases thermal performance whereas in the numerical model we
used θ = 4 NTU for high level turbidity.

FIGURE 10. Comparison between experimental and predicted tem-
perature variation in z direction (depth) for very turbid water

6.3. Effect of the space discretization step ∆z. In the present study, we inves-
tigate the numerical solution of the parabolic partial differential equation in 3D
subject to the above initial and boundary conditions given in subsection 2.2.1. The
Douglas-Gunn ADI scheme is being considered because it is stable, accurate and
effective but also difficult. A detailed analysis of the Douglas-Gunn ADI scheme
for the problem at hand has been given in sections 3 and 4. We recall that the
Douglas-Gunn ADI approach for dealing with the 3D heat equation is generally
preferred because it results in tridiagonal coefficient matrices which are uncondi-
tionally stable, so fewer steps can be performed. Moreover, the overall truncation
error of the Douglas-Gunn ADI scheme is second order in both time and space.
This is a second factor that allows for fewer steps to be taken with the Douglas-
Gunn ADI scheme. The discretization scheme uses four mesh sizes in the three
directions namely 16× 16× 16, 16× 16× 32, 16× 16× 64, 16× 16× 128. (Figure
11).
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FIGURE 11. Different meshes in the numerical model

We can see that the temperature profiles displayed in (Figure 12) are almost
identical. The maximum difference between the temperature profiles along the
depth z does not exceed 0.5◦C which, let us say, means that the numerical results
are almost independent of the mesh size adopted (Figure 12).

FIGURE 12. Temperature profiles in the central line as function of
the discretization step along Z.
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6.4. Numerical validation. All the numerical calculations given below are re-
lated only to the solar pond with relatively clear water as it yields the highest tem-
perature and the most exploitable in thermal applications. In this section we are
interested in a numerical verification of the second order accuracy of the Douglas-
Gunn ADI scheme in both time and space, i.e., O(∆t2+∆x2+∆y2+∆z2), [15], [16]
To this end, let us introduce a reference solution Tref corresponding to the finest

size ∆z = 0.8
128

and the percentage relative error defined by
∣∣∣Tref−T∆z

Tref

∣∣∣× 100, where
T∆z is the numerical solution for a given step ∆z. We can see from Figure 12
given above that there is a convergence trend of the approximate solutions as the
curves become closer when the space steps decrease. Therefore corroborating the
theoretical convergence result given by proposition 11.6 of reference [13]. The
MATLAB software (v2006a) of the LANOS laboratory has been used on the HP
ALTEC computer, CPU Intel core Duo×2, 2.27 GHz, Memory 2 Gbyte, the CPU time
for each nodes number are represented in table 1. In table 1 below, we give the
different four mesh sizes together with their corresponding CPU times. It is clear
that the CPU time increases as the number of nodes N increases.

TABLE 1. CPU time as function of nodes number
Node Number N CPU time (sec)

16× 16× 16 (4096) 215.4114
16× 16× 32 (8192) 317.0242
16× 16× 64 (16384) 466.5967
16× 16× 128 (32768) 686.6570

In order to establish the numerical verification of the second order accuracy
both in time and space of the Douglas-Gunn ADI scheme, we need to construct
table 2 displaying the reference solution and the numerical solutions for different
step sizes. We also need to build table 3 containing the absolute errors between
the reference solution and the numerical solutions.

Table 2: Comparison between reference and the numer-
ical solutions for different coordinates x, y and z for 3

mesh sizes.
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Cordiantes
References

solution (C◦)
∆x = ∆y = 1

16

Numerical solution (C◦)
∆x = ∆y = 1

16

x(m) y(m) z(m) ∆z = 1
128

∆z = 1
16

∆z = 1
32

∆z = 1
64

0.4 0.36 0.8 75.06212 75.52446 75.17194 75.08788

0.4 0.72 0.8 76.66824 77.14291 76.78166 76.69569

0.4 1.08 0.8 75.06212 75.52446 75.17194 75.08788

0.8 0.36 0.8 76.66824 77.14291 76.78166 76.69569

0.8 0.72 0.8 78.04481 78.53872 78.16573 78.07469

0.8 1.08 0.8 76.66824 77.14291 76.78166 76.69569

1.2 0.36 0.8 75.06212 75.52446 75.17194 75.08788

1.2 0.72 0.8 76.66824 77.14291 76.78166 76.69569

1.2 1.08 0.8 75.06212 75.52446 75.17194 75.08788

TABLE 3. Absolute errors for 3 mesh sizes.
Coordinates Absolute error

x(m) y(m) z(m) ∆z = 1
16

z = 1
32

∆z = 1
64

0.4 0.36 0.8 0.46234 0.10982 0.02576

0.4 0.72 0.8 0.47467 0.11342 0.02745

0.4 1.08 0.8 0.46234 0.10982 0.02576

0.8 0.36 0.8 0.47467 0.11342 0.02765

0.8 0.72 0.8 0.49391 0.12092 0.02988

0.8 1.08 0.8 0.47467 0.11342 0.02745

1.2 0.36 0.8 0.46234 0.10982 0.02576

1.2 0.72 0.8 0.47467 0.11342 0.02745

1.2 1.08 0.8 0.46234 0.10982 0.02576

The following two tables (table 4 and 5) provide a numerical validation of the
Douglas-Gunn ADI scheme in both time and space. Table 4 summarizes the error
in the approximate solution at t = 30 days for different values of ∆x,∆y and ∆z.
For all calculations the time step of ∆t = 1

16
was used.



298 B. OUSSAMA AND A. AMMAR

TABLE 4. The error in the approximate solution at t = 30 days for
different values of ∆t with ∆x = ∆y = ∆z = 1/16.

Mesh size
Maximum

absolute error
Error ratio

Root mean
square error

Error ratio

∆x = ∆y = 1
16

,∆z = 1
16

0.49391 0.24695

∆x = ∆y = 1
16

,z = 1/32 0.12092 4.08460 0.06046 4.08462

∆x = ∆y = 1
16

, ∆z = 1
64

0.02988 4.04685 0.01494 4.04484

TABLE 5. Second order accuracy in time.

Mesh size
Maximum

absolute error
Error ratio

Root mean
square error

Error ratio

∆t = 30days
16

0.72865 0.36432

∆t = 30days
16

0.17368 4.19565 0.08684 4.19565

∆t = 30days
64

0.04077 4.25926 0.02038 4.25926

The root mean square (rms) error is given by:

rms error =

√√√√ 1

Q

Q∑
n=1

(
T t=30
ref − T t=30

n

)2
.

We can see from tables 4 and 5 that each reduction in the step size by a factor of
two, the error reduces by a factor of four showing the quadratic convergence of
the Douglas-Gunn ADI scheme.
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