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AMPLITUDE ADJUSTMENT WITH FIWASVJ MODEL

Tsilavina Ravo Hasina Andrianantenainarinoro1, Rado Abraham Randrianomenjanahary,
and Toussaint Joseph Rabeherimanana

ABSTRACT. Andrianantenainarinoro [2] remarked that the price amplitudes of fi-
nancial models may not correspond to the reality and we propose here a model in
continuous time Fractionally Integrated WASC Stochastic Volatility Jump. To do
this, we introduce a fractal index in the WASC Stochastic Volatility Jump model
and we have two others characteristics: amplitude adjustment and memory of pro-
cess. We present also several theories in stochastic calculus, algebraic, differential
geometry, numerical method and estimating method which can use to financial
such us: sense of a fractional integral, relationship between trace and determi-
nant operator, Euler’s approximation for an unresolved differential equation and
convergence speed.

1. INTRODUCTION

Andrianantenainarinoro [2] showed that some price amplitudes of financial
models may be abnormal. Hence, we must regularize the amplitude of asset to
adjust it to the reality and he proposed a technical by using the Matérn process. In
this article, we propose a model in continuous time Fractionally Integrated WASC
Stochastic Volatility Jump noted FIWASVJ(d,a):
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(1.1)



d logSt = (r − 1
2
vec[tr(eiiΓt)])dt+

√
ΓtdZt + dψtϕ

dΓt = ν
(2a+1)G(a+1)2Q

′Q(dt)2a+1 + (ΦΓt + ΓtΦ
′)dt

+
√

ΓtdB̃a,tQ+Q′(dB̃a,t)
′√Γt + dψt

dZt =
√

1− ρ′ρdWd,t + dB̃d,tρ

dψt =
√

ΓtdP̃t + (dP̃t)
′√Γt + (dP̃t)(dP̃t)

′ where:

,

(i) ν is a positive integer nonzero;
(ii) Q, Φ are n× n dimensional real matrices;

(iii) eii is the n × n dimensional matrix defined by eii = (δijk)j,k=1,...,n where

δijk =

{
1 if (j, k) = (i, i)

0 otherwise
;

(iv) If a1, . . . , an ∈ R, we define vec(ai) = (a1, . . . , an)′ which is a vector in Rn;
(v) ϕ and r are vectors in Rn and ρ = (ρ1, ρ2, . . . , ρn)′ where ρi ∈ [−1, 1];

(vi) ψt is the jump process defined in WASVJ model;
(vii) dZt =

√
1− ρ′ρdWd,t + dB̃d,tρ defines the stochastic correlation noise be-

tween the yield logSt and its volatility Γt on the continuous part of the
trajectory where d ∈

]
−1

2
, 1

2

[
;

(viii) B̃a,t is a n × n dimensional stochastic matrix whose components are the
fractional Brownian motion (fBm) order a defined in Mandelbrot [13] by

(1.2) Ba,t =

∫ t

0

(t− s)a

G(a+ 1)
dWs

where a ∈
]
−1

2
, 1

2

[
, G is the Gamma function, G(α) =

∫ +∞
0

uα−1e−udu,
α > 0 and Wt is a standard Brownian motion (sBm);

(ix) Wd,t is a n × n-dimensional stochastic matrix whose components are the
fBm order d;

(x) P̃t is a n × n dimensional stochastic matrix whose components are the
compounded Poisson processes (cPp);

(xi) H ′ is the transpose of the matrix H.
(xii) tr(H) is the trace of the matrix H

(xiii) y′ is the transpose of the vector y.

The model is obtained by changing the sBm in the WASC Stochastic Volatility
Jump model (WASVJ) of Andrianantenainarinoro [1] by the fBm. The fractal
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index on the asset of model adjusts its course to the reality and the fractal in the
volatility is to obtain its memory. The volatility Γt is a new process called Jump
and Fractionally Integrated Wishart Autoregressive noted JAFIWAR(a).

The purpose of this article is therefore to build a financial model with FIWASVJ
(d,a) in the market without friction. To do this, it is therefore necessary to set
up a modeling with the uncertainty linked to the future evolution of the financial
market. But before that, we must study the positiveness of volatility Γt and its law.
Next, we discuss the sense of the integral

∫ T
0

√
ΓsdZs and the law of yield logSt.

Its law is related to an unresolved differential equation and we approximate the
solution by Euler’s approximation. In the practical part, we will show how to
estimate the parameter of model and we look the impact of its adjustment on
the option pricing. We find in this paper severals theories in stochastic calculus,
algebraic, differential geometric, numerical method and estimating method which
can be essential for the financial market.

2. THE MODEL

In this study, we work in the probability space (Rn, P ) where P is the “risk–
neutral”probability such that the price of any option is a conditional expectation
of its payoff. Consider a market of a basket carrying n underlying assets such that
St is the value of this basket at time t, logSt is its return.

2.1. Positive definite of volatility. Let xt a process in Rn defined by:

(2.1) dxt = Φxtdt+
√
Q′QdBa,t + dPt,

where Φ and Q are n × n dimensional real matrices; Ba,t is a n-dimensional sto-
chastic vector whose components are the fBm order a ∈

]
−1

2
, 1

2

[
and Pt is a n-

dimensional vector of cPp.
Let zt a process of the form:

(2.2) zt =
ν∑
i=1

xi,t(xi,t)
′,

where ν is a positive integer nonzero and (xi,t)t i = 1, . . . , ν are the n-dimensional
vector process defined by (2.1).
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Proposition 2.1. zt is a positive definite matrix if and only if ν ≥ n ≥ 1.

Proof. “⇒”Firstly, if ν = 1, then we work in R and the process zt is the sum of the
real processes squared.

Let us now consider for ν ≥ 2. We use absurd reasoning. Suppose that n > ν

and zt is a positive definite matrix. Build a n× ν dimensional process Xt:

(2.3) d(Xt)
′ = Φ(Xt)

′dt+
√
Q′QdB̌a,t + (dP̌t)

′,

where (Xt)
′ = (x1,t, . . . , xν,t) is a n × ν dimensional stochastic matrix; B̌a,t =

(B1,a,t, B2,a,t, . . . , Bν,a,t) is the n × ν dimensional matrix where the Ba,i,t are the
fBm vectors of xi,t, i = 1, . . . , ν and (P̌t)

′ = (P1t, P2,t, . . . , Pν,t) is the n × ν dimen-
sional matrix where the Pi,t are n-dimensional vectors of cPp of xi,t, i = 1, . . . , ν.

We have zt = (Xt)
′Xt. Thus rank(zt) ≤ min(n, ν). Since ν < n, then we

have rank(zt) < n where zt is a n × n dimensional matrix. Thus zt is singular
and therefore it is not positive definite matrix. A contradiction with zt is positive
definite matrix.

“⇐”Let y ∈ Rp, y = (y1, y2, . . . , yp)
′. Let suppose also that xi,t = (xi1, . . . , x

i
n)′.

Developing zt of the form (2.2), we get

zt =
ν∑
i=1


(xi1)2 xi1x

i
2 · · · xi1x

i
n

xi2x
i
1 (xi2)2 · · · xi2x

i
n

: : · · · :

xinx
i
1 xinx

i
2 · · · (xin)2

 .
After the calculation,

y′zty =
ν∑
i=1

(
n∑
j=1

(yjx
i
j)

)2

≥ 0.

Thus, if the latter is zero, then we obtain ν equations with n unknowns which are:

n∑
j=1

(yjx
1
j) = 0

n∑
j=1

(yjx
2
j) = 0

...
n∑
j=1

(yjx
ν
j ) = 0.
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Since ν ≥ n, we have yj = 0 for all j. Thus, the later is strictly positive for all
0 6= y ∈ Rn and it follows that Γt is positive definite matrix. �

2.2. Marginal dynamic of the model.

Proposition 2.2. Let us dPi,t = YidNt where Pi,t is the cPp of xi,t, i = 1, . . . , ν, the Yi
are n-dimensional vectors of i.i.d (independent and identically distributed) random
variables and Nt is a Poisson process of intensity λ > 0. If ν ≥ n and a ∈

[
0, 1

2

[
, then

the process zt satisfies the SDE (Stochastic Differential Equation) of type:

dzt =
ν

(2a+ 1)G(a+ 1)2
Q′Q(dt)2a+1 + (Φzt + ztΦ

′)dt

+
√
zt(dB̃a,t)

′
√
Q′Q+

√
Q′QdB̃a,t

√
zt

+
√
zt(dP̃t)

′ + dP̃t
√
zt + dP̃t(dP̃t)

′

(2.4)

with Q and Φ are the above matrices; B̃a,t is a n × n dimensional stochastic matrix
whose components are independent fBm order a defined by dB̃a,t = dB̌a,tXt(

√
zt)
−1;

(P̃t) is a n×n dimensional stochastic matrix whose components are the cPp such that
dP̃t = (dP̌t)

′Xt(
√
zt)
−1 where B̌a,t, P̌t and Xt are defined in (2.3).

Proof. Applying Ito’s formula with respect to fBm on the process f(xt) =
ν∑
i=1

xi,t(xi,t)
′,

we obtain

dzt =
ν∑
i=1

dxci,t(x
c
i,t)
′ +

ν∑
i=1

xi,t(dx
c
i,t)
′ +

ν(dt)2a+1

(2a+ 1)G(a+ 1)2
Q′Q

+

[
ν∑
i=1

(xi,t + Yi)(xi,t + Yi)
′ − xi,t(xi,t)′

]
dNt,

where Xc
t is the continuous part of Xt (cf. reference [1] but fBm instead of sBm),

and so

dzt =
ν∑
i=1

(Φxi,tdt+
√
Q′QdBi,a,t)(xi,t)

′ +
ν∑
i=1

xi,t(Φxi,tdt+
√
Q′QdBi,a,t)

′

+
ν(dt)2a+1

(2a+ 1)G(a+ 1)2
Q′Q+ [xi,t(xi,t)

′ + xi,t(Yi)
′ + Yi(xi,t)

′

+ Yi(Yi)
′ − xi,t(xi,t)′]dNt

(2.5)
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=
ν(dt)2a+1

(2a+ 1)G(a+ 1)2
Q′Q+ (Φzt + ztΦ

′)dt+
ν∑
i=1

√
Q′QdBi,a,t(xi,t)

′

+ xi,t(dBi,a,t)
′
√
Q′Q+

ν∑
i=1

[xi,t(Yi)
′ + Yi(xi,t)

′ + Yi(Yi)
′]dNt

=
ν(dt)2a+1

(2a+ 1)G(a+ 1)2
Q′Q+ (Φzt + ztΦ

′)dt+
√
Q′QdB̌a,tXt

+ (Xt)
′(dB̌a,t)

′
√
Q′Q+ (Xt)

′dP̌t + (dP̌t)
′Xt + (dP̌t)

′dP̌t.

Since dP̃t = (dP̌t)
′Xt(
√
zt)
−1 and dB̃a,t = dB̌a,tXt(

√
zt)
−1. Then, we have dP̃t(dP̃t)′ =

(dP̌t)
′dP̌t. Thus

(2.5) =
ν

(2a+ 1)G(a+ 1)2
Q′Q(dt)2a+1 + (Φzt + ztΦ

′)dt+
√
zt(dB̃a,t)

′
√
Q′Q

+
√
Q′QdB̃a,t

√
zt +
√
zt(dP̃t)

′ + dP̃t
√
zt + dP̃t(dP̃t)

′.

The first term of the right-hand side of the equality later vanishes as a consequence
of application of the Ito formula with respect fBm. �

Let Γt a process solution of the SDE defined by (2.4). We call the former ap-
proach by JAFIWAR(a) process. We remark that if jump does not exist then the
process reduces to a FIWAR2 (see [3]).

2.3. The law of Γt. In this section, we try to give the explicit expressions of
Laplace transform of volatility Γt.

Proposition 2.3. : If A ∈Mn(R) such that ‖A‖ < 1 then In−A and In +A are the
definite positives matrices and they are true for any norms.

Proof. Let be 0 6= y ∈ Rn and A ∈ Mn(R), ‖A‖ < 1. We have | y′Ay |≤‖ y′ ‖‖ A ‖‖
y ‖=‖ A ‖‖ y ‖2<‖ y ‖2. Thus − ‖ y ‖2< −y′Ay <‖ y ‖2. Then 0 <‖ y ‖2 −y′Ay =

y′(In − A)y < 2 ‖ y ‖2.
Same reasoning for the other. �

Let F : t ∈ R 7−→ F (t) = Ft ∈ GLn(R) be a differentiable function. Thus, we
obtain the following differential (cf. Le Stum [11]):

(2.6) d det(Ft) = det(Ft)tr(F
−1
t dFt).
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Hence, if logFt is defined, then by assuming F0 = In and integrating between
0 to t member to member equality [det(Fs)]

−1d det(Fs) = tr(F−1
s dFs), we find

log(det(Ft)) = tr(logFt) and

(2.7) det(Ft) = exp tr(logFt).

This relationship is useful when we want have the characteristic function from the
Laplace transform.

Let us dP̃t = JdNt with J = (Jlk)1≤l,k≤n where Jlk are the i.i.d normal random
variables with Jlk  N(m,σ2). Let Λ be a n × n dimensional symmetric matrix.
The Laplace transform of Γt+h given Γt is defined by:

(2.8) ΨΓt(Λ, h) = E
{
etr(ΛΓt+h)/Γt

}
where t, h ≥ 0.

Since Γt is an affine function, we have

(2.9) ΨΓ(Λ, h) = etr(B(h)Γt)+c(h)

with B(h) and c(h) are deterministic functions expressed by, in the trace operator

Proposition 2.4. If ‖ 2σ2B(h) ‖< 1 and B(h) ) is a symmetric matrix for all h ≥ 0,
then

B(h) =

[
In −

2

G(a+ 1)2
ΛQ′Q

∫ h

0

s2ae(Φ+Φ′)sds

]−1

Λe(Φ+Φ′)h,

c(h) = tr

[
−ν

2
log

(
In −

2

G(a+ 1)2
ΛQ′Q

∫ h

0

s2ae(Φ+Φ′)sds

)]
+λ

∫ h

0

etr[B(u)(In−2σ2B(u))−1((m1̃)2+2
√

Γt− (m1̃)+2Γt−B(u)σ2)−n2 log ∆(u)] − 1du

with ∆(u) = In − 2σ2B(u) and 1̃ is a n × n dimensional matrix whose components
are equal to 1.

Proof. Let be t, h ≥ 0. By using the Feynmann–Kac argument on the SDE of Γt, we
get

(2.10)
∂ΨΓt−

(Λ, h)

∂h
= LΓΨΓt−

(Λ, h)

with

(2.11) LΓΨΓt = L(Γ)cΨΓt−
+ Ljumps
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where

(i) L(Γ)c is the infinitesimal generator of (Γ)c;
(ii) Using the work of Bru [4], we have

(2.12) L(Γ)c = tr

[(
νh2a

G(a+ 1)2
Q′Q+ ΦΓt− + Γt−Φ

)
D +

2h2a

G(a+ 1)2
Γt−DQ

′QD

]
;

(iii) Ljumps is the infinitesimal generator of the jumps such as:

(2.13) Ljumps = λΨΓt−
E
{
etr(B(h)(2

√
Γt−J+JJ ′) − 1/Γt

}
;

(iv) D = (Dij)ij such that Dij = ∂
∂Γij,t

.

We have also
∂ΨlogSt−

(γ, h)

∂h
=

[
tr

(
∂B(h)

∂h
Γt−

)
+
∂c(h)

∂h

]
ΨΓt−

(Λ, h).

So, from the expression (2.10), we have

tr

(
∂B(h)

∂h
Γt−

)
+
∂c(h)

∂h

=tr

[(
νh2a

G(a+ 1)2
Q′Q+ ΦΓt− + Γt−Φ′

)
B(h)

]
+tr

[
2h2a

G(a+ 1)2
Γt−B(h)Q′QB(h)

]
+λE

{
etr[B(h)(2

√
Γt−J+JJ ′)] − 1/Γt

}
for all h > 0.

(2.14)

We have also B(0) = Λ and c(0) = 0 and from the work of Andrianantenainarinoro
[1, page 13],

E
[
etr[B(h)(2

√
Γt−J+JJ ′)]/Γt

]
=

n∏
k=1

e(m1̌)′B(h)(m1̌)+2vec(σk)′B(h)(m1̌)

∫
e−ε

′ 1
2

∆(h)ε+(2(m1̌)′B(h)σ+2vec(σk)′B(h)σ)ε
√

2
n√

π
n dε

where 1̌ is a n-dimensional vector whose components are equal to 1, and further
equal to

n∏
k=1

e(m1̌)′B(h)m1̌+2(vec(σk))′B(h)(m1̌)− 1
2
tr(log ∆(h))

e((m1̌)′B(h)σ+(vec(σk))′B(h)σ)(2∆(h)−1)(σB(h)(m1̌)+σB(h)vec(σk))
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through Gourrieroux [9, Lemma, page 213], the Proposition 2.3 and the equality
(2.7), and also to

etr[B(h)∆(h)−1((m1̃)2+2
√

Γt− (m1̃)+2Γt−B(h)σ2)−n2 log ∆(h)].

Thus, (2.14)) is equal to

tr

[(
νh2a

G(a+ 1)2
QQ′ + ΦΓt− + Γt−Φ′

)
B(h) +

2h2a

G(a+ 1)2
Γt−B(h)Q′QB(h)

]
+ λ

[
etr[B(h)∆(h)−1((m1̃)2+2

√
Γt− (m1̃)+2Γt−B(h)σ2)−n2 log ∆(h)] − 1

]
.

Identifying the coefficient of Γt−, we get

∂B(h)

∂h
= ΦB(h) +B(h)Φ′ +

2h2a

G(a+ 1)2
B(h)Q′QB(h).

In the trace operator, B(h) is the solution of following SDE:

(2.15)
∂z

∂h
= (Φ + Φ′)z +

2h2a

G(a+ 1)2
Q′Qz2.

Let us y = z−1. The SDE (2.15) is equivalent to SDE:

(2.16)
∂y

∂h
+ (Φ + Φ′)y = − 2h2a

G(a+ 1)2
Q′Q.

f(h) = − 2
G(a+1)2Q

′Qe−(Φ+Φ′)h
∫ h

0
s2ae(Φ+Φ′)sds + Ke−(Φ+Φ′)h is the solution of SDE

(2.16) where K is a constant.

Thus, g(h) =
[
In − 2

G(a+1)2K1Q
′Q
∫ h

0
s2ae(Φ+Φ′)sds

]−1

K1e
(Φ+Φ′)h is the solution

of SDE (2.15) where K1 is a constant. We get the result by taking B(h) = g(h)

where K1 = Λ.
Finally, by identification we have

∂c(h)

∂h
= tr

[
νh2a

G(a+ 1)2
QQ′B(h)

]
+ λ

[
etr[B(h)∆(h)−1((m1̃)2+2

√
Γt− (m1̃)+2Γt−B(h)σ2)−n2 log ∆(h)] − 1

]
= tr

[
−ν
2
B(h)−1∂B(h)

∂h
− ν

2
(Φ + Φ′)

]
+ λ

[
etr[B(h)∆(h)−1((m1̃)2+2

√
Γt− (m1̃)+2Γt−B(h)σ2)−n2 log ∆(h)] − 1

]
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with c(0) = 0. Thus,

c(h) = tr

[
−ν
2

(logB(h)− logB(0))− νh

2
(Φ + Φ′)

]
+ λ

∫ h

0

etr[B(u)∆(u)−1((m1̃)2+2
√

Γt− (m1̃)+2Γt−B(u)σ2)−n2 log ∆(u)] − 1du

= tr

[
−ν

2
log

(
In −

2

G(a+ 1)2
ΛQ′Q

∫ h

0

s2ae(Φ+Φ′)sds

)]
+ λ

∫ h

0

etr[B(u)∆(u)−1((m1̃)2+2
√

Γt− (m1̃)+2Γt−B(u)σ2)−n2 log ∆(u)] − 1du

where ∆(u) = In − 2σ2B(u) for all u ∈ [0;h]. �

Remark 2.1. When a = d = 0, Andrianantenainarinoro [1] studied the stationarity
of Γt.

2.4. The law of asset returns. Let be a market of the form (1.1). What meaning
can give to

∫ T
0

√
ΓsdZs or

∫ T
0
σkl,sdBs? where

√
Γt = (σij,t)1≤i,j≤n.

Let’s consider

(2.17)
∑
ti∈∆

σkl,ti(Bti+1
−Bti)

with ∆ = {0 = t0 < t1 < . . . < tp = T} and watch what’s going when ∆ −→ 0.
If d = 0, then Bt is sBm which is martingale. Since σkl,t is adapted continue, the

sum (2.17) converges to
∫ T

0
σkl,sdBs through [14, Proposition 122].

Now, suppose that 1
2
> d > 0. Let’s admit that for all t, t′ ∈ [0, T ] closer, there

exist M > 0, ‖ σkl,t′ − σkl,t ‖≤ M | t′ − t | 12 and put T = 1 (to simplify) and
∆ = ∆p = {k2−p, k = 0, . . . , 2p−1}. If t ∈ ∆p, we denote t′ = t + 2−p and τ = t+t′

2
.

Let us up =
∑
t∈∆p

σkl,t(Bt′ −Bt). So, we have

up+1 − up =
∑
t∈∆p

σkl,t(Bτ −Bt) + σkl,τ (Bt′ −Bτ )−
∑
t∈∆p

σkl,t(Bt′ −Bτ )

+ σkl,t(Bτ −Bt)

=
∑
t∈∆p

(σkl,τ − σkl,t)(Bt′ −Bτ ).
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Hence

‖ up+1 − up ‖ ≤
∑
t∈∆p

‖ σkl,τ − σkl,t ‖‖ Bt′ −Bτ ‖

≤
∑
t∈∆p

M | τ − t |
1
2

(
E(Bt′ −Bτ )

2
) 1

2

=
∑
t∈∆p

M2−(p+1) 1
2 2−(p+1)(d+ 1

2
)

√
2d+ 1G(d+ 1)

=
M2−(p+1)d

2
√

2d+ 1G(d+ 1)
−→ 0 if 0 < d <

1

2
when p −→∞.

Hence up converges to the Young integral [19]
∫ T

0
σkl,sdBs for 0 < d < 1

2
.

Now, demonstrate that for all t, t′ ∈ [0, T ] closer, there exist M > 0, ‖ σkl,t′ −
σkl,t ‖≤M | t′ − t | 12 .

Let U =
{

(x11,t, . . . , x1n,t, x22,t, . . . , x2n,t, , , , xnn,t) ∈ R
n(n+1)

2

}
, xii > 0 and the

main miners of the symmetric matrix (xkl)k,l=1...n are positives. Put F : U −→ U ,
F (σ11,t, . . . , σ1n,t, σ22,t, . . . , σ2n,t, , , , σnn,t) = (Γ11,t, . . . ,Γ1n,t,Γ22,t, . . . ,Γ2n,t, , , ,Γnn,t).
Admit that F is a global dimorphism. Thus, there exist a function gki : U −→ R of
C1 class such that gki(Γt) = σki,t and

dσki,t =
n∑

s,r=1

∂gki(Γt)

∂Γsr,t
dΓsr,t.

Thus, ‖ σkl,t′ − σkl,t ‖≤M | t′ − t | 12 through to SDE of Γt where

M = A
n∑

k,l=1

Nkl

A = sup
t∈[0,T ]

s,r,l,q=1,...,n

(∣∣∣∣∂gsr(Γt)∂Γlq,t

∣∣∣∣ ; |Γsr,t| ; |gsr(Γt)|) <∞

because the trajectory of Γt is right continuous with a left limit and the gsr are
C1(U) classes, and further,

Nkl =

∣∣∣∣∣ν
n∑
j=1

QkjQjl

∣∣∣∣∣+ A

n∑
i=1

|Φil|+ |Φki|+
A

G(a+ 1)

n∑
i,j=1

|Qjl|+ |Qki|+

λ
(

2nA
√
σ2 +m2 + n(σ2 +m2)

)
,

where Φ = (Φkl)kl,
√
Q′Q = (Qkl)kl.
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Prove now that for n = 1 and n = 2, F is a global dimorphism.
For n = 1, we have U =]0,+∞[, and F (σ) = σ2. Thus DF = 2σ > 0 on U (DF

is the derivative of F ). The result follows using the global inversion theorem (see
in the reference [6]).

For n = 2, we have U = {(x11, x12, x22) ∈ R3 : x11, x22 > 0;x11x22 > (x12)2} and
F (σ11, σ12, σ22) = ((σ11)2 + (σ12)2, (σ11 + σ22)σ12, (σ22)2 + (σ12)2). Thus, we have

det(DF ) = det

2σ11 2σ12 0

σ12 σ11 + σ22 σ12

0 2σ12 2σ22

 = 4(σ11 + σ22)(σ11σ22 − (σ12)2) > 0 for all

(σ11, σ12, σ22) ∈ U . The result follows using the global inversion theorem.
We can develop on −1

2
< d < 0. To do this, to give a sense to

∫ T
0

√
ΓsdZs, we can

use the rough paths theory of Lyon [12]. To converge the Riemann sum (2.17),
we add a fix term built from the Levy’s areas (see [15]). But for now, let’s stay in
d ∈

[
0, 1

2

[
.

Let γ be a vector in Rn. The Laplace transform of logSt+h given logSt and Γt is
defined by:

(2.18) ΨlogSt(γ, h) = E{eγ′ logSt+h/logSt,Γt} where t, h ≥ 0.

As the yield logSt is affine, we have

(2.19) ΨlogSt(γ, h) = etr(A(h)Γt)+B(h) logSt+C(h)

with A(h), B(h) and C(h) are the functions. Using the Feynmann–Kac argument
to the model, we have

(2.20)
∂ΨlogSt−

(γ, h)

∂h
= LlogS,ΓΨlogSt−

(γ, h)

where t, h ≥ 0; LlogS,Γ is the infinitesimal generator of the joint (logSt,Γt) defined
by:

Proposition 2.5.

LlogS,Γ = tr

[(
νh2a

G(a+ 1)2
Q′Q+ ΦΓt− + Γt−Φ

)
D +

2h2a

G(a+ 1)2
Γt−DQ

′QD

]
+ ∇Y

(
r − 1

2
vec[tr(eiiΓt−)]

)
+

h2d

2G(d+ 1)2
∇Y Γt−∇′Y
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+
hd+a

G(d+ 1)G(a+ 1)
tr
(
D
√
Q′Qρ∇Y Γt− + Γt−∇′Y ρ′

√
Q′QD

)
+ λΨlogSt−

E
{
e(γ′+A(u))(2

√
Γt−Jϕ+JJ ′ϕ) − 1/logSt,Γt

}
,(2.21)

with

(i) D = (Dij)1≤i,j≤n whereDij = ∂
∂Γij,t

and Γij,t, 1 ≤ i, j ≤ n are the components
of the volatility matrix Γt;

(ii) ∇Y =
(

∂
∂Y1
, · · · , ∂

∂Yn

)′
where Yi = logSi,t is the yield of the i-th underlying

in the basket, i = 1, . . . , n.

Proof. Let t, h ≥ 0. The operator LlogS,Γ can be broken down into the following
four components:
(2.22)
LlogS,ΓΨlogSt−

= L(logS)cΨlogSt−
+ L(Γ)cΨlogSt−

+ L<(logS)c,(Γ)c>ΨlogSt−
+ Ljumps

with

(i) Applying the same reasoning of Da Fonseca [5, equations (11)–(12)–(13)],
we can obtain the infinitesimal generators L(Γ)c, L(logS)c and L<(logS)c,(Γ)c>

defined by:

(2.23) L(logS)c = ∇Y

(
r − 1

2
vec[tr(eiiΓt−)]

)
+

h2d

2G(d+ 1)2
∇Y Γt−∇′Y ;

(2.24) L(Γ)c = tr

[(
νh2a

G(a+ 1)2
Q′Q+ ΦΓt− + Γt−Φ

)
D +

2h2a

G(a+ 1)2
Γt−DQ

′QD

]
;

(2.25) L<(logS)c,(Γ)c> =
hd+a

G(d+ 1)G(a+ 1)
tr(D

√
Q′Qρ∇Y Γt−+Γt−∇′Y ρ′

√
Q′QD);

(ii) Ljumps is the infinitesimal generator of the jumps defined by:

Ljumps = λE {Ψ((logSt+h +H),Γt+h +G)−Ψ(logSt+h,Γt+h)/logSt,Γt}

= λΨlogSt− ,Γt−
× E

{
eγ
′H+tr(A(h)G) − 1/logSt,Γt

}
(2.26)

where H = 2
√

Γt−Jϕ+ JJ ′ϕ and G = 2
√

Γt−J + JJ ′.

�
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Proposition 2.6. If ‖ 2σ2ω(h) ‖< 1, then

A(h) =

∫ h

0

Υ3(u)A(u)2 + Υ2(u)A(u) + Υ1(u)du,

B(h) = γ′,

C(h) = tr

[
rγ′h+

ν

G(a+ 1)2
Q′Q

∫ h

0

u2aA(u)du

]
+ λ

∫ h

0

[
etr[ω(u)µ(u)−1((m1̃)2+2

√
Γt(m1̃)+2σ2Γtω(u))−n2 log µ(u)] − 1

]
du.

where 1̃ is a n× n dimensional matrix whose components are equal to 1 and

ω(h) =
ϕγ′ + γϕ

2
+ A(h);

µ(h) = In − 2σ2ω(h);

Υ1(h) = −1

2

n∑
i=1

γieii +
h2d

2G(d+ 1)2
γγ′

Υ2(h) = (Φ + Φ′) +
hd+a

G(d+ 1)G(a+ 1)
(γρ′

√
Q′Q+

√
Q′Qργ′),

Υ3(h) =
2h2a

G(a+ 1)2
Q′Q.

Proof. Let t, h ≥ 0. We have

∂ΨlogSt−
(γ, h)

∂h
=

[
tr(

∂A(h)

∂h
Γt−) +

∂B(h)

∂h
logSt− +

∂C(h)

∂h

]
ΨlogSt−

(γ, h).

Then, from the expression (2.20), we deduce

tr

[
∂A(h)

∂h
Γt−

]
+
∂B(h)

∂h
logSt− +

∂C(h)

∂h

= B(h)(r − 1

2
vec[tr(eiiΓt−)]) +

h2d

2G(d+ 1)2
B(h)Γt−B(h)′

+ tr

[(
νh2aQ′Q

G(a+ 1)2
+ ΦΓt− + Γt−Φ′

)
A(h) +

2h2aΓt−A(h)Q′QA(h)

G(a+ 1)2

]
+
hd+atr

[
A(h)

√
Q′QρB(h)Γt− + Γt−B(h)′ρ′

√
Q′QA(h)

]
G(d+ 1)G(a+ 1)
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+λE
{
etr[(ϕγ

′+A(h))H] − 1/logSt,Γt

}
(2.27)

with the initial conditions A(0) = 0, B(0) = γ′ and C(0) = 0.
Applying the some computations in (2.14) but ω(h) = ϕγ′+γϕ

2
+A(h) to the place

of B(h), we have
E
{
etr[ω(h)(2

√
Γt−J+JJ ′)]/logSt,Γt

}
= etr[ω(h)µ(h)−1((m1̃)2+2

√
Γt− (m1̃)+2Γt−ω(h)σ2)−n2 log µ(h)]

where µ(h) = In − 2σ2ω(h). So, (2.27) is equal to

B(h)

(
r − 1

2
vec[tr(eiiΓt−)]

)
+

h2d

2G(d+ 1)2
B(h)Γt−B(h)′

+tr

[(
νh2a

G(a+ 1)2
Q′Q+ ΦΓt− + Γt−Φ′

)
A(h) +

2h2a

G(a+ 1)2
Γt−A(h)Q′QA(h)

]
+

hd+a

G(d+ 1)G(a+ 1)
tr
[
A(h)

√
Q′QρB(h)Γt− + Γt−B(h)′ρ′

√
Q′QA(h)

]
+λ
[
etr[ω(h)µ(h)−1((m1̃)2+2

√
Γt(m1̃)+2σ2Γtω(h))]−n2 tr logµ(h) − 1

]
.

By identifying the coefficient of logSt−, we have ∂B(h)
∂h

= 0 which follows that
B(h) = B(0) = γ′ for all h ≥ 0.

Identifying the coefficient of Γt−, we have

∂A(h)

∂h
= −1

2

n∑
i=1

γieii +
h2d

2G(d+ 1)2
γγ′(2.28)

+ ΦA(h) + A(h)Φ′ +
2h2a

G(a+ 1)2
A(h)Q′QA(h)(2.29)

+
hd+a

G(d+ 1)G(a+ 1)
(A(h)

√
Q′Qργ′ + γρ′

√
Q′QA(h)),(2.30)

which is integrable in [0, 1] (see the Euler approximation above doing tend n to
+∞). In the trace operator, A(h) is the solution of Riccati SDE:

(2.31)
∂z

∂h
= Υ3(h)z2 + Υ2(h)z + Υ1(h)

where

Υ1(h) = −1

2

n∑
i=1

γieii +
h2d

2G(d+ 1)2
γγ′
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Υ2(h) = (Φ + Φ′) +
hd+a

G(d+ 1)G(a+ 1)
(γρ′

√
Q′Q+

√
Q′Qργ′)

Υ3(h) =
2h2a

G(a+ 1)2
Q′Q.

Thus

(2.32) A(h) =

∫ h

0

Υ3(u)A(u)2 + Υ2(u)A(u) + Υ1(u)du.

And finally, by identification

∂C(h)

∂h
= tr

[
rγ′ +

νh2a

G(a+ 1)2
Q′QA(h)

]
+ λ

[
etr[ω(h)µ(h)−1((m1̃)2+2

√
Γt(m1̃)+2σ2Γtω(h))−n2 logµ(h)] − 1

]
where C(0) = 0. And thus

C(h) = tr

[
rγ′h+

ν

G(a+ 1)2
Q′Q

∫ h

0

u2aA(u)du

]
+ λ

∫ h

0

[
etr[ω(u)µ(u)−1((m1̃)2+2

√
Γt(m1̃)+2σ2Γtω(u))−n2 logµ(u)] − 1

]
du.(2.33)

�

Remark 2.2. A(h) is a solution of Riccati SDE and it exists. Indeed, we can bring the
problem back to that of Cauchy (cf. Raymond [17]):

(2.34)

{
dvec(z)
dh

= g(h, vec(z)) = vec(f(h, z)) ∈ Rn2

vec(z(0)) = 0 ∈ Rn2
.

We can easily see that for fixed h, the function vec(z) ∈ Rn2 → g(h, vec(z)) ∈ Rn2

is continue and locally Lipschitz in vec(z). The result follows through the theorem of
Cauchy–Lipschitz (cf. Raymond [17]). However, we don’t have the explicit expression
of A(h) because the SDE is a Riccati type with variables coefficients and the expression
of general solution is not determined. Hence the use of the approximation.

Proposition 2.7. Let n = 2. Let ι be the interest rate. If a = d = 0 and

r = ι1̌− λ

[
etr[ω1µ

−1
1 ((m1̃)2+2

√
Γ0(m1̃)+2σ2Γ0ω1)−log µ1] − 1

etr[ω2µ
−1
2 ((m1̃)2+2

√
Γ0(m1̃)+2σ2Γ0ω2)−log µ2] − 1

]
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where ωj =
ϕγ′j+γjϕ

′

2
; µj = In − 2σ2ωj and γj =

{
(1, 0)′ if j = 1

(0, 1)′ if j = 2
, then the market

is without friction.

Proof. Let be a = d = 0. In the market without friction, the hoped value of j = 1; 2

asset under the risk–neutral probability P is:

Sj,0e
ιt = E[Sj,t|Sj,0,Γ0]

= E[exp(logSj,t)| logSj,0,Γ0]

= ΨlogS0(γj, t)

= etr[A(t)Γ0]+logSj,0+C(t)

= Sj,0e
tr[A(t)Γ0]+C(t)(2.35)

where ΨlogS0(γj, t) is the Laplace transform above by taking h = t; t = 0 and
γ = γj. For a = d = 0, the SDE (2.28) is resolved and we find A(t) by imposing
A(t) = F (t)−1G(t) with F (t) ∈ GLn(R) and G(t) ∈ Mn(R). We have 0 = A(0) =

F (0)−1G(0) and thus take G(0) = 0 and F (0) = In. Thus, we get

(2.36) A(t) = A22(t)−1A21(t)

where [
A11(t) A12(t)

A21(t) A22(t)

]
= exp

(
t

[
M11 M12

M21 −M11

])
M11 =

Φ + Φ′

2
+
γjρ
′√Q′Q+ (γjρ

′√Q′Q)′

2

M12 = −2Q′Q

M21 =
1

2
γjγ

′
j −

1

2

n∑
l=1

γj,lell = 0

We have

(2.37)

[
A11(t) A12(t)

A21(t) A22(t)

]
=

[
eM11t −1

2
M−1

11 (eM11t − e−M11t)M12

0 e−M11t

]

(2.38) A(t) = 0

C(t) = rjt+ λt
[
etr[ωjµ

−1
j ((m1̃)2+2

√
Γ0(m1̃)+2σ2Γ0ωj)−log µj] − 1

]
.(2.39)
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where rj is the j-th component of vector r. Indeed, let be T =

[
M11 M12

0 −M11

]
,

T s = (T
(s)
ij )ij, s ∈ N. In the trace operator, we have T

(0)
ij = In if i = j and 0

otherwise; T (1)
11 = M11; T

(1)
12 = M12; T

(1)
21 = 0; T (1)

22 = −M11; T
(2)
11 = (M11)2; T (2)

12 =

M11M12 −M21M11 = 0; T (2)
21 = 0; T (2)

22 = (M11)2. Now, let us consider p ≥ 1, in the
trace operator, reasoning by recurrence, we have T 2(p+1)

11 = T
(2)
11 T

(2p)
11 + T

(2)
12 T

(2p)
21 =

(M11)2(p+1); T 2(p+1)
12 = T

(2)
11 T

(2p)
12 + T

(2)
12 T

(2p)
22 = 0; T 2(p+1)

21 = T
(2)
21 T

(2p)
11 + T

(2)
22 T

(2p)
21 =

0; T 2(p+1)
22 = T

(2)
21 T

(2p)
12 + T

(2)
22 T

(2p)
22 = (M11)2(p+1). Then using the values T (1)

ij and
T

(2p)
ij above, we have, for all p ≥ 1 T 2p+1

11 = T
(1)
11 T

(2p)
11 + T

(1)
12 T

(2p)
21 = (M11)2p+1;

T 2p+1
12 = T

(1)
11 T

(2p)
12 + T

(1)
12 T

(2p)
22 = (M11)2pM12; T

2p+1
21 = T

(1)
21 T

(2p)
11 + T

(1)
22 T

(2p)
21 = 0;

T 2p+1
22 = T

(1)
21 T

(2p)
12 + T

(1)
22 T

(2p)
22 = −(M11)2p+1. Well, we have[

A11(t) A12(t)

A21(t) A22(t)

]
= etT =

+∞∑
s=0

(tT )s

s!

=

[
eM11t −1

2
M−1

11 (eM11t − e−M11t)M12

0 e−M11t

]
.

Thus, the value of A(t) is obtained through the expression (2.36) and the Aij(t)
above. Hence

(2.35) = Sj,0e
rjt+λt

[
e
tr[ωjµ−1

j ((m1̃)2+2
√

Γ0(m1̃)+2σ2Γ0ωj)−log µj]−1

]

and the result follows by using identification method. �

Remark 2.3. 1) r is the rate interest if the model is without jump process. 2) For the
fractals models, Rogers [18] and Guasoni [8] showed that E

(∫
σ(s, Ba,s)dBa,s

)
6= 0

products an arbitrage and so any transaction is payed with a rate ε > 0.

2.5. Approximation of function A(h). We have not the closed form expression
of the particular solution of SDE (2.31). Then, we approximate A(h) by a value
approached. An example is Euler’s approximation.

Euler’s method
Let be a differential equation ∂y

∂x
= f(x, y) on the interval [a, b]. We propose a

solution approached of differential equation on the interval [a, b] using the Euler’s
method. We divide the interval [a, b] using the regular subdivision of n order:
xi = a + i(b−a)

n
, ∀i ∈ {0, 1 . . . , n}. The step is s = b−a

n
. In this case, we find ∀i ∈
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{0, 1 . . . , n} a approached value yi of y∗(xi) where y∗ is the solution of equation.
And thus, we continue by the following principle: we suppose the initial condition
u0 = (x0, y0), and:

- on [a, x1], we replace the function y∗ by its tangent at u0. We obtain y1 =

y0 + s∂y
∗

∂x
. But since y∗ is the solution of equation, we have that ∂y∗(x0)

∂x
=

f(x0, y0). So, we have y1 = y0 + sf(x0, y0) which gives u1 = (x1, y1).
- on [x1, x2], we operate in the some style and suppose y2 = y1 + sf(x1, y1)

to obtain u2 = (x2, y2).
- We operate of this way ∀i ∈ {0, 1 . . . , n} and we have yi = yi−1+sf(xi−1, yi−1)

which is a approximation of y∗(xi).

Thus, Euler’s approximation on [0, T ] of A(h) is:

(2.40) An(h) =


y0 = 0 if h = 0

y1 = y0 + sf(0, 0) if h ∈ [0, x1],
...
yi = yi−1 + sf(xi−1, yi−1) if h ∈ [xi−1, xi], i = 1, . . . , n

where f(x, y) = Υ3(x)y2 + Υ2(x)y + Υ1(x) such that f(0, 0) = Υ1(0).
Convergence speed of approximation of A(h)

Let A0 be the true value solution of SDE (2.31), N be a large enough integer and
A

(N)
Euler be an Euler’s approximation with iteration N . The convergence speed of

Euler’s method is slow: the rest of ‖ A(N)
Euler −A0 ‖ is 1

N2 order (cf. Raymond [17]).

2.6. Dependence between yield and its volatility. Let be a market FIWASVJ(d,a)
where d, a are the fractals indexes such that a, d ∈

[
0, 1

2

[
. We assume that each

component of the vector B̃d,t is independent with the one matrix W̃d,t (see the
third equation in (1.1)).

Theorem 2.1. The covariance between each component of vector yield noise d logSt

and the one volatility noise matrix dΓt is given by for all i, j, h = 1, . . . , n,

cov(d(logSh,t)
c, d(Γij,t)

c) =

(
Γhi,t

n∑
l=1

Qljρl + Γhj,t

n∑
l=1

Qliρl

)
(dt)d+a+1

(d+ a+ 1)G(d+ 1)G(a+ 1)
, with(2.41)

(i) logS.,t is the component of the yield vector logSt,
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(ii) ρ. is the component of vector ρ,
(iii) Γ..,t is the component of the volatility matrix Γt and
(iv) Q..is the component of the matrix Q′Q.

Proof. From the expressions
√

Γt = (σij,t)1≤i,j≤n which is symmetrical and Γt =

(Γij,t)i,j=1,...,n, we get

(2.42) Γij,t =
n∑
l=1

σil,tσjl,t.

Now, let be i, j, h ∈ {1, . . . , n}. d(logSh,t)
c is the yield noise of logSh,t in the

continuous part which is the h-th line of d logSt defined in equation (1.1) by

d(logSh,t)
c =

(
rh −

Γhh,t
2

)
dt +

n∑
k=1

σhk,tdZk,t. And d(Γij,t)
c is the component i-th

row and j-th column of d(Γt)
c with

d(Γij,t)
c =

ν(dt)2a+1

(2a+ 1)G(a+ 1)2

n∑
l=1

QilQjl +

(
n∑
l=1

ΦilΓlj,t +
n∑
l=1

Γil,tΦjl

)
dt

+
n∑

m,l=1

(σim,tdWa,ml,tQlj + σjm,tdWa,ml,tQli).(2.43)

So,

cov(d(logSh,t)
c, d(Γij,t)

c)

= cov

(
n∑
k=1

σhk,tdZk,t,
n∑

m,l=1

(σim,tdWa,ml,tQlj + σjm,tdWa,ml,tQli)

)
(2.44)

where dZk,t =
√

1− ρ′ρdBd,k,t +
n∑
p=1

dWd,kp,tρp.

Since each component of the vector Bt is independent with the one matrix W̃t, we
have cov(dBd,k,t, dWa,sm,t) = 0 ∀ k, s and m, then using

(2.45) cov (dWd,kp,t, dWa,ml,t) =

{
0 si (k, p) 6= (m, l)

(dt)d+a+1

(d+a+1)G(d+1)G(a+1)
otherwise

,

we have

(2.44) =
(dt)d+a+1

(d+ a+ 1)G(d+ 1)G(a+ 1)

n∑
k,l=1

σhk,tσik,tQljρl+
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(dt)d+a+1

(d+ a+ 1)G(d+ 1)G(a+ 1)

n∑
k,l=1

σhk,tσjk,tQliρl

=
(dt)d+a+1

(d+ a+ 1)G(d+ 1)G(a+ 1)

(
Γhi,t

n∑
l=1

Qljρl + Γhj,t

n∑
l=1

Qliρl

)
,

through (2.42). �

Let ζpq,t be the correlation between Γpp,t and Γqq,t defined by

(2.46) ζpq,t =
Γpq,t√

Γpp,tΓqq,t
.

2.7. Dependence between yield and its correlations.

Theorem 2.2. The expressions of covariances between each yield noise of the basket
logSp,t and the correlations noises ζpq,t, p, q = 1, . . . , n and p 6= q are given by:

(2.47) cov(d(logSp,t)
c, d(ζpq,t)

c) =
(dt)d+a+1(1− ζ2

pq,t)

(d+ a+ 1)G(d+ 1)G(a+ 1)

√
Γpp,t
Γqq,t

n∑
l=1

Qlqρl

with (ζpq,t)
c is the continuous part of ζpq,t.

Proof. Let be p, q ∈ {1, . . . , n}, p 6= q. Applying Ito’s formula on process f(Γt) =
Γpq,t√

Γpp,tΓqq,t
, we get

d(ζpq,t)
c

=
d(Γpq,t)

c√
Γpp,tΓqq,t

− 1

2

Γpq,t√
Γpp,tΓqq,t

(
d(Γpp,t)

c

Γpp,t
+
d(Γqq,t)

c

Γqq,t

)
+

(dt)2a+1

2(2a+ 1)G(a+ 1)2

n∑
i,j,k,l=1

∂2f(Γt)

∂Γij,t∂Γkl,t

[
n∑
r=1

Γik,tQrjQrl + Γil,tQrjQrk + Γjk,tQriQrl + Γjl,tQriQrk

]
.(2.48)

Hence

cov(d(logSi,t)
c, d(ζpq,t)

c)(2.49)

=
cov(d(logSi,t)

c, d(Γpq,t)
c)√

Γpp,tΓqq,t
− 1

2

Γpq,t√
Γpp,tΓqq,t(

cov(d(logSi,t)
c, d(Γpp,t)

c)

Γpp,t
+
cov(d(logSi,t)

c, d(Γqq,t)
c)

Γqq,t

)
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=
(dt)d+a+1

(d+ a+ 1)G(d+ 1)G(a+ 1)

(Γqq,tΓip,t − Γpq,tΓiq,t)
n∑
l=1

Qlqρl

Γqq,t
√

Γpp,tΓqq,t

+
(dt)d+a+1

(d+ a+ 1)G(d+ 1)G(a+ 1)

(Γpp,tΓiq,t − Γpq,tΓip,t)
n∑
l=1

Qlpρl

Γpp,t
√

Γpp,tΓqq,t
(2.50)

through (2.41). Assuming i = p, we have that (2.49) is equal to

(dt)d+a+1

(d+ a+ 1)G(d+ 1)G(a+ 1)

n∑
l=1

Qlqρl

(√
Γpp,t
Γqq,t

− Γpq,t√
Γpp,tΓqq,t

Γpq,t
Γqq,t

)

=
(dt)d+a+1

(d+ a+ 1)G(d+ 1)G(a+ 1)

n∑
l=1

Qlqρl

√
Γpp,t
Γqq,t

(1− ζ2
pq,t) through (2.46).

�

3. ESTIMATING OF THE PARAMETER OF MODEL

Consider a market with an interest rate ι by paying the transaction with rate
ε > 0:

(3.1)



d logSt =

(
ι1̌− λ

[
etr[ω1µ

−1
1 ((m1̃)2+2

√
Γ0(m1̃)+2σ2Γ0ω1)−log µ1] − 1

etr[ω2µ
−1
2 ((m1̃)2+2

√
Γ0(m1̃)+2σ2Γ0ω2)−log µ2] − 1

]
−1

2
vec[tr(eiiΓt)]

)
dt+

√
ΓtdZt + dψtϕ

dΓt = ν
(2a+1)G(a+1)2Q

′Q(dt)2a+1 + (ΦΓt + ΓtΦ
′)dt

+
√

ΓtdB̃a,tQ+Q′(dB̃a,t)
′√Γt + dψt

dZt =
√

1− ρ′ρdWd,t + dB̃d,tρ

dψt =
√

ΓtdP̃t + (dP̃t)
′√Γt + (dP̃t)(dP̃t)

′

We pass by following two-steps to estimate the parameters of the model:

i) We estimate the order of the fBm a via the local Whittle estimator of L
Kristoufek [10].

ii) We estimate the parameters Φ, ϕ, ρ, ν, m, σ, λ,
√
Q′Q and the fractal index

d using the estimating method presented in Andrianantenainarinoro [2].
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4. APPLICATION

In this article, we propose to estimate the current price of CAC40 and S&P500.
We used the daily CAC40 and S&P500 indexes. For each stock, the time series
start the January 29, 2020 and end the February 19, 2020 which are presented by
the following Figure 1.

FIGURE 1. Historical Volume of CAC40 and S&P500 Indexes

We can see from the graphs that prices have rebounded recently and according
to an economic analysis the covid-19 is the cause. The investors therefore rescue
to buy the calls and the seller must feel a greater probability of losing and seeks
an arbitrary model. Now is the time to find out if our model can bring the market
back without friction. To do this, we church how the price evolves and what is the
price of option.
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4.1. Results of estimation.

Step 1: Estimating of fractal index a
We get â = 0 with standard deviation error 0.1767767. Hence, the series have

short memory.

Step 2: Estimating of C-GMM estimators Φ, ϕ, ρ, ν, m, σ, λ and
√
Q′Q

4.1.1. Monte Carlo study. The initial parameters used in the simulation are:

Γ0 =

[
0.0225 −0.0054

−0.0054 0.0144

]
,Φ =

[
−5 −0.5

−0.5 −5

]
;

ϕ = (−1,−1); ρ = (−0.3,−0.4); ν = 15;

m = 0; σ = 0.01; λ = 0.5; α = 0.00225;

√
Q′Q =

[
0.1204 −0.01097

−0.01097 0.09549

]
.

The matrix
√
Q′Q is obtained by using the long–term relationship:

Γ∞Φ′ + ΦΓ∞ + λ(m1̃)
√

Γ∞ + λ
√

Γ∞(m1̃) = −νQ′Q− λnσ2In − nλ(m1̃)2

which is a necessary condition of WASC Stochastic Volatility Jump model for that
process Γt is stationary (see Andrianantenainarinoro [1, equation (4.3)]). The
annual interest rate ι is taken in the range [0.015; 0.0175] which is a daily interest
rate 0, 000045.

The table 1 shows the descriptives statistics of the data used. The figure 2
displays the C-GMM method criterion.

The table 4.1.2 presents the C-GMM estimator θ̂1.
The results of the estimates of θ̂ with its standard deviations of errors are pre-

sented in the table 3.
The figure 3 gives the stylized facts captured by the model.

We use the uniform density on [0, 1]× [0, 1] for the density π.
The figure 4 shows the forecast of two courses CAC40 and SP500 using FI-

WASVJ model with d = 0 and the pricing option is presented in the tables 4 and
5. While, the figure 5 is for FIWASVJ model with d = 0, 49 and the pricing option
is presented in the tables 6 and 7.
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4.1.2. Empirical results.
We present the results studying the data by statistics descriptives analysis.

TABLE 1. Analysis by descriptives statistics

Indice Min. 1st Qu. Median Mean 3rd Qu. Max.
log (CAC40) 8,867 8,691 8,705 8,700 8,712 8,718
log (SP500) 8,079 8,100 8,116 8,111 8,124 8,127

The two underlying are no dispersed with compared to average. The yield of
CAC40 can be adjusted by the Gaussian distribution N(8.7, 0.000265036) and the
yield SP500 by N(8.111, 0.000236996).
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FIGURE 2. C-GMM estimation criterion

The figure 2 show us the values taken by real and imaginary part of the empirical
moment of continuum of C-GMM method. It show us that we can minimize its
function.

TABLE 2. C-GMM estimator θ̂1.

parameter ρ1 ρ2 Q11 Q12 = Q21 Q22 Φ11 Φ12

estimator -0.7 -0.7 0.1 0.0007876 0.1 -20.401852 -0.09999907
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Φ21 Φ22 ν λ ϕ1 ϕ2 m σ
-0.016926 -20.421835 2 0.003093 0.588434 -0.987034 0.00032 0.346291

with objective 2, 280892.10−6.

TABLE 3. C-GMM estimator θ̂

parameter estimator standard deviation
ρ1 -0.7 0.5564173
ρ2 -0.7 0.5265019
Q11 0.100000000 0.08094443
Q12 = Q21 0.09374005 1.309801
Q22 0.100000000 1.305106
Φ11 -22.01260 2.588469
Φ12 -0.1 1.721465
Φ21 -0.1 0.8070361
Φ22 -21.95342 1.288708
ν 2 0.5529048
λ 0.001703251 0.5522816
ϕ1 0.1518992 2, 786253.10−8

ϕ2 -0.9993954 1, 270706.10−8

m 0.000031086 0.004261457
σ 0.000038515 25.50306

with objective 1, 630633.10−7.

4.1.3. Study of prices CAC40 and SP500.
It is better to recognize the asset noise if it is logic or not before using for

the hedging or pricing option. Let be the fractal index d ∈
[
0, 1

2

[
. We works in

[0, 0.0001] and we use the time–step = 0.0001× 1
300

(to facility the discretization of
model) and the fractal index d = 0; d = 0.05 and d = 0.1.

The classified figures by fractal index are similar appearance but the scale makes
the difference. We look in below a value of fractal index d which adjusts the
course of model to the reality. We also acknowledge that on a period of strong
volatility the asset have weak values and on the decrease period of volatility the
asset increases. Likewise, the underlying prices studied are characterized by an
asymmetric correlation between the correlation and asset. We perceive also the
return to average. The model does not capture a jump.
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FIGURE 3. Stylized facts of model

Step 3: Estimate the fractal index d
Using the real data (see in a site of trading www.boursorama.com or m.fr.investing.

com), the strong value of CAC40 (resp. S&P500) of daily later is 6111.41 (resp.
3393.52); the weak value of CAC40 (resp. S&P500) is 6072.66 (resp. 3378.83);
the frequency data is 15 second; the market opens at 9:00 AM and closes at 5:35
PM.

We remark that the scale of CAC40 or S&P500 using WASVJ model is not logic
according the figure 4.

The CAC40 (resp. S&P500) in this time can take a big value greater than
6111.41 (resp. 3393.52). We can correct that and we found, for d = 0.49, the
course evolution is given in figure 5.

4.2. European call option of the basket CAC40 and SP500.
Let be a European call of the basket of indexes (CAC40, S&P500) and note by

(K1, K2) the strike of index quoted by points. The maturity is half a day and one
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FIGURE 4. The course evolution in the one daily using WASVJ model
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FIGURE 5. The course evolution in the one daily with d = 0, 49
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day. The rate interest is ι = 0 for the date expired in half daily and ι = 0.000045

for daily rate. The annual interest rate ι is taken in a fork [0.015; 0.0175] which
is a the daily rate 0, 000045. We use the correlation and spread options in the
reference [7].

Take N = 622; ε1 = −3; ε2 = 1 and (ū, K) = (47.80884, 2566.262) or (ū, K) =

(42.49675, 2673.852).

TABLE 4. Spread option with WASC and WASVJ models

model WASC WASVJ
expiration T 0.5 1 0.5 1
K 2566.262 150.1792 150.1766 150.1792 150.1766

2673.852 32.27406 32.28091 32.27406 32.28091

For correlation option, we take ū = 40; N = 29; α1 = 0.3 and α2 = 0.4.

TABLE 5. Correlation Option with WASC and WASVJ models

model WASC WASVJ
expiration 0.5 1 0.5 1
(K1, K2) (5649.82,3260.38) 32588.27 36788.34 32588.27 36788.34

(6111.45,3260.38) 3155.289 4727.712 3155.289 4727.712

The price options using WASC and WASVJ are any equal.
Let see now the option when we regularize the amplitude.

TABLE 6. Spread option with FIWASVJ(0.49,0) model

T 0.5 1
K 2566.262 150.0673 150.0968

2673.852 32.08414 32.18518

TABLE 7. Correlation option with FIWASVJ(0.49,0) model

expiration 0.5 1
(K1, K2) (5649.82,3260.38) 28423.57 30776.66

(6111.45,3260.38) 1552.37 2486.081

We observe that the price option changes for d = 0.49 and the difference is not
significant for spride option but not for correlation option.
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5. DISCUSSION ON THE RESULTS AND CONCLUSION

The memory of volatility is short.
The jump does not exist because its intensity is almost zero, there explicates the

equality between the option price of WASC and WASVJ models. The volatilities of
volatility stochastic are smalls, then there is not an anomaly.

The scale regularization of assets is important because the scale of course is
rectified. Moreover, the price option changes. For example, on February 20, 2020
(CAC40, S&P500)= (6062.3, 3373.23). With WASC model, the market sells an op-
tion correlation of 4727.712 points after one day with strike (6111.45, 3260.38).
But, when we adjust the course (d=0.49), with FIWASVJ(0.49,0), the option is
2486.081 and the reduction is significant. Thus there exist a risk created by the
strong amplitude on the option pricing and the fractal index can solve its risk.

In practical, we use the characteristic function inside the Laplace transform,
then A(h) can resolve directly as in work of Asai [3].
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