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CYCLOTOMIC AND INVERSE CYCLOTOMIC POLYNOMIAL

D. Nagarajan1 and A. Rameshkumar

ABSTRACT. In this article, the companion matrix of the cyclotomic and inverse
cyclotomic polynomial is found. To determine the flat, gap, jump of the Φn(x)

and Ψn(x) for the binary, ternary, quaternary, quinary cyclotomic polynomial. To
find some properties of the cyclotomic and inverse cyclotomic polynomial.

1. INTRODUCTION

The term cyclotomic means “circle-dividing” which comes from the nth roots of
unity in C divide a circle into n arcs of equal length. The nth roots of unity lies on
the unit circle as the vertices of a regular n-gon. A primitive nth root of unity is a
complex number z satisfying zn = 1, but not zd = 1 for any d < n. Let ξn denote
any primitive nth root of unity. ξn = {ζjn, 1 ≤ j ≤ n, (j, n) = 1, ζn = e2πi/n} For any
positive integer n, the nth cyclotomic polynomial is a divisor of xn− 1 and is not a
divisor of xk − 1 for any k < n,

Φn(x) =
∏

1≤k≤n,(k,n)=1

(x− e2iπk/n).

The degree of Φn(x) is ϕ(n), where ϕ(n) denotes Euler’s totient function. The
index of Φn(x) is n. Φn(x) is monic with integer coefficients and is irreducible over
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Q and all of its coefficients are integral. The roots of the Φn(x) lies in the unit
circle. The minimal polynomial of any nth root of unity over the rationals is a
cyclotomic polynomial. Φn(x) is defined in the whole complex plane and for any
integer n. Φn(0) = 1, n 6= 1,

(1.1) xn − 1 =
∏
d/n

Φd(x).

The nine cyclotomic polynomials are (Refer Gary [11])

Φ1(x) = x− 1,Φ2(x) = x+ 1,Φ3(x) = x2 + x+ 1,Φ4(x) = x2 + 1,

Φ5(x) = x4 + x3 + x2 + x+ 1,Φ6(x) = x2 − x+ 1,

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1,Φ8(x) = x4 + 1,Φ9(x) = x6 + x3 + 1.

The Mobius function is defined as follows

µ(n) =

(−1)r if n = p1, . . . , pr

0 if n is divisible by a square.

Another form of the cyclotomic polynomial Φn(x) =
∏

d|n,1≤d<n(xd − 1)µ(n/d).
Cyclotomic concept is important concept in number theory,Galois theory, com-

binotorics, algebra and their applications, which encouraged the research on its
structure, height, gap and jump. Thangadurai [15] proved important properties of
Φn(x). Andrew [2] found the algorithms for calculating Φn(x).Camburu et al. [9]
found the new techniques for gaps and jump. Bin [8] gave an infinite of ternary
cyclotomic polynomials with height 3. Bzdega et al. [4] found the formula for the
Φn(x) at the other roots for unity using Fourier analysis. Andrica et al. [1] found
the integral formula for the cyclotomic polynomial.

2. PRELIMINARIES

Notations
Φn(x) = Cyclotomic polynomial
Ψn(x) =Inverse cyclotomic polynomial
C(Φn(x)) = Companion matrix of Φn(x)

Det(C(Φn(x))) = Determinant of Φn(x)

ρ(C(Φn(x))) = Rank of Φn(x)
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‖C(Φn(x))‖ = Norm of Φn(x)

tr(C(Φn(x))) = Trace of Φn(x)

λ is the Eigen value of Φn(x)

Det(C(Ψn(x))) = Determinant of Ψn(x)

ρ(C(Ψn(x))) = Rank of Ψn(x)

‖C(Ψn(x))‖ = Norm of Ψn(x)

tr(C(Ψn(x))) = Trace of Ψn(x)

An = maxm |an(k)|
A+ = maxm(an(k))

A− = minm(an(k))

Sn =
∑

m |an(k)|
Qn =

∑
m(an(k))2

Cn = maxm |cn(k)|
DA = A+ − A−, DC = C+ − C−

Lemma 2.1. (1) Φpn(x) = Φn(xp) if p divides n.
(2) Φpn(x) = Φn(xp)/Φn(x) if p does not divide n.
(3) Φn(x) = xϕ(n)Φn(1/x) for n > 1.
(4) If n ∈ Nodd, then Φ2n(x)) = Φn(−x).

Theorem 2.1. Let p be a prime and m be a positive integer. If p does not divide m,
then Φpm(x)Φm(x) = Φm(xp).

Proof. Let d|pm and p does not divide d. Since p is prime, gcd(d, p) = 1. By Euclid
Lemma, d|m. Suppose that d divides m. It follows that d|pm and d does not divide
m iff d|m. Sincem|pm, d|pm . Therefore d|pm and d does not divide p iff d|m. Since
p is prime and is not a divisor of m, gcd(p,m) = 1. If d is not a divisor of m, then
gcd(m/d, p) = 1. Since µ is a multiplicative function, µ(mp/d) = µ(m/d)µ(p) =

−µ(m/d). Assume that p|d . Therefore d = pn for some integer n, where n|m.
Suppose that n|m, then pn|pm, and if we let d = pn, then p|d and d|pm. Thus d|pm
and p|d iff n|m, where n = d/p.

Φpm(x)Φm(x) =
∏
d|pm

(xd − 1)µ(pm/d)Φm(x)
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=
∏

d|pm,p|d

(xd − 1)µ(pm/d)
∏

d|pm,p-d

(xd − 1)µ(pm/d)Φm(x)

=
∏
n|m

(xpn − 1)µ(pm/pn)
∏
d|m

(xd − 1)µ(pm/d)Φm(x)

= Φm(xp)
∏
d|m

(xd − 1)−µ(m/d)Φm(x)

= Φm(xp)(Φm(x))−1Φm(x) = Φm(xp).

�

Properties 2.1.

(1) If p is a prime, then ∂(Φn(x))/∂x =
∑p−1

k=1 kx
k−1,

∂α(Φp(x))/∂xα =

p−1∑
k=0

(k!xk−α/Γ(k − α + 1))&

∫
Φn(x)dx =

p−1∑
k=0

(xk+1/(k + 1)).

(2) If an explicit equation for Φn(x) for square-free n,

Φn(x) =

ϕ(n)∑
j=0

an(j)xϕ(n)−j,

where an(j) = −(µ(n)/j)
∑j−1

m=0 an(m)µ(gcd(n, j − m))ϕ(gcd(n, j − m)),
an(0) = 1, then

∂Φn(x)/∂x =

ϕ(n)∑
j=0

an(j)(ϕ(n)− j)xϕ−j−1,

∫
Φn(x)dx

ϕ(n)∑
j=0

an(j)(xϕ(n)−j+1/ϕ(n)− j + 1)

and

∂α(Φn(x))/∂xα =

ϕ(n)∑
j=0

(an(j)(ϕ(n)− j)!xϕ−j−α/Γ(ϕ(n)− j − α + 1)).
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3. THE MATRIX REPRESENTATION OF Φn(x)

Definition 3.1. The companion matrix of the monic polynomial Φn(x) = a0 + a1x+

. . .+ an−1x
n−1 + xn is the square matrix defined as

C(Φn(x)) =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

... . . . ...
...

0 0 · · · 1 −an−1

 .

TABLE 1.

Companion ma-
trix

Eigenvalues Norm Rank Trace

C(Φ3(x)) (−1)2/3, −(−1)1/3
√

(3 +
√

5)/2 2 -1
C(Φ4(x)) i,−i 1 2 0

C(Φ5(x)) (−1)4/5, −(−1)2/5, (−1)2/5,
−(−1)3/5

√
(5 +

√
21)/2 4 -1

Properties 3.1. Let 1 ≤ n ≤ 30, the properties of Companion matrix of the nth
cyclotomic polynomial are

(1) Det(C(Φn(x))) = 1.
(2) C(Φn(x) is not a positive definite matrix.
(3) 1 ≤ ρ(C(Φn(x)) ≤ 28.
(4) All the elements of the last column of the upper triangular matrix of (C(Φn(x)))

are -1 if n is prime and 3 ≤ n ≤ 29.
(5) ‖C(Φn(x))‖ = (a+ b

√
N)/2, where 3 ≤ a ≤ 29, 1 ≤ b ≤ 5, 3 ≤ N ≤ 357 and

n 6= 4, 8, 16.
(6) tr(C(Φn(x))) = 0 or 1.
(7) λ = −(−1)1/n, (−1)2/n, . . . (−1)−1/n, n is prime and n ≥ 3.
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4. INVERSE CYCLOTOMIC POLYNOMIAL

Definition 4.1. (Moree [14]) The nth inverse cyclotomic polynomial Ψn(x) are de-
fined by

Ψn(x) =
∏

1≤k<n,(k,n)>1

(x− e2iπk/n),

Ψn(x) = (xn − 1)/Φn(x), deg(Ψn) = n− ϕ(n).

Ψn(x) is the monic polynomial whose roots are the nth non-primitive roots of
unity. For a square-free n, deg(Ψn) = ω(n), where ω(n) = number of prime factors
of n. If p is prime then Ψp(x) = −1 + x, Ψpq(x) = −1− x− x2 − . . .− xp−1 + xq +

xq+1 + . . .+ xp+q−1.
The nth inverse cyclotomic polynomials are

Ψ1(x) = 1, Ψ4(x) = −1 + x2, Ψ6(x) = −1− x+ x3 + x4,
Ψ8(x) = −1 + x4, Ψ9(x) = −1 + x3, Ψ10(x) = −1− x+ x5 + x6,
Ψ12(x) = −1− x2 + x6 + x8, Ψ14(x) = −1− x+ x7 + x8,
Ψ15(x) = −1− x− x2 + x5 + x6 + x7, Ψ16(x) = −1 + x8,
Ψ18(x) = −1− x3 + x9 + x12, Ψ20(x) = −1− x2 + x10 + x12,
Ψ21(x) = −1− x− x2 + x7 + x8 + x9, Ψ22(x) = −1− x+ x11 + x12,
Ψ24(x) = −1− x4 + x12 + x16, Ψ25(x) = −1 + x5,
Ψ26(x) = −1− x+ x13 + x14, Ψ28(x) = −1− x2 + x14 + x16,
Ψ30(x) = −1 + x− x2 − x5 + x6 − x7 + x15 − x16 + x17 + x20 − x21 + x22

TABLE 2.

Companion matrix Eigenvalues Norm Rank Trace
C(Ψ4(x)) -1, 1 1 2 0
C(Ψ6(x)) (−1)2/3,−(−1)1/3,−1, 1

√
2 +
√

3 4 -1
C(Ψ8(x)) −1, i,−i, 1 1 4 0

Properties 4.1. Let 1 ≤ n ≤ 30, the properties of Companion matrix of the nth
inverse cyclotomic polynomial are

(1) Det(C(Ψn(x))) = 1 or −1.
(2) C(Ψn(x) is not a positive definite matrix.
(3) 1 ≤ ρ(C(Ψn(x)) ≤ 22
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(4)

‖C(Φn(x))‖ =


1 if n = 4, 8, 9, 16, 25, 27√

2 +
√

3 if n = 6,10,12,14,18,20,22,24,26,28√
3 + 2

√
2 if n = 15,21√

6 +
√

35 if n = 30

(5) tr(C(Ψn(x))) = 0 or 1 or −1

Theorem 4.1.

(1) Ψ2n(x) = (1− xn)Ψn(−x) if n is odd.
(2) Ψpn(x) = Ψn(xp) if p|n.
(3) Ψpn(x) = Ψn(xp)Φn(x) if p does not divide n.

5. HEIGHT AND LENGTH

Definition 5.1. Let Φn(x) =
∑ϕ(n)

k=1 an(k)xk be the nth cyclotomic polynomial. An

is called the height of Φn. Sn is called the length of Φn. Assume that n is odd and
square free. Then the order of Φn is the number ω(n) of distinct odd prime divisors of
n. Refer Bzdega [5]

Definition 5.2. Let Ψn(x) =
∑n−ϕ(n)

k=1 cn(k)xk be the nth inverse cyclotomic polyno-
mial. Cn is called the height of the inverse cyclotomic polynomial. C+ and C− are
maximum and minimum of the elements of inverse cyclotomic polynomial. If Φn is
the nth cyclotomic polynomial of order 2, then Φn is called the binary cyclotomic
polynomial.To find cyclotomic polynomials with large heights, we required bounds on
An.

Definition 5.3. If n = pq with p < q primes, then Φn is a binary cyclotomic polyno-
mial. It is denoted by Φpq. If n = pqr with 2 < p < q < r primes, then Φn is a ternary
cyclotomic polynomial. It is denoted by Φpqr. If n = pqrs with 2 < p < q < r < s

primes, then Φn is a quaternary cyclotomic polynomial. It is denoted by Φpqrs. If
n = pqrst with 2 < p < q < r < s < t primes, then Φn is a quinary cyclotomic
polynomial. It is denoted by Φpqrst.



422 D. Nagarajan and A. Rameshkumar

Definition 5.4. The polynomials of the form

Pn(x) = (1− xn)
∏

1≤i<j≤k

(1− xn/pipj)/
k∏
i=1

(1− xn/pi),

where n = p1p2 . . . pk, is called the relatives of the cyclotomic polynomial.

Definition 5.5. For n > 1, the coefficients of Φn(x) are palindromic, if an(k) =

an(ϕ(n) − k). For n > 1, the coefficients of Ψn(x) are anti - palindromic, if ck(k) =

−cn(n− ϕ(n)− k). For an integer i, ρ(i) = (−1)i is the parity.

Properties 5.1.

(1) An is not bounded above by any polynomial in n.
(2) For a cyclotomic polynomial of order 1, Ap = 1 and Sp = Qp = p.
(3) For Φpq(x), Apq = 1, Spq = Qpq = 2p∗q∗ − 1 < pq/2, where p∗ ∈ 1, . . . , q − 1

is the inverse of p modulo q and q∗ ∈ 1, . . . , p− 1 is the inverse of q modulo
p.

(4) For ternary cyclotomic polynomials, Apqr ≤ 2p/3, Spqr ≤ 4p2qr/9.
(5) n = 1181895 is the smallest n such that An > n .
(6) For quaternary cyclotomic polynomial Apqrs < p(p− 1)(pq − 1) .
(7) For quinary cyclotomic polynomial Apqrst < p7q3r .
(8) For cyclotomic polynomial of order 6, Apqrstu < p15q7r3s.
(9) The coefficients of binary cyclotomic polynomials are 1, -1, 0.

(10) Cp = 1, Cpq = 1, Cpqr ≤ p− 1. Refer Bzdega [7]
(11) A ternary cyclotomic Φpqr(x) has at most p+ 1 distinct coefficients.
(12) deg(Ψpqr) = qr + rp+ pq − p− q − r + 1.
(13) The smallest values of n such that Φn(x) has one or more coefficients±1,±2,±3, . . .

are 0, 105, 385, 1365, 1785, 2805, 3135, 6545, 6545, 10465, 10465,
10465, 10465,10465, 11305, . . .

(14) Let M(p) be the maximum of the height of the ternary cyclotomic polynomial,
where p is the smallest prime factor of n. M(3) = 2. For p > 2,M(p) =

(p+ 1)/2.
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TABLE 3.

n Φn Ψn Φn Ψn

An Sn Qn Cn n An Sn Qn Cn

n = p 2 1 2 2 1 5 1 5 5 1
3 1 3 3 1 7 1 7 7 1

n = pq 6=2.3 1 3 3 1 15=3.5 1 7 7 1
10=2.5 1 5 5 1 21=3.7 1 9 9 1
14=2.7 1 7 7 1 22=2.11 1 11 11 1

n = pqr 105=3.5.7 2 35 39 1 1001=7.11.13 2 326 372 2
385=5.7.11 3 219 309 1 2431=11.13.17 4 1822 3006 2

n = pqrs 660=3.5.7.11 2 67 87 1 5005=5.7.11.13 5 2493 4144 7

6. FLAT CYCLOTOMIC POLYNOMIAL

Definition 6.1. A cyclotomic polynomial Φn(z) is said to be flat if An = 1. We call
that Φn(z) is flatter than Φm(z) if Am < An. Flat cyclotomic polynomial introduced
in Bachman [3]. No one yet to found a flat cyclotomic polynomial of order 5.

Let p, q, r are the consecutive odd prime divisors

TABLE 4.

n Φn Ψn

A+ A− DA ϕ(n) C+ C− DC n− ϕ(n)
n = pqr 105 1 -2 3 48 1 -1 2 57

385 2 -3 5 240 1 -1 2 145
1001 1 -2 3 720 2 -2 4 281
2431 3 -4 7 1920 2 -2 4 511
4199 4 -3 7 3456 3 -3 6 743
7429 3 -3 6 6336 3 -3 6 1090

n = pqrs 660 2 -2 4 160 1 -1 2 500
5005 5 -5 10 2880 7 -7 14 2125

17017 10 -10 20 11520 10 -10 20 5497
n = pqrst 15015 23 -22 45 5760 11 -11 22 9255

Properties 6.1.

(1) All cyclotomic polynomials of order 1 and 2 are flat.
(2) The first ternary cyclotomic polynomial Φ105(z) is not flat, because

a105(7) = −2.
(3) If Φn is not flat, then n has at least three distinct odd prime factors.
(4) If p is a prime, Φp then is trivially flat. A2qr = 1.
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(5) A2qr = 1 if r = ±( mod pq). Refer Kaplan [13]
(6) If Ψn(x) is of order ≤ 2, then Ψn(x) is flat.
(7) Let r be any prime, then Ψ15r(x) and Ψ21r(x) are flat.

Theorem 6.1. The smallest n for which Ψn(x) is non-flat is n = 561.

Proof. By calculation c561(17) = −2. By property 6, Ψn(x) is flat for every odd
square-free n ≤ 560,

A = {105, 165, 195, 231, 255, 273, 285, 345, 357, 399, 435, 465, 483, 555}

and B = {385, 429, 455}, where A has all its elements divisible by 15 or 21. Ψn(x)

is flat for every n ∈ A. By direct calculation Ψ385(x), Ψ429(x), Ψ455(x) are flat. �

7. COEFFICIENT OPTIMAL

Assume

f(x) =
∞∑
k=0

ckx
k =

deg(f)∑
k=0

ckx
k,

C(f) = {ck : 0 ≤ k ≤ deg(f)} and C0(f) = {ck : k ≥ 0}. Therefore C0(f) =

C(f) ∪ {0}. Assume C(n) = C(Φn) and C0(n) = C0(Φn). Refer Gallot [10]

Definition 7.1. If C0(n) ⊆ {−1, 0, 1}, then Φn is said to be flat. If C0(n) consists of
a range of consecutive integers, then Φn is coefficient convex. If C0(n) = In ∩ Z for
some interval In in the reals, then Φn is said to be coefficient convex. If C(n) = In∩Z
for some interval In in the reals, then Φn is said to be strongly coefficient convex.

Definition 7.2. If the difference between the largest and the smallest coefficient is
exactly p, then Φpq,Φpqr,Φpqrs,Φpqrst are called coefficient optimal. Similarly we
can define for Ψn .

Properties 7.1.

(1) Ternary Φn is coefficient convex.
(2) If Φn is flat, then Φn is coefficient convex.
(3) The difference between the largest and the smallest coefficients of Φpqr is at

most p.
(4) When p is an odd prime, Φ2p is coefficient convex but not strongly coefficient

convex.



CYCLOTOMIC AND INVERSE CYCLOTOMIC POLYNOMIAL 425

(5) Suppose that n has at most 3 distinct odd prime factors, then Φn is coefficient
convex.

(6) Suppose that n has at most 3 distinct odd prime factors, then Ψn is coefficient
convex.

(7) If n has four or more distinct odd prime factors, then Ψn need not be coeffi-
cient convex.

(8) Bachman found two infinite families of coefficient optimal ternary polynomi-
als Φpqr, with C(pqr) = [−((p− 1)/2), ((p+ 1)/2)] for one family and
C(pqr) = [−((p+ 1)/2), ((p− 1)/2)] for the other family.

(9) If n is ternary, then φ2n does not have the jump one property.
(10) Let p < q < r be odd primes. If a, b ∈ C(pqr) and b− a = p, then

C(pqr) = −a, a+ 1, . . . , b− 1, b

Theorem 7.1. If the ternary polynomial Φn, is not flat, then Φn does not have the
jump one property.

Proof. Assume that ak = m and |m| > 1. Then by property and Lemma 2.1(d),

|a2n(k)− a2n(k − 1)| = |an(k)− an(k − 1)| ≥ 2 |m| − 1 > 1.

�

TABLE 5.

n Φn Ψn

C(n) C0(n)
Coefficient

optimal

Strongly
Coeffi-
cient

convex

C(Ψn) and C0(Ψn)
Coefficient

optimal

6 {−1, 1} {−1, 0, 1} Yes No {−1, 0, 1} No
10 {−1, 1} {−1, 0, 1} Yes No {−1, 0, 1} No
14 {−1, 1} {−1, 0, 1} Yes No {−1, 0, 1} No
15 {−1, 0, 1} No Yes {−1, 0, 1} No
21 {−1, 0, 1} No Yes {−1, 0, 1} No
105 {−2,−1, 0, 1} Yes Yes {−1, 0, 1} No
385 {−3,−2,−1, 0, 1, 2} Yes Yes {−1, 0, 1} No

1001 {−2,−1, 0, 1} No Yes {−2,−1, 0, 1, 2} No
2431 {−4,−3,−2,−1, 0, 1, 2, 3} No Yes {−2,−1, 0, 1, 2} No

4199 {−3,−2,−1, 0, 1, 2, 3, 4} No Yes
{−3,−2,−1,

0, 1, 2, 3} No
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8. MAXIMUM GAP

Definition 8.1. Hong [12] Let f = a0x
e1 + . . . + arx

er , where a0, . . . , ar 6= 0 and
e1 < . . . < er. Then the maximum gap of f is defined by g(f) = max1≤i≤t(ei+1 − ei),
where g(f) = 0 when t = 1. The maximum gap, g(f) which is the maximum of the
differences(gaps) between two consecutive exponents occurring in f , where f = Φn or
f = Ψn. g(Φ1) = 1, g(Ψ1) = 0.

If n is a prime, Φp(x) = 1 + x+ ...+ xp−1,Ψp(x) = −1 + x.g(Φp) = 1, g(Ψp) = 1,

g(Φpq) = p− 1, g(Ψpq) = q − (p− 1), g(Ψpqr) = 2qr − ϕ(pqr).

TABLE 6.

n g(Φn) g(Ψn) n g(Φn) g(Ψn)
n = pqr 105 3 13 4199 173 12

385 13 9 7429 265 16
1001 47 7 12673 367 18
2431 103 10 20677 585 22

n = pqrs 660 8 160 17017 6 30
5005 8 3 46189 36 -

n = pqrst 15015 3 5 85085 3 -

9. JUMP

Definition 9.1. We say that f ∈ Z[x] has the jump one property if neighbouring
coefficients differ by at most one. Refer Bzdega [6]

Definition 9.2. The number of jumps of the cyclotomic coefficients defines as the
Jn(Φn) =

∑
k |an(k)− an(k − 1)| and The number of jumps of the inverse cyclotomic

coefficients defines as the Jn(Ψn) =
∑

k |cn(k)− cn(k − 1)|. Jn(Φn) > n1/3 for any
ternary cyclotomic polynomial Φn.

Theorem 9.1. Camburu [9] For infinitely many n = pqr with pairwise disjoint odd
primes p, q and r, Jn << n(7/8)+O(1).
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TABLE 7.

n Jn(Φn) Jn(Ψn) n Jn(Φn) Jn(Ψn)
n = pq 6 4 2 14 12 2

10 8 2 15 12 2
n = pqr 105 16 40 1001 116 278

385 80 90 2431 413 445
n = pqrs 660 114 66 5005 2988 -

TABLE 8.

f
∫

(1/f(x))dx
∫∞
−∞(1/f(x))dx

Φ3 (2tan−1[(1 + 2x)/
√

3])/
√

3 3.6276
Φ4 tan−1x 3.1416

Φ5

∑
ω log(x− ω)/(4ω3 + 3ω2 + 2ω + 1), where

1 + ω + ω2 + ω3 + ω4 = 0
2.39027

Φ6 (2tan−1[(−1 + 2x)/
√

3])/
√

3 3.6272

Φ7

∑
ω log(x− ω)/(6ω5 + 5ω4 + 4ω3 + 3ω2 + 2ω + 1),
where 1 + ω + ω2 + ω3 + ω4 + ω5 + ω6 = 0

2.18245

Φ8
(−2tan−1(1−

√
2x) + 2tan−1(1 +

√
2x)− log(1−√

2x+ x2) + log(1 +
√

2x+ x2))/4
√

2
2.2214

10. CYCLOTOMIC POLYNOMIAL Φn(x)

Example 1. For p = 2, n = 3, p does not divide n then Φ6(x) = 1− x+ x2,Φ3(x
2) =

1 + x2 + x4,Φ3(x) = 1 + x+ x2, therefore Φ6(x) = Φ3(x
2)/Φ3(x). Use Lemma 2.1

The eigen values of Φ29 in the complex plane is shown in figure 1.The graph of
the values of the cyclotomic polynomials Φn(x), where 1 ≤ n ≤ 30,−1 ≤ x ≤ 1 is
shown in figure 2. The degree and number of terms of Φn(x), 1 ≤ n ≤ 1000 are
shown in figures 3 and 4.

The ternary inverse cyclotomic polynomial Ψ385(x) is −1 + x − x5 + x6 − x7 +

x8−x10 +x13−x14−x21 +x23−x25−x32 +x34−x36−x43 +x45−x47−x54 +x55−
x58 + x60 − x61 + x62 − x63 + x67 − x68 + x77 − x78 + x82 − x83 + x84 − x85 + x87 −
x90 + x91 + x98 − x100 + x102 + x109 − x111 + x113 + x120 − x122 + x124 + x131 − x132 +

x135 − x137 + x138 − x139 + x140 − x144 + x145
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FIGURE 1.

FIGURE 2.

FIGURE 3. FIGURE 4.

TABLE 9.

k The values of Φn(k), 1 ≤ n ≤ 30

k = 1
0, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1,

5, 1, 3, 1, 29, 1

k = 2
1, 3, 7, 5, 31, 3, 127, 17, 73, 11, 2047, 13, 8191, 43, 151, 257,
131071, 57, 524287, 205, 2359, 683, 8388607, 241, 1082401,

2731, 262657, 3277, 536870911, 331

k = 3

2, 4, 13, 10, 121, 7, 1093, 82, 757, 61, 88573, 73, 797161, 547,
4561, 6562, 4570081, 703, 581130733, 5905, 368089, 44287,

47071589413, 6481, 501192601, 398581, 387440173, 478297,
34315188682441, 8401
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11. SELF -RECIPROCAL POLYNOMIAL

Definition 11.1. A polynomial f of degree d is said to be self-reciprocal if f(x) =

xdf(1/x). If f(x) = −xdf(1/x), then is said to be anti-self reciprocal.

By lemma 2.1, Φn is self reciprocal for n ≥ 2. Φ1 is anti-self-reciprocal. Ψn

is anti- self reciprocal for n ≥ 2. Ψ1 is self-reciprocal. Let a(n) be the number
of polynomials f of degree n with p(0) non zero. Let b(n) be the number of such
polynomials which are additionally self-reciprocal. Let c(n) be the number of those
which are self-reciprocal and where p(−1) is the square of an integer.

TABLE 10.

n 1 2 3 4 5 6 7 8 9 10 11 12
a(n) 2 6 10 24 38 78 118 224 330 584 838 1420
b(n) 1 5 5 19 19 59 59 165 165 419 419 1001
c(n) 1 3 5 12 19 34 59 99 165 244 419 598

Theorem 11.1. Let f ∈ R[x] be a self-reciprocal polynomial. Then for |z| = 1,
f(z) = ± |f(z)| zdegf/2, Let f ∈ R[x] be an anti- self-reciprocal polynomial, then for
|z| = 1, f(z) = ±i |f(z)| zdegf/2 .

Proof. Let d = degf. If f is self reciprocal and |z| = 1, f(z) = zdf(1/z) = zdf(z),
⇒ f(z)f(z) = zdf(z)f(z)⇒ f(z)2 = zd |f(z)|2 ⇒ f(z) = ± |f(z)| zdegf/2.

If f is self reciprocal and |z| = 1, f(z) = −zdf(1/z) = −zdf(z) ⇒ f(z)f(z) =

−zdf(z)f(z)⇒ f(z)2 = −zd |f(z)|2 ⇒ f(z) = ±i |f(z)| zdegf/2 �

Proposition 11.1. Let f be a polynomial of degree d ≥ 1. Suppose that f is self-
reciprocal.

(1) f ′(1) = df(1)/2.
(2) If 2 does not divide d, then f(−1) = 0. If 2 divides d, then f ′(−1) =

−f(−1)d/2.

Suppose that is anti-self-reciprocal

(1) f(1) = 0.
(2) If 2 does not divide d, then f ′(−1) = −f(−1)d/2. If 2 divides d, then f(−1) =

0.

Proof. Suppose that f is self reciprocal.
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(1) f(z) = zdf(1/z)⇒ f ′(z) = −zd−2f ′(1/z) + f(z)dzd−1 ⇒ f ′(1) = df(1)/2.
(2) If d = 2a, then d−1 is an odd, f ′(−1) = −(−1)df ′(−1)+f(−1)d(−1)d−1 ⇒

f ′(−1) = −df(−1)/2. If d 6= 2a, then d−1 is even, f ′(−1) = f ′(−1)+f(−1)d

⇒ f(−1) = 0.

Suppose that f is anti-self reciprocal.

(1) f(z) = −zdf(1/z)⇒ f ′(z) = −zd−2f ′(1/z)− f(z)dzd−1 ⇒ f(1) = 0.
(2) If d = 2a is even, then d− 1 (odd), f ′(−1) = (−1)df ′(−1)− f(−1)d(−1)d−1

⇒ f(−1) = 0. If d 6= 2a is odd, then d − 1 is even, f ′(−1) = −f ′(−1) −
f(−1)d⇒ f ′(−1) = −df(−1)/2.

�

Definition 11.2. A integral self reciprocal polynomial p(t) = a0 + a1x+ a2x
2 + . . .+

an−1x
n−1 + anx

n is of Littlewood type if every coefficient non-zero pi has modulus 1.
A polynomial p(t) of Littlewood type with all pi 6= 0, for i = 0, 1, 2, . . . , n is said to be
Littlewood.

12. CYCLOTOMIC FIELD

Definition 12.1. A field is said to be cyclotomic if it is of the form Q[x]/(Φm(x))

for some m ≥ 1. Cyclotomic field is isomorphic to Q(ζm). [Q(ζm) : Q] = ϕ(m)

. The ring of algebraic integers of cyclotomic field is Z[ζm] = {a0 + a1ζm + · · · +
am−1ζ

m−1
m , a0, a1, . . . am−1 ∈ Z}. 1, ζm, . . . , ζ

ϕ(m)−1
m are a basis for Q(ζm) over Q.

Definition 12.2. A prime p is called regular if the class number of Z[ζm] is not
divisible by p otherwise p is irregular. The irregular primes are 37, 59, 67, 101, 103,
etc.

Properties 12.1.

(1) The elements of Z[ζm] are cyclotomic integers.
(2) The elements of Q[ζm] are cyclotomic numbers.
(3) The unit in the cyclotomic field is cyclotomic unit.
(4) When m = 3, the cyclotomic field is a quadratic field.
(5) Every abelian extension of Q is contained in a cyclotomic field.
(6) The discriminant of Z[ζm] is (−1)(p−1)/2pp−2.
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13. APPLICATIONS

(1) A Kronecker polynomial is a monic polynomial with integer coefficients
having all of its roots on or inside the unit disc. Kronecker relates the his
polynomials with cyclotomic polynomial.

(2) Cyclotomic polynomial are used to prove the Gauss-Wanzel theorem, Dirich-
let theorem and Wedderburn theorem.

(3) The applications of self-reciprocal polynomial in coding theory and reduc-
tion theory. It is the study of the relationship between the self reciprocal
polynomials of the form Jn,H(x) and the subgroup H.

(4) The application of cyclotomic polynomials that we will explore is when a
regular n-gon is constructible with a straightedge and compass.

(5) The application to the special case Dirichlet’s theorem on primes in arith-
metic progression.

14. CONCLUSION

Hence conclude that, we have found the companion matrix, flat, jump, gap of
the cyclotomic and inverse cyclotomic polynomial for the binary, ternary, quater-
nary and quinary polynomial. Some properties for these polynomials are found.
Few applications of cyclotomic polynomial are determined and to develop the fur-
ther research on finding flat, jump, gap for the modified and unitary cyclotomic
polynomial.
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