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SPECTRAL GALERKIN METHOD FOR STOCHASTIC SPACE-TIME
FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION

Zineb Arab

ABSTRACT. This work is devoted to deal with a stochastic space-time fractional
integro-differential equation in the Hilbert space L2(0, 1), by studing its spatial
approximation. Precisely, we use the spectral Galerkin method to prove that the
spatial approximation converges strongly (i.e. in the space Lp(Ω, L2(0, 1))), by
imposing only a regularity condition on the initial value.

1. INTRODUCTION

Recently, a considerable interest in the theoretical study of the stochastic frac-
tional integral or integro-differential equations (see [8,11,12,14–16,20] and the
references therein), due to the fact that such class of equations have been used
frequently as a mathematical models of many physical phenomena as the anoma-
lous diffusions of memory processes with random effects. In general, it is not easy
to solve these kind of equations analytically, for this the numerical study plays
an important role by providing a numerical approximations of the analytic so-
lutions with respect to time, to space or to both simultaneously. The main task
of the numerical study for stochastic partial differential equations is to elaborate
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schemes, generally based on the deterministic numerical mathods, such as the
spectral Galerkin mathod.

To the best of our knowledge, there is no work in the literatures until now
is concerned with the numerical study of these kind of equations, although the
importance of such study. Moreover, we can find a few new papers have dealt
with the numerical approximations of the fractional stochastic partial differential
equations, see e.g. [2,4,9,10,18,19,23].

From these facts, our contribution in the current paper will be the study of the
spatial approximation of such class of equations, which is given in the following
general form:

u(t) = u0 +
1

Γ(α)

∫ t

0

Aβ u(s)

(t− s)1−αds+
1

Γ(α)

∫ t

0

F (u(s))

(t− s)1−αds

+
1

Γ(α)

∫ t

0

G

(t− s)1−αdW (s),

(1.1)

for any t ∈ [0, T ] with T > 0 be fixed, α ∈ (1
2
, 1], where Aβ := (− ∂2

∂2x
)
β
2 = A

β
2 , β > 1

is the fractional Laplacian and A is the minus Laplacian equiped with the Dirich-
let boundary conditions, the initial condition u0 := u(0) is a L2(0, 1)-valued F0-
measurable random variable, F : L2(0, 1) → L2(0, 1) and G : L2(0, 1) → L2(0, 1)

are two operators, W is a L2(0, 1)-valued cylindrical Wiener process. The frac-
tional integrals appear in Pr.(1.1) are considered in the Riemann-Liouville sense.

It is worth mentioning that in [7], Arab Z. and Tunc C. have studied and proved
the wellposedness of Pr.(1.1) and its spatial and temporal regularity.

The paper is ordered by the following: we introduce in Section 2 some notations
and preliminaries are concerned with the wellposedness of Pr.(1.1). In Section 3
we state and prove the spatial approximation of the mild solution via spectral
Galerkin method. Finally, conclusion is presented in Section 4.

2. PRELIMINARIES AND NOTATIONS

This section is devoted to give the wellposedness result of Pr.(1.1), that has been
proved in [7]. In order to do this, we need first some notations.
Notations. N∗ := N − {0}. For O an operator we mean by D(O) its domain
of definition, the Hilbert space L2(0, 1), its norm and inner product are denoted
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respectively by H, |.|H , 〈., .〉H , the space of linear bounded operators defined on H
into it self and its norm are denoted respectively by L(H) and ‖.‖L(H). HS is the
space of Hilbert-Schmidt operators defined from the Hilbert space H into it self,
and we indicate its norm by ‖.‖HS. Let (Ω,F ,F,P) be a filtered probability space,
where F := (Ft)t∈[0,T ] is a normal filtration and X be a Banach space, Lp(Ω, X),
for p ≥ 2 is the space of X-valued p-th integrable random variables on Ω, its norm
is denoted by ‖.‖Lp(Ω,X), Λ([0, T ];H) := {v ∈ C([0, T ];Lp(Ω, H)), v is F− adapted}
is a Banach space equiped with the norm ‖v‖Λ := supt∈[0,T ] ‖v(t)‖Lp(Ω,H). We use
respectively the abbreviations RHS, Est, Pr and ONB for right hand side, estimate,
problem and orthogonormal basis.

According to the spectral decomposition, we define the fractional Laplacian as
follows (see [1,3,5,6]).

Definition 2.1. Let β > 1, and let (en, λn)+∞
n=1 be the eigenpairs of the operator A,

such that λn := (nπ)2 and en(.) :=
√

2sin(π.). Then, for any u ∈ D(Aβ) where

D(Aβ) := {v ∈ H, such that |v|2D(Aβ) :=
+∞∑
n=1

λβn〈v, en〉2H < +∞},

we have

(2.1) Aβu :=
+∞∑
n=1

λ
β
2
n 〈u, en〉Hen.

The system (en)n∈N∗ can be considered as an ONB of the space H. Then, from
(2.1), we see that for any n ∈ N∗,

Aβen =
+∞∑
k=1

λ
β
2
k 〈en, ek〉L2(0,1)ek = λ

β
2
n en,

and so, (en, λ
α
2
n )n∈N∗ represents the eigenpairs of the fractional Laplacian Aβ.

Lemma 2.1. The operator Aβ satisfies the following.

(i) Is symmetric.
(ii) Is the infinitesimal generator of an analytic semigroup (Sβ(t) := e−tAβ)t≥0 on

H satisfies for all v ∈ H,

(2.2) Sβ(t)v =
∑
k∈N∗

e−tλ
β
2
k 〈v, ek〉Hek.
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(iii) For all γ ≥ 0 there exists a positive constant Cγ such that

(2.3) ‖AγSβ(t)‖L(H) ≤ Cγt
− 2γ
α .

(iiii) For all ξ > 1
4
, there exists Cξ > 0 such that

(2.4) ‖A−ξ‖HS ≤ Cξ.

Proof. The proof of the symmetry is fulfilled directely from the definition of Aβ. For
the second and the third assertions see [3,17] and for the last one see [3,7]. �

Definition 2.2. ( [13, 15, 23]) Let u := (u(t))t∈[0,T ] be an H-valued stochastic pro-
cess. u is said to be a mild solution of Pr.(1.1) if

- for all t ∈ [0, T ], u(t) is Ft-adapted,
- u satisfies the following equality in H, P-a.s.,

u(t) =

∫ ∞
0

ξα(θ)Sβ(tαθ)u0dθ

+ α

∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)Sβ((t− s)αθ)F (u(s)) dθ ds

+ α

∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)Sβ((t− s)αθ)Gdθ dW (s),(2.5)

for all t ∈ [0, T ], where ξα is a probability density function defined on (0,∞).

Arab Z. and Tunc C. in [7] have proved the wellposedness of Pr.(1.1) (Theorem
2.1 bellow), after imposing the following assumptions. For p ≥ 2:
HF - The operator F : H → H (not necessarily linear) satisfies the global Lips-

chitz and the linear growth conditions, i.e.,

(2.6) |F (u)− F (v)|H ≤ CF |u− v|H ,

and

(2.7) |F (u)|H ≤ CF |u|H ,

for some positive constant CF .
Assumption HF can be reformulated in the random context as follows. For x

and y be two H-valued random variables, it holds

(2.8) ‖F (x)−F (y)‖pLp(Ω,H) = E|F (x)−F (y)|pH ≤ Cp
FE|x−y|

p
H = Cp

F‖x−y‖
p
Lp(Ω,H),
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and

(2.9) ‖F (x)‖pLp(Ω,H) = E|F (x)|pH ≤ Cp
FE|x|

p
H = Cp

F‖x‖
p
Lp(Ω,H).

HG - The operator G : H → H is linear and bounded, i.e., ‖G‖L(H) ≤ CG, for
some positive constant CG.
Hu0 - The initial condition u0 is an F0-measurable random variable, satisfies

u0 ∈ Lp(Ω,F0,P;H), i.e. ‖u0‖Lp(Ω,H) <∞.

Remark 2.1. In the rest of this paper, when we need to use estimations in the random
context as it has been proved above for Assumption HF , we will do it without proof
in order to avoid the repetitions.

Theorem 2.1. ( [7]) Let α ∈ (1
2
, 1), β > 2α

2α−1
and p ≥ 2. Under the Assumptions

HF , HG and Hu0, Pr.(1.1) admits a unique mild solution u ∈ Λ([0, T ];H), provided
that

CγCα,1CFT
α < 1,

where γ ∈ [0, 1− 1
2α

) and Cα,1 := Γ(2)
Γ(1+α)

.

To make the proof of our main result more easier, we need the following useful
lemmas.

Lemma 2.2. ( [23]) Let α ∈ (0, 1) and ν ∈ (−1,+∞). It is true that∫ ∞
0

θνξα(θ)dθ =
Γ(1 + ν)

Γ(1 + αν)
=: Cα,ν ,

where ξα is a probability density function defined on (0,∞) and Γ is Gamma function.

Lemma 2.3. Let the continuous function g : [0, T ] → [0,+∞), for a fixed T > 0. If
∃ % > 0 such that

g(t) ≤ C1 + C2

∫ t

0

(t− τ)%−1g(τ)dτ, ∀ t ∈ (0, T ],

for some C1, C2 > 0. Then, ∃ C(C2,T,%) > 0, such that

g(t) ≤ C1C(C2,T,%).

Lemma 2.4. [22, Chapter 7; Est.(7.5) and Est.(7.6), p.112]. Let U be a Hilbert
space and letA be a linear (not necessarily bounded), self-adjoint and positive definite
operator defined on D(U) ⊆ U , which has eigenvalues {µj}Nj=1, for 1 < N ≤ ∞
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corresponding to a basis of orthogonormal eigenfunctions {ϕj}Nj=1. Then, for an
arbitrary function G defined on the spectrum σ(A) = {µj}Nj=1 of A, it holds

(2.10) ‖G(A)‖L(U) = sup
1≤j≤N

|G(µj)|U .

Lemma 2.5. ( [4, Lemma A.8].) ∀γ > 0,∃ Cγ := γγe−γ > 0 such that ∀x ≥
0, xγe−x ≤ Cγ.

3. SPATIAL APPROXIMATION OF PROBLEM (1.1) BY USING SPECTRAL GALERKIN

METHOD

In this main section we study and prove the spatial approximation of the mild
solution u by using the spectral Galerkin method. To do this, we fix N ∈ N∗, let
h := 1

N
, and let (Hh)h∈(0,1] be a sequence of finite dimensional subspaces of the

Hilbert space H, such that

Hh := span{e1, . . . , eN}.

Let Ph : H → Hh be the Galerkin projection onto Hh. Thus, for any v ∈ H we
have

Phv =
N∑
k=1

〈v, ek〉H ek.

We give the definition of the discrete version of Aβ as follows.

Definition 3.1. The discrete version of Aβ is an operator Aβ,h : Hh → Hh, defined
for any vh ∈ Hh by

Aβ,hvh :=
N∑
k=1

〈vh, ek〉HAβek.

It is easy to see that, Aβ,hvh =
∑N

k=1〈vh, ek〉Hλ
β
2
k ek, and so, for any n ∈ {1, . . . , N},

Aβ,hen =
N∑
k=1

〈en, ek〉HAβek = Aβen = λ
β
2
n en.

Then, (ek, λ
β
2
k )Nk=1 is the set of eigenpairs of Aβ,h.
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Lemma 3.1. The operator−Aβ,h is a generator of a semigroup of contraction (Sβ,h(t) :=

e−tAβ,h)t∈[0,T ] on Hh, acting on the spectrum as

Sβ,h(t)ek = e−tλ
β
2
k ek, ∀ k ∈ {1, . . . , N}.

Moreover, for all γ ≥ 0, there exists Cγ > 0 such that

(3.1) ‖Aγβ,hSβ,h(t)‖L(H) ≤ Cγt
−γ, for all t ∈ (0, T ].

Proof. The operator Aβ,h is self-adjoint and positive definite. Indeed, its symmetry
is fulfilled directely from the symmetry of Aβ and since D(Aβ,h) = Hh, then Aβ,h

is self-adjoint (see [3, Corolarry 1.32], [24]). About the second property, we have
for any uh :=

∑N
i=1 u

i
hei ∈ Hh where uih := 〈uh, ei〉H ,

〈Aβ,huh, uh〉H = 〈
N∑
i=1

uihAβei,
N∑
j=1

ujhej〉H =
N∑

i,j=1

uihu
j
h〈Aβei, ej〉H

=
N∑

i,j=1

uihu
j
h〈λ

β
2
i ei, ej〉H =

N∑
i=1

(uih)
2λ

β
2
i ≥ 0.

Then, Aβ,h is positive definite. Hence, −Aβ,h is a generator of a C0-semigroup
(e−tAβ,h)t∈[0,T ] on Hh (see [3, Proposition 1.58], [21, Proposition 9.4, p. 519]), let
us denote it by Sβ,h(t).

About the smoothing property Est.(3.1), the use of Est.(2.10) in Lemma 2.4 and
Lemma 2.5 gives

‖Aγβ,he
−tAβ,h‖L(H) = sup

1≤i≤N

(
λ
βγ
2
i e−tλ

β
2
i

)
≤ Cγt

−γ.

�

Now, we are able to introduce the discrete version of Pr.(1.1) by using the spec-
tral Galerkin method.

uh(t) = Phu0 +
1

Γ(α)

∫ t

0

Aβ,huh(s)

(t− s)1−αds+
1

Γ(α)

∫ t

0

PhF (uh(s))

(t− s)1−α ds

+
1

Γ(α)

∫ t

0

PhG
(t− s)1−αdW (s),

(3.2)

for all t ∈ [0, T ].
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Theorem 2.1 is ensured the existence and the uniquness of a mild solution uh ∈
Λ([0, T ];Hh), that satisfies the following equality in Hh, P− a.s.

uh(t) =

∫ ∞
0

ξα(θ)Sβ,h(t
αθ)Phu0dθ

+ α

∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)Sβ,h((t− s)αθ)PhF (uh(s)) dθ ds

+ α

∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)Sβ,h((t− s)αθ)PhGdθ dW (s), ∀ t ∈ [0, T ].(3.3)

Our main result in this work is the following.

Theorem 3.1. For α ∈ (1
2
, 1), β > 2α

2α−1
and p ≥ 2, let u := (u(t))t∈(0,T ] be the

mild solution of Pr.(1.1) with initial condition u0 satisfies ‖Aσu0‖Lp(Ω,L2(0,1)) < ∞,
for some σ > 0, and let uh := (uh(t))t∈(0,T ] be the mild solution of its discrete
version Pr.(3.2). Then, uh converges strongly to u with order of convergence δ :=

min{σ, ζ, βζ́
2
}, i.e.

(3.4) ‖u(t)− u(t)h‖Lp(Ω,H) ≤ Chδ, for all t ∈ (0, T ],

for some positive constant C independent of h, where ζ < β and ζ́ ∈ ( 1
β
, 1− 1

2α
).

The proof of our main result needs also the following useful Lemma, that is
concerned the family of operators (Eβ,h(t))t∈[0,T ] such that

∀ t ∈ [0, T ], Eβ,h(t) := Sβ(t)− Sβ,h(t)Ph.

It is easy to see that Sβ,h(t)Ph = PhSβ(t), and so Eβ,h(t) = (I − Ph)Sα(t).

Lemma 3.2. ( [3, Lemma 6.13]) Let β > 1 and t ∈ (0, T ]. We have

(i) For all ζ ≥ 0 and all η ∈ R there exists Cζ,η > 0 such that

(3.5) |Eβ,h(t)x|H ≤ Cζ,ηh
ζ t−

(ζ−η)
β |A

η
2x|H , ∀x ∈ D(A

η
2 ).

(ii) For all ζ > 1
β

there exists Cζ,β > 0 such that

(3.6) ‖Eβ,h(t)‖2
HS ≤ Cζ,β h

βζ t−ζ .

3.1. Proof of Theorem 3.1. Let α ∈ (1
2
, 1), β > 2α

2α−1
and p ≥ 2. From equations

(2.5) and (3.3) we have,

(3.7) ‖u(t)− uh(t)‖Lp(Ω,H) ≤ R1 +R2 +R3 +R4,
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where
R1 := ‖

∫ ∞
0

ξα(θ)Eβ,h(t
αθ)u0dθ‖Lp(Ω,H),

R2 := α‖
∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)Eβ,h((t− s)αθ)F (u(s))dθds‖Lp(Ω,H),

R3 := α‖
∫ t

0

∫ ∞
0

θ(t−s)α−1ξα(θ)Sβ,h((t−s)αθ)Ph (F (u(s))− F (uh(s))) dθds‖Lp(Ω,H),

R4 := α‖
∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)Eβ,h((t− s)αθ)GdθdW (s)‖Lp(Ω,H).

To estimate R1, let σ > 0. By using Est.(3.5) (with ζ = η = σ) and Lemma 2.2
(with ν = 0), we end up with

R1 := ‖
∫ ∞

0

ξα(θ)Eβ,h(t
αθ)u0dθ‖Lp(Ω,H) ≤

∫ ∞
0

ξα(θ)‖Eβ,h(tαθ)u0‖Lp(Ω,H)dθ

≤ Cσh
σ ‖A

η
2u0‖Lp(Ω,H)

∫ ∞
0

ξα(θ)dθ = Cσh
σ ‖A

η
2u0‖Lp(Ω,H)Cα,0.(3.8)

For the second estimate R2, we use Est.(3.5) (with ζ < β, η = 0), Assumption
HF and Lemma 2.2 (with ν = 1− ζ

β
), to get

R2 := α‖
∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)Eβ,h((t− s)αθ)F (u(s))dθds‖Lp(Ω,H)

≤ α

∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)‖Eβ,h((t− s)αθ)F (u(s))‖Lp(Ω,H)dθds

≤ αCζ,0h
ζ

∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)((t− s)αθ)−
ζ
β ‖F (u(s))‖Lp(Ω,H)dθds

≤ αCζ,0h
ζCF

∫ t

0

(

∫ ∞
0

θ1− ζ
β ξα(θ)dθ)(t− s)α(1− ζ

β
)−1‖u(s)‖Lp(Ω,H)ds

≤ αCζ,0h
ζCFCα,1− ζ

β

∫ t

0

(t− s)α(1− ζ
β

)−1‖u(s)‖Lp(Ω,H)ds

≤ αCζ,0h
ζCFCα,1− ζ

β
‖u‖Λ

∫ t

0

(t− s)α(1− ζ
β

)−1ds

≤ αCζ,0h
ζCFCα,1− ζ

β
‖u‖Λ

Tα(1− ζ
β

)

α(1− ζ
β
)
.(3.9)
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Thanks to the facts that Sβ,h((t − s)αθ)Ph = PhSβ((t − s)αθ) and ‖Ph‖L(H) ≤ 1,
we have

R3 :=

:=α‖
∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)Sβ,h((t− s)αθ)Ph (F (u(s))− F (uh(s))) dθds‖Lp(Ω,H)

=α‖
∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)PhSβ((t− s)αθ) (F (u(s))− F (uh(s))) dθds‖Lp(Ω,H)

≤α
∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)‖PhSβ((t− s)αθ) (F (u(s))− F (uh(s))) ‖Lp(Ω,H)dθds

≤α
∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)‖PhSβ((t− s)αθ)‖L(H)‖F (u(s))− F (uh(s))‖Lp(Ω,H)dθds

≤α
∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)‖Ph‖L(H)‖Sβ((t− s)αθ)‖L(H)

‖F (u(s))− F (uh(s))‖Lp(Ω,H)dθds

≤α
∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)‖Sβ((t− s)αθ)‖L(H)‖F (u(s))− F (uh(s))‖Lp(Ω,H)dθds.

The use of the semigroup property (2.3) (with γ = 0), Assumption HF and
Lemma 2.2 (with ν = 1) help us to estimate R3 as follows

R3 ≤ α

∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)‖Sβ((t− s)αθ)‖L(H)

‖F (u(s))− F (uh(s))‖Lp(Ω,H)dθds

≤ αC0

∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)‖F (u(s))− F (uh(s))‖Lp(Ω,H)dθds

≤ αC0CF

∫ t

0

(

∫ ∞
0

θξα(θ)dθ)(t− s)α−1‖u(s)− uh(s)‖Lp(Ω,H)ds

≤ αC0CFCα,1

∫ t

0

(t− s)α−1‖u(s)− uh(s)‖Lp(Ω,H)ds.(3.10)
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To estimate R4, we use Burkholder-Davis-Gundy inequality as follows

R4 := α‖
∫ t

0

∫ ∞
0

θ(t− s)α−1ξα(θ)Eβ,h((t− s)αθ)GdθdW (s)‖Lp(Ω,H)

≤ αCp

(
E
(∫ t

0

‖
∫ ∞

0

θ(t− s)α−1ξα(θ)Eβ,h((t− s)αθ)Gdθ‖2
HSds

) p
2

) 1
p

= αCp‖
∫ t

0

‖
∫ ∞

0

θ(t− s)α−1ξα(θ)Eβ,h((t− s)αθ)Gdθ‖2
HSds‖

1
2

L
p
2 (Ω,R)

,(3.11)

where Cp := (p
2
(p− 1))

1
2 ( p

p−1
)
p
2
−1.

We need first to estimate ‖
∫∞

0
θ(t − s)α−1ξα(θ)Eβ,h((t − s)αθ)Gdθ‖2

HS. To do
this, we use the fact that ‖AB‖HS ≤ ‖A‖HS‖B‖L(H), for any A ∈ HS and any
B ∈ L(H), the Est.(3.6) (with ζ = ζ́ ∈ ( 1

β
, 1 − 1

2α
), which is possible thanks to

β > 2α
2α−1

), Assumption HG and Lemma 2.2 (with ν = 1− ζ́
2
) as follows

‖
∫ ∞

0

θ(t− s)α−1ξα(θ)Eβ,h((t− s)αθ)Gdθ‖2
HS

≤
(∫ ∞

0

θ(t− s)α−1ξα(θ)‖Eβ,h((t− s)αθ)G‖HSdθ
)2

≤
(∫ ∞

0

θ(t− s)α−1ξα(θ)‖Eβ,h((t− s)αθ)‖HS‖G‖L(H)dθ

)2

≤ Cζ́,βh
βζ́(t− s)2α(1− ζ́

2
)−2‖G‖2

L(H)

(∫ ∞
0

θ1− ζ́
2 ξα(θ)dθ

)2

≤ Cζ́,βh
βζ́(t− s)2α(1− ζ́

2
)−2‖G‖2

L(H)(Cα,1− ζ́
2

)2.(3.12)

From Est.(3.11) and Est.(3.12), we arrive at

R4 ≤ αCpC
1
2

ζ́,β
h
βζ́
2 ‖G‖L(H)Cα,1− ζ́

2

‖
∫ t

0

(t− s)2α(1− ζ́
2

)−2ds‖
1
2

L
p
2 (Ω,R)

≤ αCpC
1
2

ζ́,β
h
βζ́
2 ‖G‖L(H)Cα,1− ζ́

2

(∫ t

0

(t− s)2α(1− ζ́
2

)−2ds

) 1
2

≤ αCpC
1
2

ζ́,β
h
βζ́
2 ‖G‖L(H)Cα,1− ζ́

2

Tα(1− ζ́
2

)− 1
2

(2α(1− ζ́
2
)− 1)

1
2

.(3.13)
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Coming back to Est.(3.7), by relpacing Est.(3.8), Est.(3.9), Est.(3.10) and Est.(3.13)
in it, we end up with

‖u(t)− uh(t)‖Lp(Ω,H) ≤ C1h
δ + C2

∫ t

0

(t− s)α−1‖u(s)− uh(s)‖Lp(Ω,H)ds,

where δ := min{σ, ζ, βζ́
2
},

C1 := Cσ ‖A
η
2u0‖Lp(Ω,H)Cα,0

+ αCζ,0CFCα,1− ζ
β
‖u‖Λ

Tα(1− ζ
β

)

α(1− ζ
β
)

+ αCpC
1
2

ζ́,β
‖G‖L(H)Cα,1− ζ́

2

Tα(1− ζ́
2

)− 1
2

(2α(1− ζ́
2
)− 1)

1
2

,

and C2 := αC0CFCα,1. An application of Gronwall Lemma 2.3 yields

‖u(t)− uh(t)‖Lp(Ω,H) ≤ C1CC2,T,α h
δ.

By this the desired result is obtained.

4. CONCLUSION

Stochastic fractional integro-differential equations have been used as a mathe-
matical models of many physical phenomena in applied sciences. In this paper,
we have considered the stochastic space-time fractional integro-differential equa-
tion in the Hilbert space L2(0, 1). By using the spectral Galerkin method, we have
proved that the approximate solution uh, for h ∈ (0, 1] converges strongly (i.e.
in the space Lp(Ω, L2(0, 1)), for p ≥ 2) to the mild solution u, by imposing only
a regularity condition on the initial value, i.e. ‖Aσu0‖Lp(Ω,L2(0,1)) < ∞, for some
σ > 0.
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