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A 3D-2D ASYMPTOTIC ANALYSIS OF ELASTIC PROBLEM WITH
NONLINEAR DISSIPATIVE AND SOURCE TERMS

Mourad Boudersa', Mourad Dilmi, and Hamid Benseridi

ABSTRACT. In this paper, we consider the asymptotic analysis for the elasticity
problem with a dissipative and source terms in a three dimensional thin domain
Q°. Firstly, we obtain the variational formulation of the problem. Then we estab-
lish some estimates independent of the parameter ¢. Finally, we give a specific
Reynolds equation associated and prove the uniqueness of the limit problem.

1. INTRODUCTION

In this paper, we study the asymptotic analysis of a problem of a linear elas-
ticity with a dissipative and source terms in a thin dimain Q¢ C R3 with Tresca
and Dirichlet boundary conditions. The boundary of the domain is decomposed
as 00 = I'* = w UT5 U, where w is the bottom of the domain, T'5 is the upper
surface and I'; is the lateral surface. Similar studies have been made by several
authors but with the usual boundary conditions, we cite for exemple: The asymp-
totic analysis of the solutions of a linear viscoelastic problem with a dissipative and
source terms in a three-dimensional thin domain was studied in [[1]. In [2], The
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authors studied the asymptotic behavior of an elasticity problem with a nonlin-
ear dissipative term in a bidimensional thin domain. The study of the asymptotic
analysis of a frictionless contact betwenn two elastic bodies in a three-dimensional
thin domain has been considered in [3]]. The authors In [[10] worked the asymp-
totic convergence of a dynamical problem of a non isothermal linear elasticity with
friction of Tresca type.

Recently, the asymptotic analysis of an incompressible fluid in a three-dimensio-
nal thin domain has attracted the attention of many researchers, when one dimen-
sion of the fluid domain tends to zero, (see e.g., [5,7,/8]) and the references cited
therein. Also, some authors have studied the asymptotic analysis of a dynamical
problem of isothermal elasticity with non linear friction of Tresca type but without
the intervention of the nonlinear term see for instance [9].

The work is organized as follows. In Section 2 we present some notations and
give the problem statement and variational formulation. In section 3, by a scale
change » = ﬁ, we transform the initial problem posed in the domain )¢ into a
new problem posed in a fixed domain (2 independent of the parameter . Then,
we find some estimates on the displacement. In section 4, the limit problem with
a specific weak form of the Reynolds equation are studied.

2. PROBLEM STATEMENT AND VARIATIONAL FORMULATION

Let Q¢ be a bounded domain of R3, where ¢ is a small parameter that will tend
to zero. The boundary of Q¢ will be denote by I'* = & U I'; U TS with I is the
upper surface for equation x3 = ¢h (z') = eh(x1,23), ['; is the lateral boundary
and w is a bounded domain of R? of equation x3 = 0 which constitutes the bottom
of the domain Q¢. We suppose that A is a function of class C'! defined on w such
that 0 < h, = hpin < h () < hpax = h*, ¥V (2/,0) € w. The domain Q) is given by

QF = {(2/,13) € R? (/,0) €w, 0<x3<ceh(a)}
Let T > 0. In the time interval |0, T, the law of elastic behavior is given by
o (u°) = 2udi; (u®) + Adgg (u®) 045,
where 1 and ) are the Lamé coefficients, u° is the displacement field, o¢ the stress
tensor, J;; is the Kronecker symbol and
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1 [Ous Ou
d" €Yy — 7 J 1 <4 i<
ZJ(U’) 2(8$]+8$1>’ _Zaj_?’a

is the symetric deformation tensor. We denote by n = (n;, ny, n3) the unit outward

normal vector on I'°. The normal and the tangential components of u° on the
boundary w are

£

uy, = u'.n and v = u® — (u;,)n.
Also, for a regular function o°, we define its normal and tangential components of

o¢ on the boundary w given by

o. = (0°.n).n and oS = o°.n — (o;)n.

The complete problem consists to find the displacement field ¢ : Q¢ x |0, T[ — R?
such that

821'['6 3 ) 3 3 au€ aue (3 £ g 7 &
@) W_dN(U (u%)) + (1+ W) 8t_f_|u|u in Q° x 10,7
(2) O'fj (UE) = 2Md” (Ua) -+ )\dkk (UE) 61’]’ Z,] = 1, 2, 3in ° x ]O,T[
(3) u®=0o0nT% x]0,7
4) u>=0onT7 x 10,7
(5) 881; nm=0onw x|0,7T[
<k = () =0
(6) T e onw x ]0,7T]
|o¢| = k* = 35 > 0 such that ( o ) = —fo:
ou®
% W (2,0) = tg(x), T (,0) = wy (x), Var € O

ot
The equation (1) represents the deformations of elastic body with a dissipative
and source terms in the dynamic regime, f° represents a force density and o is
positive constant. The equation (5) and (6) represents the Tresca friction law on
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w % 10, T'[, where £ is the friction coefficient. The initial conditions of the problem
are given in (7).
We recall that Tresca’s boundary condition (6) is equivalent to
ou® ou®
8 0° + k*
© (ar) 7o l(5),

To get a weak formulation, we introduce the closed convex set

=0onw x 0,7

K:={ve H (¥)’:v=00nT{UT5, vn=0o0nw}.

By standard calculations, the variational formulation of problem ([])-(7) is given
by

Problem P: Find a displacement field v € K¢ where aaut € K¢, Vt € [0,77], such
that
©) T o= Y wauo - ZE) 4 (e, - 25
o ot ) T\ T o T o
ou® |\ ou® ou® ou® ou®
€ o g g€ > € . €
+a ((H 5 > 55 % (‘3t)+‘7 (¥)=J (m) _<f,so at),vwef(
(2,0 = uo(a) T (,0) = s (),

ot
where
a(u,v) = 2“/5 d(u)d(v)dx + X\ | div(u)div(v)dz

Qe

) = [ Kol ds
(f,v) = fudx

Qe

Theorem 2.1. Under the assumptions
. Of°
f Y at
k€ L (w),k® > 0 does not depend of t,

€ L* (0,T; L* ()°),

(10) upg € H ()%, uy € HY(Q°)*, (uy). =0,

there exists a unique solution u® of (9) such that

ous

ot

e L= (0,T; H ()?),

u’,
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9*uf

@ € L7 (0.T; L7 ()*) N L2 (0,T; H (2°)%) .

The proof of this theorem is similar in [4,6].

3. CHANGE OF THE DOMAIN AND SOME ESTIMATES

For the asymptotic analysis of problem (1)-(7) we use the approach which consist
in transporing the initially posed problem in the domain 2* which depends on
a small parameter ¢ to an equivalent problem with a fixed domain 2 which is
independent of ¢. For that, we introduce the change of the variable » = ﬁ, which
changes (z/, z3) in Q° to (2/, z) in Q2 where :

QO ={(2,2) €eR’ (2/,0) cwand 0< z<h(z)}.

and we denote by I' = @ UT; UT;, its boundary, then we define the following
functions in Q2

{ s (o, z,t) = us (o, x3,t),i=1,2

a5 (), 2, t) = e g (2, w3, 1) .
For the data of the problem (1)-(7), we assume that they depend of ¢ as follows
fazt) = () as,1),
= ¢k,

€CY

??w

Q>

with f, k and & independent of e.
Moreover, we define some functions spaces on (2

K:{goeHl(Q)3:g0:00nF1UFLand<p.n:00nw}.
={p=(p1,2) €H ()’ p=00nT UTy }.

‘/z = {'U = ('Ul,U2> € L2 (Q)Q 881:

ELZ(Q),i:1,2andv:00nF1}.

1
2 2
L%ﬂ))) '

V. is the Banach space with norm

2
2
L= (Z (HUZ-HLQ(Q) +\
=1

c%i
0z

lv
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We multiply (1) by £ and passing to the fixed domain (2, by injecting the new data
and the unknown, we obtaln

615 [0, 77, such that

iEQ U O\ Ly (0 0u (. 0
2"\ " ot or T ot o
(11)
2 2
u; ~E|NE A oug
Z ( um% ) Z <|’LL3|U,3,Q03 - 8_153)
2
ous i ). dug . 0ug
g(( at>8t at>+€o‘<(1+ )at,@, at>

w0 . 0uS . 0ug
‘f’](SO)_](at)ZZ(fm%‘—8t)+5(f3a903 at)WEK

NE
oug

ot

i ou*
@ (0) = i (;1(0)_1“,
where
~ 7oA a% 8901
a<¢¢—lﬁ52/<ax >8xdd
ij=1 J J
31&1 3901 aA3 /
(21 ) (3220
3¢3 ops 2 . A\ g ,
12ue? /Egd dz + \e /de (@b) div (@) da'dz,
and

50) = [ kler as'
w
In the next, we will obtain estimates on u°. These estimates will be useful in
proving the convergence of u° toward the expected function.

Theorem 3.1. Under the hypotheses of Theorem 2.1, there exists a constant c inde-
pendent of ¢ such that
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oz ||* o |’ o5 ||* 3
(12) H o ‘ 22l b
— 0z L2 at Ox; L2(9) L3()
NE ~e |2 ne |2 3
- Z Ef)uz €8u3 2015 + ‘ 5 <c
2 o113 3
ous 8 3
(13) " +|le 52 <c
i—1 ot L3(0,T3L3(R)) 8t L3(0,T5L3(9))
2 112 2 2
9208 0?4 : 82u
(14) > : H 5o
9 o112
+ + —|— € <c
wzzl 8333825 129 8z8t o |l 120

Proof. First, we recall some inequalities.
- Korn’s inequalty [11]:

2 2
||d (ua)||L2(Qs)3X3 > CK ||VU€||L2(QE)3X3 ;
- Poincaré inequality:
||u€||L2(Qg)3 S €h* ||vu6||L2(QE)3X3 ,

- Young’s inequality:

a’ b?

ab < 7725 + 77’2? V(a,b) € R?, Vn > 0,
where h* and C are constants independent of ¢.

Let u° be a solution of the problem (9). We take ¢ = 0, then
_82u6 % + € @ + | €| € 0u®
o ot ) T\ o T
v ((1+ ou® |\ Ou® ou® <(r ou®

ot’ ot )~ Tot )’

ot

whence
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1d ' 3 ( 8u5)
1d < (24,
2 dt Ly ot

For s € [0, t] by integration, and using the Korn inequality, we get
ou’ ou’
5 ()

2

ou’
ot

ou’
ot

+af

2
+a(u,u’) + 5 HUEHiS(QE)S
L2 Qs) 3

2

ds

2
—I—Q[LCK ||Vua||L2 Qs 3><3+ ||fu’8||L3 QE)B_I_a
L3(=)3

L2(Q#)3

(15) ’

N 2
/ (f<> <>) d3+[HU1HL2Qed+(2H+3)\)HVU0HL2QE)JXJ+ o g ]

On the other hand, we have

2 [ (560 5 ) as =200 0) 2 7O 2 [ (B0 .

Using the Cauchy-Schwarz, Poincaré inequality and the Young inequality, we ob-
tain

t aus
6) [ (#60: 59) ds] < e 190
2h*2 € 27 %2 € 2 2
MC RG> @y TR (0) 720002 + [ Vttoll72(qey3xs
t €2h*2 afs
C Vs (8)]| 72 qeysxs d d
#uC [ IV s + L [ 5]
Using (15) and (16), we get
(17)
3u5 2 en?2 2 en3 e t 8u5
[‘ e 1O IV g | 4 5 I + k0 o
) 5 Qh*Q a
< lual[Zaiep + (14204 34) ||vu0||L2(Qs)3X3 o — Mz ey
Qh*2 afs
+ g2h>i<2 € 6 s ds
17O+ S | 5] o
E| ous
+/ 5 (s) + uCg ||Vu€(3)||iz(95)3x3] ds.
0 (0

~12
As &2 ||fe||22(95)3 =g ! HfHL2(Q)3 , multiplying (17) by ¢ we deduce that
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2

ou’
ot

|

+ uCk ||Vu€Hi2(Q€)3X3]
L2(Q=)3

2 3 ¢ 8'&8 3
+_ c e + E/ d
Wl 2o [ e e
t 2
ou®
SA—i—/ € ‘ (s) —|—,LLCKHVu€(s)Hiz(QE)3x3 ds,
0 at LQ(Qg)S ]

where A is a constant that does not depend of £ with

~

A = i[5 + (1 + 2 4 3X) [[Viio|| 72 (qexa + 2% || £(0) L2(9)?
~112
h*Q 12 h*2 af
e )l |[or
HCx 1 Wl (oariz @) © O || 9F [y oy

Now using Gronwall’s lemma, we have

|

Thus, we conclude (12) and (13).
The functional j¢ (.) is convex but nondifferentiable. The overcome this diffi-

2

ous
ot

<C.

+uCk HVUEHi'Z(Qe)“S
L2(Qe)3

culty, we shall use the following approach. Let j¢ (.) be a functional defined by

j2 (v) = / ke (2') ¢ ([0 ]?) do,

where |
P (A) = T1¢

To show the a priori estimate (14), we consider the approximate equation

o*us v [ Oud
a8 (Ge) etz + (G () »)

A, ¢ > 0.

£ 1 auz auz 2 €|,,E _ £
+a + o BN o)+ (|U<|Ug790) = (f%,»)
ous
ug(0) = up —=(0) = uy.

ot
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2
auc

o2

3,,€ 2,,E 2 € 2, 2,.€
(a@:f’ aatzg) T <a;< aagc) 2t ((% * aalf ) 83?’ aa?)
(55 (3 (3.5 - (3.2,
(g (8%) ’8;1?) > 0; we have
1d [' s || +a(aug aug)] § (8f5 azug) < _us azuc)
2 dt Ly ot ot )|~ \ ot or o’ o

ot?
Integrating this inequality over (0, ¢) and use Korn’s inequality, we obtain

We differentiate (18) in ¢ and we take ¢ =

we get

(19) ‘82“2 T e 924 ’82“2(0) 2
8t2 LQ(QE)3 ILL K 8t L2 QE)3X3 - at2 L2(QE)3
9 8u2 2
+ (2,u + 3+ MCK) ”vu1||L2(QS)3X3 + puCxk ||V
at L2 QS)SXS
2h*2 a 5 2h*2 a €
+5 H L "ol
,UCK L2(QE MCK ot L2(QE)3
22 *2 82]05 t auc 2
(s) ds + ,LLC’K/ (s) ds
,UJCK atQ (QS) at (Qg)SXS
t aue 62
€ ¢
4 /0 [ g1 G () G () s,

Using the Holder inequality, the Young inequality and the Sobolev embedding, we
get

t aua aZua
‘—4 / 0 () a; (5) 2% (5)da dasds
0 Qe

ot?
0%us
<4/ ug . C(3) ds
H C ||L4(Q Qs)& 875 LQ(QE)3
0%us 2
<4C?T + 24 (s) ds,
8t LQ(QE)S
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where C, independent of  and ¢, thus

20) Ha%g 2 oo o 2% ? Ha%g(o) 2
MUK S
at2 LQ(QE)S 8t LQ(QE)3X3 at2 L2(Qg)3
27,%2 ofe 2
261+ 3\ + pC) |V | 2agperons + 4C?T + & 0
+ (2p 43X+ pCk) [|[Vur |72 (geysxs +4CST + Cr || ot (0) ey
2h*2 a 5 2 2h*2 t 82 € 2
c = + 5 / I ) ds
ILLCK at LQ(Q€)3 MCK 0 at L2(Q5)3
t a?ua 2 t e 2
+/ 2( (s) ds+uC’K/ V—_(s) ds.
0 815 LQ(QE)3 0 at LQ(QE)3X3
0*u

$(0), from (18) and (10) we deduce

Now let us estimate
ot?

(%20 i "
00 ) = (F0),) — a0, ) = 0 (1-+ s s ) — (s )

for all ¢ € K*. Therefore

(550)

<eh’ ||f6<0)||L2(QE)3 ||V<P||L2(Qe)3x3 + (21 + 3X) ||U0||H1(Qs)3 ||<P||H1(Qf)3

311

1
2
+e*h*2af [Vut|[ 2qeysxs [Vl 12 (qeyexs + eh*a’\e </ |111|4dx'dz) IVl 2(qeyexs
Q

1
2
+eh* (/ |a0|4 dfdz) Hv¢|lL2(QE)3X3‘
Q

As H' (Q) — L*(Q), we get

0?us
¢ * 5
(G500 )| < et 1O Tl + 2o+ 3 Bl el

« 3 .
+e?h*?af ||U1||H1(Qs)3 ||90||H1(Qs)3 +exhiate ||u1||H1(Q)3 ||80||H1(Qs)3

+ eh”cs ||doll gy 1€l i ae)s -

We multiply this last inequality by /=, we obtain

0*us
¢ /
Ve 5z (0) <,

L2(Q#)3
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(204 3) [t 71 s + s ol sy

+ ah*? [l g1 ye + ah™es H“Al”Hl(Q)3 ’

does not depend of <. Passing to the limit in (20) as ¢ tends to zero, we find

2
0%uf

@D or?

\%

L2(0=)3

|

+ (21 + 3\ + pC) [ V|| qeyoxs + 4C2T +

62 h*2 afs

ous
ot

2h*2

2 2

0%uf
ot?

2*2

(0)

afe
ot

S ‘

LQ(QE)3X3 LQ(QE)3

(0)

,UCK L2(0e)3

82 fs

o )

0*u?f
ot?

L2(Q)°
2

pnCx
[pas®

/
0

Multiplying now (21) by ¢, we obtain

|
L]

L2(Q#)3

2

9*us
ot?

+ ,MCK
2(95)3
0?uf
B )

2

L2(Q#)3

pnCx

+/LCK

+NCK

(s) ds

L2(Qe)3

2
ds.
L2(Qs)3><3

ot?

ous
ot

(s)

2

ous

v@t

L2(QE)3X3_

ou’
Er (s)

where B is a constant that does not depend of ¢ with

~ 2
. , h*Q o
B = (2N+3)\+MCK) Hvuluig(mws —l—(C )2—|— _f(0>
,MCK ot 3
L2(Q)
h*2 o £ 12 A
+ 97 N 7§
puCr || Ot 1C || 02
L= (0,1522(2)°) £2(0,1:L2()%)

By the Gronwall’s lemma, there exists a constant C' that does not depend of ¢ such

that
2

0us
ot?

+ e
L2(0e)3

we conclude (14).

2

ou®
ot

\Y% <C,

L2 QE)SX?)
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4. CONVERGENCE RESULTS AND THE LIMIT PROBLEM

Theorem 4.1. Under the assumptions of Theorem 3.1, there exists u} € L* (0, T;V,)N
L>(0,T;V,), i = 1,2 such that

N E * ) —
u; —wuy, 1=1,2

(22) ou;  Ou}
L —t =12

o0 ot
weakly in L* (0,T;V,) and weakly * in L*> (0, T;V,);

ou; aui’ i=1.2
(23) ot 5?718Et

e—=2 =0
ot

weakly in L (0, T; L? (Q));

(24)

(25) 52% —0

20
(26) 200 g
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weakly in L* (0,T; L* (Q)) and weakly * in L*> (0,T; L* (Q2)).

Proof. According to Theorem 3.1 there exists a constant ¢ independent of ¢, such

that
2

ous ,
‘ G <ci=1,2
0z || 2(0)
Using this estimate with the Poincaré inequality in the domain, we obtain
i ois ||” .
|aE||?, < - <ci=1,2.
1 1V, 8
Z o)

So (45, 45), is bounded in L* (0,7 V) N L* (0,T;V;), which implies the existence
of an element (u},u}) in L* (0,7;V,) N L> (0,T;V,) such that (a5, 5), converges
weakly to (u},u3) in L? (0,7;V,) N L> (0,T;V,); thus, we obtain (22). For (23) to
(26) through to (14) and (22). O

Theorem 4.2. Under the hypotheses of Theorem 4.1, the limit u* = (u}, u}) satisfies
(4.1)

8u2‘ , N ~ { Ou*
“Z/ 8282( at)dmd”](@)_](at)

+a2/(1+ )a;; (@ au)dw’dz>2/fz(z )dx’dz

forall ¢ € 1 (K)%;

ot

0*u; . ouf ouf , o s o
28) ~H5 (t)+a (1 + 175 (t)'> 5t (t) = fi(t)i=1,21in L*(Q) |

uf (2, 2,0) = uai(:c’,z), i=1,2

*

A . . 0 . . .
Proof. Choosing ¢ = (gpl, D2, %) in (11) and passing to the limit when ¢ tends
z

to zero and using the convergence results of Theorem 4.1, we deduce
ou! NP 0. T
(29) “Z/ 32’82(2 m)dmzﬂ(‘p)_](at)

ou’ ou 2 ou*
(3 oo / > _ (3 .
+a2/<1+ ) 5 (goZ at)dxdz ;(f“% 815)
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We now choose in (29):

bo= T e HY (@) =12,

and using Green’s formula. Taking v, = 0 and ¢, € H] (Q), then ¢» = 0 and
Yy € Hg (), we obtain

2 * *
P wld:cdz—i—oz/ (1+ Ou; )a“ d:cdz—/fzwld:cdz
0 ot
Thus
Pup ouj [\ ow; . .
(30) _“az2 +a<1+ 5 ) o =fii=12in H " (Q),
as f; € L2 (Q) then (3.35) is valid in L2 (Q). O

Theorem 4.3. Under the same assumptions of Theorem 4.1, the traces

s =u*(2',0,t), T %u (2',0,1),
satisfy
(31) vt Sl = || ) = [ rtvds >0, w0 e 12 o
ot ot * w prwes =5 “
and the followmg limit form of the Tresca boundary conditions
il <k = 2 g
(32) ) ot . a.eonw x0,TJ.

8st _ By
Moreover u* and s* satisfies the following weak form of the Reynolds equation
~ h h .
(33) / (F - “58* + / pu* (o' z,t) dz + Ut> Vi (2) da’ = 0,
w 0

forall € H' (w), where

p|r*

h
F (2 h,t) = / F(x'zt)dz—gF(x’,h,t)

F (2, 2,1) //fxn, dndC

ah
U, (2’ h,t) = a/ Uy (o, zt)dz—l——Ut(x h,t)
0
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= [ [ (1]

a *
o) G .ty

*

8;; 44,0 = 1,2 in (27) where o € I1 (K), we find

2
our 0Y; ., N ou* ~ { Ou*
'MZ/ 0z 8zdxdz+‘7(w+ 8t> ‘7<(‘3t)

a3 [ (+[5) %

Using Green’s formula, we get

Proof. We choose ¢; =

ot

2
da'dz >y / fithida'dz, Y € T (K).
i=1 YO

—MZ/ dz—l—aZ/(1+ 5 ) dr'dz
* ’ 83 ds* ’ 2 ¢ /
—MZ/Ti Vidx + | ) da’ > Z/fzwidx dz.
i=1 YW i=1 Y8

From (28), we obtain
0s* 0s*

/wk ( ot | | ot

The density of D (w) in L? (w) we deduce (31). We obtain also (32) as in another
study [7]. To prove (33) we integrate twice (28) between 0 and z we obtain

— puy (@', 2, ) + psi + per) —|—04// <
(34) =K Aﬁumemc

In particular for z = h, we get

ps; + paT; +a/ / <1—|—
0o Jo

Y+

) da’ — / pr*pdz’ >0, ¥ € D (w)?.

ot ot

uf , ,
) ~ (', n,t) dnd(

) Ol (41, .t dnd

ot ot
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Integrating (34) from 0 to h, we obtain

2

h
—,u/ (7, zt)dz—l—,us*h—l—u2 ;

o [ L[
_/0 /O/Oﬁ»(x’,n,t)dndgdz.

From (35) and (36), we deduce

ouf
) ey (2',m,t) dndCdz

N h h N
F— NES* +/ pu* (2 2, t) dz + Uy = 0.
0

Therefore
- h h -
/ (F — Mis* + / put (2 z,t) dz + Ut> Vi (2') da’ = 0.
w 0
Theorem 4.4. The limit solution u* is unique in L* (0,T;V,) N L> (0, T;V,).

Proof. Suppose that there exist two solution «* and u** of the variational inequality
(27), we have

auj / A A ~ ou*
=7 [ (o= G )awaz+i 0= (%)
A Oui |\ ouj ( . ou; / = P ou’
- : i : > B — i
+aizl/9<1+ BN ) BN (% m)dxdz_izl(f“% 8t>’
and

our* . our” , NN o Thnt
(38) ’“‘Z/ e az( 8t)dxdz+]((p)_j(8t>

2
+@Z/ <1+
i=1 7O

k%
ou;

ot

ou™ (. ou’™ ou’*
) 5t (soi— > )dxd Z(fu%— )

=1
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*3k *

We take ¢ = Y in (37) then ¢ = 88% in (38) and by summing the two
inequalities, we obtain

2
d . . o (Our  Our\
“;/Qa( ) 5 <8t azs)dxdz
2
au **
+ & dz'dz
> (5% (5 %)

+a2/ (‘ Oui” | 9u; ) (aui _ % )dx’dz <0.

at B ‘ ot | ot ot ot
If we put W (t) = u*(t) — u**(t), this implies

~ 112 ~ 113
o | ow ow )
g dt || 0z =
L2(Q)? L2(Q)? L3()?
As W (0) = 0 then
~ 112
ow
— = 0.
ot )
L2(Q)
Using Poincaré’s inequality, we conclude
| — 0.
L2(0,T;Vz) L>(0,T;V3)
U
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