Advances in Mathematics: Scientific Journal 11 (2022), no.4, 383-413
s =l 1SSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.11.4.7

AMPLITUDE ADJUSTMENT WITH FIWASVJ MODEL

Tsilavina Ravo Hasina Andrianantenainarinoro!, Rado Abraham Randrianomenjanahary,
and Toussaint Joseph Rabeherimanana

ABSTRACT. Andrianantenainarinoro [2] remarked that the price amplitudes of fi-
nancial models may not correspond to the reality and we propose here a model in
continuous time Fractionally Integrated WASC Stochastic Volatility Jump. To do
this, we introduce a fractal index in the WASC Stochastic Volatility Jump model
and we have two others characteristics: amplitude adjustment and memory of pro-
cess. We present also several theories in stochastic calculus, algebraic, differential
geometry, numerical method and estimating method which can use to financial
such us: sense of a fractional integral, relationship between trace and determi-
nant operator, Euler’s approximation for an unresolved differential equation and
convergence speed.

1. INTRODUCTION

Andrianantenainarinoro [2] showed that some price amplitudes of financial
models may be abnormal. Hence, we must regularize the amplitude of asset to
adjust it to the reality and he proposed a technical by using the Matérn process. In
this article, we propose a model in continuous time Fractionally Integrated WASC
Stochastic Volatility Jump noted FIWASVJ(d,a):
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[ dlog S, = (r — tvecltr(e;Ty)])dt + VTvdZ, + diyp
dl'y = m@@(dt)h“ + (T + Iy @')dt

(1.1) +VT1dBaQ + Q' (dBay) VT + diy :
02, = T Wy + dBagp

| iy = VTidP, + (dP,)'/T; + (dP,)(dP,)’  where:

(i) v is a positive integer nonzero;

(i) @, ® are n x n dimensional real matrices;

(iii) e; is the n x n dimensional matrix defined by e; = (6i;x);r=1,.» Where
5 = Lif (5,k) = (i,9)
Y57 0 otherwise ’

@iv) If ay,...,a, € R, we define vec(a;) = (aq, ..., a,) which is a vector in R";

(v)  and r are vectors in R" and p = (p1, p2, ..., pn) Where p; € [—1, 1];

(vi) v, is the jump process defined in WASVJ model,;

vil) dZ, = 1 — p'pdWy, + dédﬂ) defines the stochastic correlation noise be-
tween the yield log S; and its volatility I'; on the continuous part of the
trajectory where d € | -1, 1];

(viii) Ba,t is a n x n dimensional stochastic matrix whose components are the
fractional Brownian motion (fBm) order a defined in Mandelbrot [[13] by

B t (t _ S)a
(1.2) Bt = /O GaT D l)dWS

where a € |-1,1[, G is the Gamma function, G(a) = [," u* e "du,
o > 0 and W, is a standard Brownian motion (sBm);

(ix) Wy, is a n x n-dimensional stochastic matrix whose components are the
fBm order d;

(x) P, is a n x n dimensional stochastic matrix whose components are the

compounded Poisson processes (cPp);

(xi) H'is the transpose of the matrix H.

(xii) ¢r(H) is the trace of the matrix H

(xiii) ¢’ is the transpose of the vector y.

The model is obtained by changing the sBm in the WASC Stochastic Volatility
Jump model (WASVJ) of Andrianantenainarinoro [1]] by the fBm. The fractal
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index on the asset of model adjusts its course to the reality and the fractal in the
volatility is to obtain its memory. The volatility I'; is a new process called Jump
and Fractionally Integrated Wishart Autoregressive noted JAFIWAR (a).

The purpose of this article is therefore to build a financial model with FIWASVJ
(d,a) in the market without friction. To do this, it is therefore necessary to set
up a modeling with the uncertainty linked to the future evolution of the financial
market. But before that, we must study the positiveness of volatility I'; and its law.
Next, we discuss the sense of the integral fOT VTsdZ, and the law of yield log S;.
Its law is related to an unresolved differential equation and we approximate the
solution by Euler’s approximation. In the practical part, we will show how to
estimate the parameter of model and we look the impact of its adjustment on
the option pricing. We find in this paper severals theories in stochastic calculus,
algebraic, differential geometric, numerical method and estimating method which
can be essential for the financial market.

2. THE MODEL

In this study, we work in the probability space (R", P ) where P is the “risk—
neutral”’probability such that the price of any option is a conditional expectation
of its payoff. Consider a market of a basket carrying n underlying assets such that
S; is the value of this basket at time ¢, log S; is its return.

2.1. Positive definite of volatility. Let z; a process in R" defined by:

(2.1) dxy = Pxydt +/Q'QdB, + dF,

where ¢ and () are n x n dimensional real matrices; B, ; is a n-dimensional sto-

chastic vector whose components are the fBm order « € |—1,1[ and P, is a n-

1
2
dimensional vector of cPp.

Let z; a process of the form:

14
/
(2.2) Zp = E Tig(Tie)'
=1
where v is a positive integer nonzero and (z;;); ¢ = 1,..., v are the n-dimensional

vector process defined by (2.1)).
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Proposition 2.1. z; is a positive definite matrix if and only if v > n > 1.

Proof. “="Firstly, if v = 1, then we work in R and the process z; is the sum of the
real processes squared.

Let us now consider for v > 2. We use absurd reasoning. Suppose that n > v
and z; is a positive definite matrix. Build a n x v dimensional process X;:

(2.3) d(X) = ®(X,)dt + /QQdB,; + (dP;),

where (X;)" = (214,...,2,¢) is @ n x v dimensional stochastic matrix; B’a,t =
(Biat, Ba.ats - Buat) is the n x v dimensional matrix where the B, ,;, are the
fBm vectors of x;4, ¢ = 1,...,v and (Pt)’ = (P, Pyy, ..., P,;) is the n x v dimen-
sional matrix where the P, are n-dimensional vectors of cPp of z;;, i =1,...,v.

We have z; = (X;)'X;. Thus rank(z) < min(n,v). Since v < n, then we
have rank(z;) < n where z; is a n x n dimensional matrix. Thus z; is singular
and therefore it is not positive definite matrix. A contradiction with z; is positive
definite matrix.

““"Lety € R?, y = (y1,%2,...,Yp)". Let suppose also that z;, = (a%,...,2%)".
Developing z; of the form (2.2), we get

iN2 i i
(z1)? xfwy - 2T,
v i i\2 i
. Z ryry  (x5)7 -0 xhT,
Zt =
i=1 :
i i i\2
wnxl xn$2 e (xn)
After the calculation,
14 n 2
/ _ 7
Yzy = E E (yﬂj) > 0.
i=1 \j=1

Thus, if the latter is zero, then we obtain v equations with n unknowns which are:

/

M=

(y;zj) =0
J

> (y523) = 0

Il
a
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Since v > n, we have y; = 0 for all j. Thus, the later is strictly positive for all
0 # y € R™ and it follows that I'; is positive definite matrix. O

2.2. Marginal dynamic of the model.

Proposition 2.2. Let us dP,; = Y;dN, where P, isthecPpof x;s, i =1,...,v, the Y;
are n-dimensional vectors of i.i.d (independent and identically distributed) random
variables and N, is a Poisson process of intensity A > 0. If v > nand a € [0, 1], then
the process z; satisfies the SDE (Stochastic Differential Equation) of type:
ZQ,Q(dt>2a+1 + (@Zt ‘I— th)/)dt

(2a +1)G(a+ 1)

2.4) +\/Z_t(déa,t)/ /0'Q + /Q/Qdéa,t 2t
+/z(dP) + dPy/z + dP,(dP)

with () and ® are the above matrices; B, is a n x n dimensional stochastic matrix
whose components are independent fBm order a defined by dBW = dBatht(\/z_t)*l;
(P,) is a n x n dimensional stochastic matrix whose components are the cPp such that
dP, = (dP,)' X,(\/z) " where B,,, P, and X, are defined in .

dzt =

Proof. Applying Ito’s formula with respect to fBm on the process f(z;) = > z;(z:4)’,
=1

we obtain

doy =Y daf,(a,) + > wi(daf,) +
i=1 i=1

14

+ Z(Izt +Y))(xis + Y;) — xz’,t(xi,ty dNy,

i=1

v(dt)?+
(2a +1)G(a+1)

;Q'Q

where X7 is the continuous part of X, (cf. reference [1] but fBm instead of sBm),
and so

v

dz =Y (Dt + \/Q'QdBiay)(wie) + Y wia(Piydt + \/Q'QdB; )
=1

i=1
2.5) V()2

(2a+1)G(a+1)

+Yi(V) — xz‘,t(l‘i,t)/]dNt

QQIQ + [z (wig) + 24 (Vi) 4 Yilzin)'
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_ I/(dt)2a+1
"~ (2a+1)G(a +1)2

Q'Q+ (P2 + 20)dt + > \/QQdB; g (i)
=1

_'_xzt deat \/ Ql + Z :Uzt +Y .1'1 t) + Y;(sz)/]dNt

v(dt)?at! , . —
~ et DGt 1)262 Q + (P2 + 2 P")dt + /Q'QdBy X,

+ (X)) (dBay)V/QQ + (X)dP; + (dP) X + (dP,) dP,.

Since dP; = (dP,)'X;(y/z) " and dB,; = dB,,X:(,/z)"". Then, we have dP,(dP;)’ =
(dP,)dP,. Thus
v 3
2. _ / 2a-+1 (I) @/ B I raY
" (2@ + 1)G(CL + 1)2Q Q(dt) + ( Zt + 2t )dt + \/Z_t<d a,t) Q Q
+ VQQAdBy /7 + /7 (dB,) + dPy\/z + dP,(dP,) .

The first term of the right-hand side of the equality later vanishes as a consequence

of application of the Ito formula with respect fBm. O

Let T'; a process solution of the SDE defined by (2.4). We call the former ap-
proach by JAFIWAR(a) process. We remark that if jump does not exist then the
process reduces to a FIWAR2 (see [3]]).

2.3. The law of T';. In this section, we try to give the explicit expressions of
Laplace transform of volatility T',.

Proposition 2.3. : If A € M,,(R) such that |A|| < 1then I,, — Aand I, + A are the
definite positives matrices and they are true for any norms.

Proof Letbe 0 # y € R" and A € M,,(R), ||A|| < 1. We have | ' Ay [<|| ¢ ||| A ||l
y =11 Ay [IP<]ly 1. Thus — || y [?< —y'Ay <[l y |- Then 0 <|| y [|* —y'Ay =
y(I— Ay <2y |

Same reasoning for the other. OJ

Let F':t € R — F(t) = F;, € GL,(R) be a differentiable function. Thus, we
obtain the following differential (cf. Le Stum [[11]):

(2.6) ddet(F,) = det(F)tr(F,'dF,).
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Hence, if log F; is defined, then by assuming F, = I, and integrating between
0 to ¢ member to member equality [det(F,)|"'ddet(F;) = tr(F,'dF,), we find
log(det(F})) = tr(logF;) and

(2.7) det(F}) = exptr(logFy).

This relationship is useful when we want have the characteristic function from the
Laplace transform.

Let us dP, = JdN, with J = (Jik)1<1,k<n Where Jj;, are the i.i.d normal random
variables with .J;; ~ N(m,o?). Let A be a n x n dimensional symmetric matrix.
The Laplace transform of I';;, given I'; is defined by:

(2.8) Ur, (A, h) = E {0+, } where ¢, h > 0.
Since T'; is an affine function, we have
(29) \I/F(A7 h) — etr(B(h)Ft)-‘rc(h)

with B(h) and ¢(h) are deterministic functions expressed by, in the trace operator

Proposition 2.4. If || 262B(h) ||< 1 and B(h) ) is a symmetric matrix for all h > 0,
then

2 b , ! ,
— _ / a (P+D')s (P+D')h
B(h) []n Glat1e 1)2AQ Q/O s*%e ds] Ae ,
eh) = tr|-Zog (I, - = AQQ / QETRCSEONN
2 " Glat1)? 0

h B _
+}\/ etr[B(u)(In—202B(u))*1((m1)2+2, /T, (ml)+2T,— B(u)o?)—2log A(u)| _ 1ldu
0

with A(u) = I,, — 20°B(u) and 1 is a n x n dimensional matrix whose components
are equal to 1.

Proof. Let be t,h > 0. By using the Feynmann-Kac argument on the SDE of I';, we
get
OVr (A, h)

(2.10) o

— LpWr, (A, h)
with

(2.11) EF\DFt = E(F)cqut_ + Ejumps
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where

(i) Lr)- is the infinitesimal generator of (I');
(ii) Using the work of Bru [4], we have

VhQa 2h2a
2.12) L=t - o, +1,-® ) D+ ——-1,-DQ'QD| ;
( ) ) T|:(G(CL+1>2QQ+ t + t ) +G<a+1)2 t QQ :|7
(iii) L,umps is the infinitesimal generator of the jumps such as:
(213) EjumPS _ A\IJFtiE {etT(B(h)(Q Ft—J+JJ/) _ ]_/Ft} :
(iv) D = (Dy;);; such that D;; = %.
We have also
8\I]log S,y (77 h) 8B(h) aC(h)
—3h = |:t7‘ ( oh Ft—) + oh :| \I/Fr <A7 h)

So, from the expression (2.10]), we have

(B0

Vh?a
—tr | =22 Q'Q+ @l +T,. 9| B(h
(2.14) ' KG(““)2QQ+ " ) ( )}

2h2a ,
ot BN QBN

R {etr[B(h)(z, /T J+J7")] _ 1/Ft} for all h > 0.

—+tr {

We have also B(0) = A and ¢(0) = 0 and from the work of Andrianantenainarinoro
[1, page 13],
E |:etr[B(h)<2 T, J+JJ’)]/Ft]
§ § i 675’%A(h)er(2(m1)’B(h)a+2veC(ok)’B(h)o)z—:
e(ml)’B(h)(m1)+2vec(crk)’B(h)(m1) / de

V2"

where 1 is a n-dimensional vector whose components are equal to 1, and further

n

k=1

equal to
H e(mi)’B(h)mi+2(vec(0k))’B(h)(mi)f%tr(log A(h))
k=1

e((mi)’B(h)a—i—(vec(ak))’B(h)a)(2A(h)*1)(aB(h)(mi)—i—aB(h)vec(ak))
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through Gourrieroux [9, Lemma, page 213], the Proposition and the equality
(2.7), and also to

ol [B(h)A(R)~1((m1)242,/T,— (m1)+2T,— B(h)o?)—2 log A(h)] .
Thus, (2.14)) is equal to
2h2e

. K%QQ' BT, 4T, @f) B(h) + mn3(h)@'@3(h>]

+/\[ r[B(R)A(R) = ((m1)2424/T,— (mI)+20,~ B(h)o?)—2 log A(h)] 1l

Identifying the coefficient of I',-, we get
oB(h) 2h2®

=®B(h)+ B(h)®' + —=B(h)Q'QB(h).
S = OB + BN + s BNQ QB
In the trace operator, B(h) is the solution of following SDE:
0z 2h%a
2.1 o+ P’
(2.15) B =(®+2)z+ Glat 12 5 Q2%
Let us y = z~!. The SDE ([2.15) is equivalent to SDE:
oy 2h2e
2.16 — 4+ (P+ P
(2.16) oL@ =
f(h) = a+1 —2 Qe (2+2)h fh 20e(24+20s 75 4 Ke~(®+®)h is the solution of SDE

(12.16]) Where K is a constant.
-1
Thus, g(h) = []n a+1 — _K,Q' th 2“6(4’””)50{3} Ke(®+®) is the solution
of SDE (2.15) where K; is a constant. We get the result by taking B(h) = g(h)
where K; = A.
Finally, by identification we have

ORI
oh G(a+1)2

o [etr[B( )A(h) = ((m1)242,/T,— (ml)+2r,— B(h)o?)-Z log A(h)| _ 1}

;QQ'B(h )}

-V ,0B(h) v /
= tr [TB(h) ~n " 5((13 + o )}

o [etr[B(h)A(h)*l((mi)Q-f—Q, /T, (mI)+20, B(h)o?)—2log A(h)] _ 1}
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with ¢(0) = 0. Thus,
vh

ch) = tr {%V(log B(h) —log B(0)) — 7(@ + @')}

h ) ]
. )\/ S [B@A@ T ((ml)242/T= (D) 42T, Bu)o?) -5 log Aw)] _ 1 4y,
0

1% 2 h ’
= t __1 In_—A / 2a (<I>+<I>)sd
7‘[ 2og( Glat1? QQ/OSG S
h . )
n )\/ o [B@A@ I ((mD)242y/T,— (mi) 42T, - Bwo?) -5 logAw)] _ 1 7.,
0

where A(u) = I, — 202 B(u) for all u € [0; h]. O

Remark 2.1. When a = d = 0, Andrianantenainarinoro [1|] studied the stationarity
of I'y.

2.4. The law of asset returns. Let be a market of the form (1.1). What meaning

. T T
can give to [, \/T,dZ, or [, oj,+dB,? where /T, = (0i;)1<ij<n-
Let’s consider

(2.17) Z Out (Bt — By,)
tieA
with A ={0=1%, <t; <...<t, =T} and watch what’s going when A — 0.

If d = 0, then B, is sBm which is martingale. Since oy, is adapted continue, the
sum (2.17) converges to fOT oi,sdBs through [[14, Proposition 122].

Now, suppose that ; > d > 0. Let’s admit that for all ¢,#' € [0,7] closer, there
exist M > 0, || oy — o |K M |t —t |% and put 7" = 1 (to simplify) and
A=A, ={k2? k=0,...,207'}. If t € A,, we denote ' = ¢+ 277 and 7 = tg—t/
Letus u, = Y, o +(By — B:). So, we have

teA,

Uppr =ty = Y Ouu(Br = Bi) + our(Br = Br) = 3 owy(Br = Br)
teAp 1D,
+ Ukl,t(BT - Bt)
= Z (O-]CZ,T - O-kl,t)(Bt’ — BT)

teA,
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Hence

luprs —wp | < Y Nl owr —owe Il By = By ||
teA,

1
< ZM|T—t|2( (By — B,)?)?
teA,
—(p+1) 22 (p+1)(d+3)

i, \/2d+ 1G(d+1)
Mo—(p+1)d 1
= —>Oif0<d<§whenp—>oo.

2v2d + 1G(d + 1)

Hence u, converges to the Young integral [19] fOT or,sdBs for 0 < d < 3.
Now, demonstrate that for all ¢,¢ € [0, 7] closer, there exist M > 0, || ogy —
owg |< M|t —1t 2.

Let U = {(9511,7&, e Tty T2t - Tonty sy s Tant) €E RT 2

n(n+1)
}, zi; > 0 and the

main miners of the symmetric matrix (zy) -1, are positives. Put F' : U — U,
F(o11ty -0ty 02245 0oty sy s Onnt) = (Dins ooy Dt Doty oo Doty s oy D)
Admit that F is a global dimorphism. Thus, there exist a function g;; : U — R of
C! class such that g;(T';) = o, and

Agri(I't)

dl, ;.
arsr,t !

do kit —

s,r=1

— ¢ |2 through to SDE of T, where

M = Ai]\fkl

k=1
g (T
A = sup (‘% [ Dsre 5 ’gsr<rt)‘) <0
te[0,T] lg,t

s, l,q=1,...,n

because the trajectory of I'; is right continuous with a left limit and the g,, are
C'(U) classes, and further,

Nu = +AZ|<I>”| 1wl + Z Q] + 1Qril+

7,—1

v Z Qk]@jl

7j=1

A <2nA\/02 +m?+n(o” + mz)) ,
where @ = (Pp)i, VQ'Q = (Qri) -
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Prove now that for n = 1 and n = 2, F'is a global dimorphism.

For n = 1, we have U =]0, +o0o[, and F(¢) = ¢ Thus DF =20 > 0on U (DF
is the derivative of F'). The result follows using the global inversion theorem (see
in the reference [6]).

For n = 2, we have U = {(x11, T12, To2) € R® : 111, 099 > 0; 211790 > (712)?} and
F(oy1,012,09) = ((011)* + (012)%, (011 + 022)012, (092)* + (012)?). Thus, we have

20'11 20’12 0
det(DF) =det | o1 o011 +ton 0| = 4(011 + 022)(011022 - (012)2) > 0 for all
0 2012 2092

(011, 012, 092) € U. The result follows using the global inversion theorem.

We can develop on —% < d < 0. To do this, to give a sense to fOT VIdZ,, we can
use the rough paths theory of Lyon [12]. To converge the Riemann sum (2.17)),
we add a fix term built from the Levy’s areas (see [[15]). But for now, let’s stay in
de[0,5].

Let v be a vector in R". The Laplace transform of log S;,,, given log S; and T, is
defined by:

(2.18) Wiog 5, (7, h) = E{e7 %851 J10gS, T} where t, h > 0.
As the yield log S; is affine, we have
(2.19) Uiogs, (7, h) = elrAMWTD+BR) log Si+C(h)

with A(h), B(h) and C(h) are the functions. Using the Feynmann-Kac argument

to the model, we have

a\Ijlog S,y (/77 h)
oh

where ¢, h > 0; Loz g0 is the infinitesimal generator of the joint (log S;,I';) defined

by:

(220) = Elog S,F\Ijlog S,— (77 h)

Proposition 2.5.

Vh?a 2a
- ———Q'Q+ ', +T, @)D+ =T, DQ'QD
ElOgS,F tr |:<G(CL+1>2QQ+ t + t > + G<a+1)2 t QQ

h?d
_VyD,- Vi

1
+ Vy (7’ — §U€C[t7’(€iirt_)]> + m
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hd-l—a

T GErnGEar (DV@QoVyTi- + T Vi VQQD)

(2.21) + )\\I]logSt_E {e(v/+A(u))(2, /T, Jp+JJ' o) 1/logS,, Ft} 7
with
(D) D = (D;j)1<ij<n where D;; = Miw and ';;;, 1 < i, j < n are the components
of the volatility matrix I'y;

/
(i) Vy = (8%1, cee %) where Y; = log S, is the yield of the i-th underlying
in the basket, i =1,..., n.

Proof. Let t,h > 0. The operator L., sr can be broken down into the following
four components:
(2.22)

ElogS,leogSt_ = *C(logS)C‘PlogSt_ + ﬁ(F)C‘PlogSt_ + £<(10gS)C,(F)C>\I[10gSt_ + Ejumps
with
(i) Applying the same reasoning of Da Fonseca [|5, equations (11)-(12)-(13)],
we can obtain the infinitesimal generators Ly, Lo 5)c aNd L (10g $)¢ (r)e>

defined by:
1 h2d ,
(223) 'C(logS)c = VY (’I“ — §’U€C[t’f’(€iirt)]> =+ mV}/th v
(2.24) Ly =t L%Q’Qnubl“ it o) py 2 p DQ'QD|
' @ ="\ Gla+ 1)2 cTe Glat+12 ¥ 7

hd-‘,—a
2.2 e (Tyes = DO QY Ty +T,- V' /O OD):
( 5) £<(1gS) J(I)e> G(d—i-l)G(a—'—l)tr( QvaY i~ 1y yP QQ )

(ii) L;jumps is the infinitesimal generator of the jumps defined by:
*Cjumps = )\E {\I/((log St+h + H), Ft+h + G) — ‘ll(log St+h7 Ft+h)/l098t, Ft}
(226) = AWigs,_r, x E{e 7AW _ 1 /1005, T, }

where H = 2/I'-Jp+ JJ'pand G = 2/1'-J + JJ'.
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Proposition 2.6. If || 20%w(h) ||< 1, then

A) = / Ty () A(u)? + Ta(u) A(w) + 11 (u)du,

h
h — ! S 2aA
C(h) tr {mhjLG(ale)?QQ/o u (u)du]
h - -
+ )\/ [etr[w(u),u(u)_l((m1)2+2\/ﬁ(m1)+202ftw(u))—%log,u(u)] _ 1] du.
0

where 1 is a n x n dimensional matrix whose components are equal to 1 and

/
_|_
wlh) = T A(R);

p(h) = I, —20°w(h);

h?d .
Ti(h) = Z%eu 2Gd——|—1)277
" hdJra
_ / / / / /
o(h) = (+9)+ G+ G 1)(7/) VQ'Q+/Q'QpY),
2h2a
Proof. Lett, h > 0. We have
MWiogs, (v,h) [ 0A(h) OB(h) oC(h)
—ah = |:t7”( oh Ft—) -+ —3h log St— + —@h \IllogSr (77 h)

Then, from the expression (2.20]), we deduce

DA(R) OB(h) aC (h)
tr |: oh Ft—:| + W lOg St— + W

h2d
2G(d+ 1)?
vh?Q'Q 2h2“Ft_A(h)Q’QA(h)
+ tr KG(@‘FD + ®I'- +I'- (I))A(h)+ Glat1)?

oty [A) QBT + T B QAN
G(d+1)G(a+1)

— Bh)(r — %vec[tr(eiift—)]) + B(h)T, B(h)
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(2.27) +/\E{ rly'+AMNH) _ q /logSt,Ft}

with the initial conditions A(0) = 0, B(0) =" and C(0) =

Applying the some computations in but w(h) = W; 2+ A(h) to the place
of B(h), we have
E {etr[w(h)(Q rt,J+JJ')}/lOgSt’ Ft} _ e”[ w(h)u(h) = ((m1)2424/T,— (m1)+2T,— w(h)o? )~ % log u(h)]
where p(h) = I,, — 20%w(h). So, is equal to

B(h) <T - %Uec[ﬁ“(@u'rt)]> + MB(MI}B(}L)’

2 hQa

Vh’Qa / /
+m{(5@:T§QQ+¢n+Ft¢)Amy+EG:TFn

d+a
. h [ (h)\/QQpB(h)Ts + Ft_B(h)’p’\/Q’QA(h)]

Gd+1)G(a+1)
Y [etr[w(h)u(h)*l((m1)2+2m(mi)+202ftw(h))]—%trlogu(h) . 1] .

A(h)@'@Aw)]

By identifying the coefficient of log S;-, we have 82—,@ = 0 which follows that

B(h) = B(0) =+ forall h > 0.
Identifying the coefficient of I';-, we have

DA(h) 2 ,
(228) W - __Z’Yzeu d——|—1)277

2h2a
G(a+1)?
hd-i—a / / / :

which is integrable in [0, 1] (see the Euler approximation above doing tend n to
+00). In the trace operator, A(h) is the solution of Riccati SDE:

0z
oh

(2.29) + DAR) + AW + A(W)Q'QA(R)

(2.30) +

(2.31) = T3(h)z* + Ya(h)z + T1(h)

where

5> i
= -5 i€i T 577 12
2 4T oG 2!
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, hd+a /
To(h) = (®+®)+G(d+1)G( w\/ Q++/Q'QpY)
2h2a
Thus
(2.32) / Ty () A(u)? + T (1) A1) + 11 ().
And finally, by identification
oc(h) , vh?
W—W[W+G( )QQ()}

. A[ rlw(R)u(h) = 1(<mi>2+2\/ﬁ<mi>+202rtw<h>)—g1ogu<h>]_1]

where C'(0) = 0. And thus
Ch) = tr|m/h+ ——=Q'Q / i Au)d
= tr|ry Glati)y i U w)du

h
(2.33) + )\/ [etr[w(u)#(m—l((mi)2+2m(mi)+202rtw(u))—%log,u(u)] — 1| duw.
0

Remark 2.2. A(h) is a solution of Riccati SDE and it exists. Indeed, we can bring the

problem back to that of Cauchy (cf. Raymond [17]):

dvec(z = g(h,vec(z )) = vec(f(h, z)) € R”
(2.34) { vec( (0)) =0 € R™.

We can easily see that for fixed h, the function vec(z) € R" — g(h,vec(z)) € R
is continue and locally Lipschitz in vec(z). The result follows through the theorem of

Cauchy-Lipschitz (cf. Raymond [[17]]). However, we don’t have the explicit expression

of A(h) because the SDE is a Riccati type with variables coefficients and the expression

of general solution is not determined. Hence the use of the approximation.

Proposition 2.7. Let n = 2. Let ¢ be the interest rate. If a = d = 0 and

. etr[wLu;l ((m1)2+2\/ro(mi)+202f‘0w1)7log u1] -1

P etr[u&u;l((m1)2+2m(mi)+202fow2)—log/@] —1
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! L,0)Yifj=1
where w; = m; w;j = I, — 20%w; and ; = { EO’ 1;/ ;‘7 5 then the market
L)) =

is without friction.

Proof. Let be a = d = 0. In the market without friction, the hoped value of j = 1;2
asset under the risk-neutral probability PP is:

Sjoet" = E[S;¢]S;0,T]
= Elexp(log S;+)|log S0, o]
= \Ijlog So (7j> t)
_ etr[A(t)Fo]-i-log S;,0+C(t)
(2.35) — gj.’Oetr[A(t)FoHC(t)

where V), 5,(7;,t) is the Laplace transform above by taking h = ¢; t = 0 and
v = ;. For a = d = 0, the SDE is resolved and we find A(t) by imposing
A(t) = F(t)"'G(t) with F(t) € GL,(R) and G(t) € M,,(R). We have 0 = A(0) =
F(0)7'G(0) and thus take G(0) = 0 and F(0) = I,,. Thus, we get

(236) A(t) == AQQ(t)ilAgl(t)

where

B <[M11 My,
= exp|t

Agl(t) Agg(t) M21 _Mll
My = 2P wAVEEE (i VOQ)
2 2
My, = —2QQ
My = —’Yﬂ] Z%leu—o
We have
Mt 1 Myt Myt
(237) An(t) Alg(t) _ M ( o )M12
A1 (t) Ago(t) 0 1
(2.38) Alt)=0

(239) O(t) _ T’jt + \t |:etr[wj,uj*1((mi)2+2\/ﬂ(mi)+2021“owj)flogﬂj] — 1} .
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where r; is the j-th component of vector r. Indeed, let be T' =

Mll M12

0 —MH]’
Ts = (ﬂgs))ij, s € N. In the trace operator, we have 7}(].0) = [,ifi = jand 0
otherwise; T} = Myy; T = My TS = 0; T = —Myy; T = (My)% TS =
My My — My My = 0; TZ(f) =0; T2(22) = (My1)?. Now, let us consider p > 1, in the
trace operator, reasoning by recurrence, we have 727 — 7@ | TfS)TQ(fp ) —
(M2 75D = TRTEY + TR TEY = 0; T = TR + TETEY =
0; T222(p+1) = TQ(f)ngp) + TQ(S)TQ(SP) = (My,)?®*Y, Then using the values Ti(jl) and
Ti(fp) above, we have, for all p > 1 T2+ = 7T 4 TOTE) — (M),
T = TWTEY + TYTEY = (M) M TP = TPTE + TRTEY = 05
Tt = TZ,(})TSP) + T2(§>T2(§p) = —(My;)?*!. Well, we have

A () Aa(t)

T ()
Agi(t)  Ago(t) Z

|
S.
s=0

Mt _l —1/_ Myt =Myt
e M (e e )Mo
0 e~ Mt )

[\

Thus, the value of A(t) is obtained through the expression (2.36) and the A;;(¢)
above. Hence

Tjt+)\t

etr[wjp;1 ((mi)2+2,/Fo(mi)+2cr2l"0wj)—log ,uj] _1:|

2.39|) = 5,06

and the result follows by using identification method. O

Remark 2.3. 1) r is the rate interest if the model is without jump process. 2) For the
fractals models, Rogers [18] and Guasoni [8] showed that E ([ o(s, By)dBa,s) # 0
products an arbitrage and so any transaction is payed with a rate ¢ > 0.

2.5. Approximation of function A(h). We have not the closed form expression
of the particular solution of SDE (2.31). Then, we approximate A(h) by a value
approached. An example is Euler’s approximation.

Euler’s method

Let be a differential equation g—g = f(z,y) on the interval [a,b]. We propose a
solution approached of differential equation on the interval [a, b] using the Euler’s
method. We divide the interval [a,b] using the regular subdivision of n order:
r; = a+ MT_G), Vi € {0,1...,n}. The stepis s = b‘T“ In this case, we find Vi €
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{0,1...,n} a approached value y; of y*(x;) where y* is the solution of equation.
And thus, we continue by the following principle: we suppose the initial condition
uo = (o, yo), and:
- on [a, r1], we replace the function y* by its tangent at uy. We obtain y; =
Yo + s%. But since y* is the solution of equation, we have that ay;—(j‘” =
f(xo,20)- So, we have y; = yo + sf(xo, yo) which gives u; = (z1,y1).
- on [z, x|, we operate in the some style and suppose y» = y1 + sf(x1,y1)
to obtain uy = (2, y2).
- We operate of thisway Vi € {0,1...,n} and we have y; = y;_1+sf(xi—1,yi-1)
which is a approximation of y*(z;).
Thus, Euler’s approximation on [0, 7] of A(h) is:

o+ s£(0.0)if b € [0, 2],
2.40) A ={ 17" s/(0.0) 0.21]

Yi = Yi—1 + Sf(xi—hyi—l) lfh S [Ii—laxiLi = 17 R 3

where f(z,y) = T3(z)y? + Yo(x)y + T1(x) such that £(0,0) = T,(0).

Convergence speed of approximation of A(h)

Let Ay be the true value solution of SDE (2.31)), N be a large enough integer and
ASENu)ler be an Euler’s approximation with iteration N. The convergence speed of
Euler’s method is slow: the rest of || Ag\ger — Ay || is 5 order (cf. Raymond [17]).

2.6. Dependence between yield and its volatility. Let be a market FIWASVJ(d,a)

where d, a are the fractals indexes such that a,d € [O, % [ We assume that each
component of the vector Bdﬁt is independent with the one matrix Wd,t (see the

third equation in (1.1))).

Theorem 2.1. The covariance between each component of vector yield noise dlog S;
and the one volatility noise matrix dI'; is given by for all i,j,h =1,...,n,

cov(d(log Sn), d(L'ije)) = (Fhi,t > Qupi+Thie Y Qh‘ﬂl)
=1 =1

(dt)d+a+1
(d+a+1)G(d+1)G(a+1)
(i) log S ; is the component of the yield vector log S,

(2.41) with
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(i) p. is the component of vector p,
(iii) " ; is the component of the volatility matrix I'; and
(iv) Q.is the component of the matrix QQ'Q.

Proof. From the expressions /Iy = (0;:)1<i j<» Which is symmetrical and I'; =

(Tijt)ij=1,..n, We get
n
(2.42) Tije = > 0.
=1

Now, let be i,j5,h € {1,...,n}. d(logS,,)° is the yield noise of log S}, in the
continuous part which is the h-th line of dlogS; defined in equation (1.1) by

F n
d(log Sp1)¢ = (Th — hh’t) dt + > onkdZy,. And d(I';;4)¢ is the component i-th

2 k=1
row and j-th column of d(I';)¢ with

(dt)Qa-i-l
A(T: )¢ o, L@y | dt
( Z]ﬂf) (2(1 + 1)G(a + 1 ZQllel + Z it It + Z il X gl
(243) + Z (gim,tdWa,ml,thj + Ujm,tdWa,ml,thi)-
m,l=1
So,

cov(d(log Sp.t)¢, d(L's;4)°)

(2.44) = cov (Z OnktdZkts Y (Oim s d@Wami Qi + ajm,tdwa,ml,tczh)>

k=1 m,l=1

where dZ;; = /1 — p'pdBajs + > AW pp1pp-

p=1
Since each component of the vector B, is independent with the one matrix W,;, we

have cov(dBgt, dWa smt) = 0V k, s and m, then using

Osi(k,p m,l
(2.45) Ccov (de,kp,t7 dWa7ml,t) = { ( (dt)d)-i-il( ) h . )
[@rar Do DGag) Otherwise
we have
dt d+a+1
(2.44) = (dt) Z Onkt 0kt Qo1+

(d+a+1)G(d+1)G(a

kll
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(dt d+a+1

)
(d+a+1)G(d+1)G(a+1 kzl:l Ohk 0kt QLip1
(dt)d+a+1 n n
- r %, Q iP + r i, Q iP ,
(d+a+1)G(d+1)G(a+1) htlzl 15 Pl hytlzl 1Pl
through (2.42). .

Let (,, be the correlation between I',,; and I, ; defined by
Uyt

(2.46) Cpgt = — 22—
! V Fpmrqqﬂf

2.7. Dependence between yield and its correlations.

Theorem 2.2. The expressions of covariances between each yield noise of the basket

log S, + and the correlations noises (p,1, p,q = 1,...,n and p # q are given by:
(d) (1 = G i
2.47 d(log S,4)¢, d ‘) = P, pp E

with ((pq.t)¢ s the continuous part of Cp, .

Proof. Let be p,q € {1,...,n}, p # q. Applying Ito’s formula on process f(I';) =

Cpg,t

)
\V Top,tTqq,t

d(Cpq,t)c
d(rpq,t)c 1 qu,t (d(rpp,t)c

we get

vV Fpp,trqq t 2 Fpp trqqt
(2 48) Z a f t) [Z sz thjer + le tQT]QTk + ng therl + F]l tQmQrk] .
r=1

d<rqq,t>c (dt)Qa—H
T )*2@a+mem+1y

pp,t qq,t

ijel=1 Fzy tarkl ,t
Hence
(2.49) cov(d(log S;+)¢, d(Cpqvt)c)
cov(d(log S;+)¢,d(Lpgs)®) 1 Dpye

V Fpp,trqq,t 2 vV Fpp,thq,t
<cov(d(log Sit) d(Tppt)€) N cov(d(log S;+), d(qui)C))
Fpp,t qu,t
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dp)d+atl (quvtrip,t - qu,triq,t) Z quPl
_ (dt) =
(d +a+ 1>G(d + 1)G(a’ + 1) qu,t Fpp,trqq,t
dtatl (ToptLigt = Ppgalipt) 20 Quop
(2.50)  + () =
. (d +a+ 1>G(d + 1)G(CL + 1) 1—‘pp,t F10p,thq,t
through (2.41). Assuming i = p, we have that (2.49) is equal to
3 8 q
(dt)dJraH ZQl o ppt _ qu,t qu,t
(d +a+ 1>G<d + 1 a qq t Fpp,thq,t qu,t
( dt)d+a+1 ppt
BCET TS\ ESIE Z@w “(1 - G3,1) through (246).

O

3. ESTIMATING OF THE PARAMETER OF MODEL

Consider a market with an interest rate « by paying the transaction with rate
e > 0:

( etr[wlufl((mi)2+2m(mi)+202row1)—10gu1] 1
dlog S I—=A . -
& ot etr[wgugl((m1)2+2\/ﬂ(m1)+202f‘0w2)—log,u,g] 1

—%Uec[tr(eiil“t)]) dt + /Ty dZ, + dipyp

(3.1) Al = Grbarnr @ Qdt)* ™ + (PT + T, @) dt
+\/F—dBa tQ + Ql(dBa t)/\/r_t + d,lvbt

dZy = /1= p'pdWa; + dBdtP
\ dipy = Ty dP, + (dB,) T + (dP,)(dP,)’

We pass by following two-steps to estimate the parameters of the model:

i) We estimate the order of the fBm « via the local Whittle estimator of L
Kristoufek [|10].

ii) We estimate the parameters @, ¢, p, v, m, o, A, v/Q'Q and the fractal index
d using the estimating method presented in Andrianantenainarinoro [2].
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4. APPLICATION

In this article, we propose to estimate the current price of CAC40 and S&P500.
We used the daily CAC40 and S&P500 indexes. For each stock, the time series
start the January 29, 2020 and end the February 19, 2020 which are presented by
the following Figure

CAC40
6,120

6,080 -

6,040

6,000 -

5,960 -|

5,920 -|

5,880

5,840 -|

5,800

T
29 30 31 3 4 5 6 7 10 11 12 13 14 17 18 19

January February

SP500
3,400

3,360 -|

3,320 -

3,280 -|

3,240 |

3,200

T
29 30 31 3 4 5 6 7 10 11 12 13 14 17 18 19

January February

FIGURE 1. Historical Volume of CAC40 and S&P500 Indexes

We can see from the graphs that prices have rebounded recently and according
to an economic analysis the covid-19 is the cause. The investors therefore rescue
to buy the calls and the seller must feel a greater probability of losing and seeks
an arbitrary model. Now is the time to find out if our model can bring the market
back without friction. To do this, we church how the price evolves and what is the
price of option.
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4.1. Results of estimation.

Step 1: Estimating of fractal index a
We get a = 0 with standard deviation error 0.1767767. Hence, the series have

short memory.

Step 2: Estimating of C-GMM estimators ®, ¢, p, v, m, o, A and /Q'Q

4.1.1. Monte Carlo study. The initial parameters used in the simulation are:

3

oo o025 —000s4] [ -5 05
O 1200054 00144 | |-05 -5

o= (-1,-1); p=(-0.3,-0.4); v = 15;

m = 0; 0 =0.01; A = 0.5; a = 0.00225;

() — .
©a —0.01097  0.09549
The matrix /Q'Q is obtained by using the long—term relationship:

Doo® + L + A(m1)\/Too + M/ To(ml) = —vQ'Q — Anc?IL, — nA(m1)?

which is a necessary condition of WASC Stochastic Volatility Jump model for that
process I'; is stationary (see Andrianantenainarinoro [1, equation (4.3)]). The

[ 0.1204 —0.01097

annual interest rate ¢ is taken in the range [0.015;0.0175] which is a daily interest
rate 0, 000045.

The table 1| shows the descriptives statistics of the data used. The figure
displays the C-GMM method criterion.

The table presents the C-GMM estimator 6;.

The results of the estimates of § with its standard deviations of errors are pre-
sented in the table B

The figure |3| gives the stylized facts captured by the model.

We use the uniform density on [0, 1] x [0, 1] for the density 7.

The figure [4) shows the forecast of two courses CAC40 and SP500 using FI-
WASVJ model with d = 0 and the pricing option is presented in the tables |4/ and
While, the figure [5is for FIWASVJ model with d = 0,49 and the pricing option
is presented in the tables[6] and
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4.1.2. Empirical results.
We present the results studying the data by statistics descriptives analysis.

TABLE 1. Analysis by descriptives statistics

Indice Min. 1st Qu. Median Mean 3rd Qu. Max.
log (CAC40) 8,867 8,691 8,705 8,700 8,712 8,718
log (SP500) 8,079 8,100 8,116 8,111 8,124 8,127

The two underlying are no dispersed with compared to average. The yield of
CACA40 can be adjusted by the Gaussian distribution /N (8.7,0.000265036) and the
yield SP500 by N(8.111,0.000236996).

Real part Imaginary part

FIGURE 2. C-GMM estimation criterion

The figure[2|show us the values taken by real and imaginary part of the empirical
moment of continuum of C-GMM method. It show us that we can minimize its
function.

TABLE 2. C-GMM estimator 91.

parameter p1 p2 Qu Qr2=0Qu Qn dy D9
estimator -0.7 -0.7 0.1 0.0007876 0.1 -20.401852 -0.09999907




408 T.R.H. Andrianantenainarinoro, R.A. Randrianomenjanahary, and T.J. Rabeherimanana

Doy Dy v

A ¥1

©2

m o

-0.016926 -20.421835 2 0.003093 0.588434 -0.987034 0.00032 0.346291

with objective 2,280892.10F.

TABLE 3. C-GMM estimator ¢

parameter estimator  standard deviation
o1 0.7 0.5564173
P2 -0.7 0.5265019
Qn 0.100000000 0.08094443
Q12 = Qa1 0.09374005 1.309801
Q22 0.100000000 1.305106
oy -22.01260 2.588469
3P -0.1 1.721465
% -0.1 0.8070361
Doy -21.95342 1.288708

v 2 0.5529048
A 0.001703251 0.5522816
V1 0.1518992 2,786253.1078
V2 -0.9993954 1,270706.10~%
m 0.000031086 0.004261457
o 0.000038515 25.50306

with objective 1,630633.107".

4.1.3. Study of prices CAC40 and SP500.
It is better to recognize the asset noise if it is logic or not before using for

the hedging or pricing option. Let be the fractal index d € [0
[0,0.0001] and we use the time—step = 0.0001 x

2

[. We works in

(to facility the discretization of
model) and the fractal index d = 0; d = 0.05 and d = 0.1.
The classified figures by fractal index are similar appearance but the scale makes

the difference. We look in below a value of fractal index d which adjusts the
course of model to the reality. We also acknowledge that on a period of strong
volatility the asset have weak values and on the decrease period of volatility the
asset increases. Likewise, the underlying prices studied are characterized by an
asymmetric correlation between the correlation and asset. We perceive also the
return to average. The model does not capture a jump.
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FIGURE 3. Stylized facts of model

Step 3: Estimate the fractal index d

Using the real data (see in a site of trading www.boursorama.com or m.fr.investing.
com), the strong value of CAC40 (resp. S&P500) of daily later is 6111.41 (resp.
3393.52); the weak value of CAC40 (resp. S&P500) is 6072.66 (resp. 3378.83);
the frequency data is 15 second; the market opens at 9:00 AM and closes at 5:35
PM.

We remark that the scale of CAC40 or S&P500 using WASVJ model is not logic
according the figure

The CAC40 (resp. S&P500) in this time can take a big value greater than
6111.41 (resp. 3393.52). We can correct that and we found, for d = 0.49, the
course evolution is given in figure

4.2. European call option of the basket CAC40 and SP500.
Let be a European call of the basket of indexes (CAC40, S&P500) and note by
(K1, K3) the strike of index quoted by points. The maturity is half a day and one
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day. The rate interest is « = 0 for the date expired in half daily and . = 0.000045
for daily rate. The annual interest rate ¢ is taken in a fork [0.015;0.0175] which
is a the daily rate 0,000045. We use the correlation and spread options in the
reference [7]].

Take N = 622; ¢, = —3; e = 1 and (u, K) = (47.80884,2566.262) or (u, K) =
(42.49675,2673.852).

TABLE 4. Spread option with WASC and WASVJ models

model WASC WASVJ

expiration T 0.5 1 0.5 1

K 2566.262 | 150.1792 150.1766 | 150.1792 150.1766
2673.852 | 32.27406 32.28091 | 32.27406 32.28091

For correlation option, we take i = 40; N = 2°; o; = 0.3 and ap = 0.4.

TABLE 5. Correlation Option with WASC and WASVJ models

model WASC WASVJ

expiration 0.5 1 0.5 1

(K1, K») (5649.82,3260.38) | 32588.27 36788.34 | 32588.27 36788.34
(6111.45,3260.38) | 3155.289 4727.712 | 3155.289 4727.712

The price options using WASC and WASVJ are any equal.
Let see now the option when we regularize the amplitude.

TABLE 6. Spread option with FIWASVJ(0.49,0) model

T 0.5 1
K 2566.262 | 150.0673 150.0968
2673.852 | 32.08414 32.18518

TABLE 7. Correlation option with FIWASVJ(0.49,0) model

expiration 0.5 1
(K1, Ks) (5649.82,3260.38) | 28423.57 30776.66
(6111.45,3260.38) | 1552.37 2486.081

We observe that the price option changes for d = 0.49 and the difference is not
significant for spride option but not for correlation option.
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5. DISCUSSION ON THE RESULTS AND CONCLUSION

The memory of volatility is short.

The jump does not exist because its intensity is almost zero, there explicates the
equality between the option price of WASC and WASVJ models. The volatilities of
volatility stochastic are smalls, then there is not an anomaly.

The scale regularization of assets is important because the scale of course is
rectified. Moreover, the price option changes. For example, on February 20, 2020
(CAC40, S&P500) = (6062.3, 3373.23). With WASC model, the market sells an op-
tion correlation of 4727.712 points after one day with strike (6111.45, 3260.38).
But, when we adjust the course (d=0.49), with FIWASVJ(0.49,0), the option is
2486.081 and the reduction is significant. Thus there exist a risk created by the
strong amplitude on the option pricing and the fractal index can solve its risk.

In practical, we use the characteristic function inside the Laplace transform,
then A(h) can resolve directly as in work of Asai [3].
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