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ESTIMATION OF TAIL-RELATED RISK PREMIUMS FOR HEAVY TAILED
LOSSES

Helal Nacera', Mami Tawfiq Fawzi, and Ouadjed Hakim

ABSTRACT. This paper addresses the problem of estimating the distortion risk pre-
miums for heavy-tailed losses by different methods, The finite sample performance
of our estimators is assessed on a simulation study and we showcase our tech-
niques on two sets of real data.

1. INTRODUCTION

Insurance is a fundamental financial product that is particularly useful to hedge
against risk of losses. The insured transfers the risk of losses to the insurer, usually
insurance companies, by paying a certain amount of premium. After pooling risks
in a large scale, the insurer reduces the average risk over a large number of the
insured by diversification or other hedge methods. One possible option for the
insurer (cedant) is to buy reinsurance to further transfer their risk to the reinsurer.
Consequently both of the reinsurer and the insurer allocate a portion of the risk of
losses as well as the premiums. With no doubt, the determination of the amount
of premium is one of most crucial topics for both insurers and reinsurers. If the

Ycorresponding author

2020 Mathematics Subject Classification. 60G70, 62G32.
Key words and phrases. Extreme value theory, risk premiums, heavy tailed distributions.

Submitted: 03/03/2022; Accepted:18/04/2022; Published:13/05/2022.
433



434 H. Nacera, M. Tawfiq Fawzi, and O. Hakim

premium is too high, the insurance companies lose their market. If the amount
of premium is too small, the insurers or reinsurers expose themselves to risk of
significant financial loss. Greater variability and a heavier right-tail necessitate
a higher price. The strategy for obtaining the price gives rise to a risk measure,
which is defined as a mapping from the set of all loss random variables to the
non-negative real numbers.

The use of risk measures in actuarial science was in the development of the
principle of calculating premiums. According to [1]] a risk measure R(.) is said to
be coherent when it satisfies the following four coherence properties:

e (P1)-Positive homogeneity:
R(¢CX) =(R(X), ¢ >0.

This property means that risk measure should be independent of the mon-
etary units in which the risk is measured.
e (P2)-Translation invariance:

R(X +6) =R(X)+6, 6 €R.

This property means the risk measure of combining a random loss and a
fixed loss should be the risk measure of the random loss plus the fixed loss.
The reserve to cover a fixed loss should be just the fixed loss.

e (P3)-Sub-additivity: For any random loss variables X, Y:

RX+Y)<RX)+R(Y).

This property means that diversification benefits exist if different risks are
combined.
e (P4)-Monotony: For any random loss variables X, Y, with X <Y in prob-

ability

R(X) <R(Y).
This property means that higher losses essentially leads to a higher level
of risk.

In order to quantify the risk premium properly, a variety of premium principles
is developed. The VaR,;_, is the traditional premium principle widely used by
financial institutions which is the quantile risk measure at the confidence level
0 < p < 1, is then simply

VaR, ,=Q(1 —p)=F (1 -p).
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It is not coherent in the sense of [1].
Another important risk measure is the CTE which is coherent and given by

CTE,_, = E(X|X > VaR,_,).

In this paper, we focus on a recent coherent principle proposed by Li Zhu and
Haijun Li in [11] based on proportional hazards transform (see [23]], [4], [21],
[9], [16]). We call the premium computed according to this principle as propor-
tional hazards premium, or in short PH-premium, as p — 0 given by

/VZORlp(l — F(z))’dz

(1.1) M,_, = VaRi_, +

pp

The motivation for using 7 is similar to that discussed in [23]: to obtain a risk-
loaded premium.

The premium calculation principle given in belongs to the family of dis-
tortion risk measure which has been studied by many authors such that [22]
and [6], [13]], [14], [15].

We assume that the tail 1 — F'(z) has regular variation function near infinity with
index —q, that is, for all x > 0,

.2 L

where o > 1 is the tail index. It follows that the survival function can be expressed
as

(1.3) S(x)=1—-F(x) =2"L(x), x >0,

where £(x) is a slowly varying function at infinity:

(1.4) 3$ﬁ$:L

The assessment of risk for heavy-tailed distributions is a crucial question in var-
ious fields of application in finance and insurance. Many distributions are heavy
tailed, including: Cauchy, Fréchet, LogNormal, Pareto.

Several estimators of « have been proposed. One of the famous estimators was
introduced by [10] and defined by

k -1
1
(15) aH = (% Z log Xn—i,n - log Xn—k+1,n> )
=1
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where X; ,, < X5, < ... <X,, are the order statistics and k£ = k,, is an interme-
diate sequence such that

(1.6) k— oo k/n—0, n— 0.

In [25] authors proposed the following semi-parametric estimator of a high
quantile

—H ~ n —1/aH
(1.7) VaR,_, = Q"(1—p) = X, 1, (f) .

2. PEAK OVER THRESHOLD (POT) METHOD

The method of excess beyond a threshold (or Peak Over Threshold, POT) is
based on the behavior of the values observed above a given threshold. In other
words, it consists in observing not the maximum or the greatest values but all the
values of the realizations which exceed a certain high threshold. The basic idea of
this approach is to choose a sufficiently high threshold and to study the excesses
beyond this threshold. This method initially developed by [[18] and extensively
studied by various authors such as [20]], [5], [[19]. For this method we will discuss
about the parametric approach based on the generalized Pareto distribution (GPD)
which is an important distribution in extreme value modeling and given by

1/
1—(1+%’”) if €40,

1 —exp (—;) if £€=0,

Geolz) =

where £ = l (called the extreme value index) and
8%

x>0 if £>0,
O§x<—% if ¢€<0.
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Let the right-end-point zp = sup{z € R, F(z) < 1}. For any high threshold
u < x define the excess distribution function

F,z) = P X—u<z|X>u,0<z<zp—u

2.1
(2.1) F(u+x)— F(u)
1— F(u)
In [2] authors showed that the distribution F, can be approximated by the
generalized Pareto distribution G¢,. The convergence can be described by the
following expression

(2.2) lim  sup |Fu(2) — Geo(z)| =0.

UDUF 0<zp<zp—u
The approximation motivates us to take an estimator for §u(96) as follow
(2.3) Su(z) = Gg5(z), x> 0.
For = > u, the relation in (2.1)) can also be written as
2.4) S(z) = S(u)Sy(z —u).

Using (2.3) and (2.4), we can get the estimator of the tail for x > u, as

-1
(2.5) §(x)—%(1+§x “) ,

o

where N = Z Lix,5u)-

=1
We invert the formula (2.5) to obtain the estimator of high quantile of F' as

——=POT led np —g_
(2.6) VaRy, —u+ 3 ((W) 1> .

The parameters of the GPD can be estimated in various ways. Maximum likeli-
hood is the most popular.

3. ESTIMATION OF II;_,
From [12] we have the empirical estimator given by

~ 1 - n—i4+1\" n—i\’
emp_ = oo = _ X
G- e =5 2 K n ) ( n > ]Xl’n

i=[n(1-p)]
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and the semi parametric estimator using Hill estimator based on extreme theory
approach given by
allp —=H atlp np\ —1/a"
aflp—1 Callp—1 "_k’n<?> '
The parameter p is called also the risk-aversion index. It controls the amount of
risk loading in the II.

For p = 1 we find the estimator of CTE as

_——H aH np —1/&H
3.3 TE, =_-% x .. (-) .
(3-3) CTE, afl —1 Pk

(3.2) =

An estimator of II;_, using the POT method is given by

P ———POT
/ sPdVaR (1 —s)

POT _ _Jo
=, =VaR,_, >
p
After integration we find the following estimator
——POT
[iPoT _ pValt,_,  7—¢&u
1-p — -~

If we fix the number of data in the tail to be N = k. This effectively gives us a
random threshold as u = X,,_ ,,, then for p < k/n, we have

3.4) fror _ Pty | 7= EXn
. o — L

4. SIMULATION STUDY

For selecting the optimal sample fraction k,, for the Hill estimator, we use an
implementation of the heuristic algorithm proposed in Caeiro and Gomes [3].
Consider now the stationary solution of the MA(1) equation

(4.1) Xt = )\Zt,1 + Zt, 1 S t S n,
where 0 < A < 1 and {Z,} i.i.d. innovations such that
Fr(z) = (1 =21y, 1 <a <2

To illustrate the performance of our estimator with p = 0.05, we fix the distortion
parameter p = 0.96 and p = 0.98, then we generate 100 replications of the time
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series (X1, ..., X,) for different sample sizes (18000, 19000), where X, is an MA(1)
process satisfying (4.1]), where A = 0.5, and we use two tail indices & = 1.7 and
« = 1.8. The simulation results are presented in the Table |1, where (abias) is the
absolute bias and (RMSE) is the root mean squared error. We remark that:

(1) The II decreases when p increases, because

oIl _
2 P—_
(4.2) T

(8%
VaR;_, < 0.
(ap—1)2° 7"
(2) The abias and RMSE of our estimator decrease when the sample size in-
creases, which indicates that the estimator is consistent.
(3) For the same p and different values of « the DTVaR increase when «
decrease, this is caused by the tail of the distribution that becomes heavier.

TABLE 1. Performance of I1; g5

Q 1.7 1.8

p 0.96 0.98 0.96 0.98
n = 18000

Mogs | 17.61432 | 17.06332 | 14.42502 | 14.03167

e, | 17.33421 | 17.0026 14.6725 | 14.41983

abias | 0.2801044 | 0.0607203 | 0.2474728 | 0.3881551

RMSE | 0.718439 | 0.6770245 |0.5417785 | 0.6266744
n = 19000

oo | 17.61432 | 17.06332 | 14.42502 | 14.03167

M, | 17.40061 | 17.05756 | 14.5617 | 14.3415

abias | 0.2137127 | 0.005764552 | 0.1366807 | 0.3098274

RMSE | 0.6927158 | 0.6717101 | 0.5283651 | 0.5083966
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5. APPLICATION FOR AUTOMOBILE CLAIMS DATA

Let X,=" Secura Belgian Re dataset divided by 10° " contains 371 automobile
claims from 1988 till 2001 gathered from several European insurance companies,
which are at least as large as 1,200,000 Euro. The data are available in the package
"Relns" of the statistical software R. The time plot of all the claim values is given
in the left of Figure [6]
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FIGURE 1. Time plot for the Secura data.

The distribution of the claims are displayed in left of the Figure|8] it is clear that
this distribution is highly skewed to the right even. The normal Q-Q plot in the
right of the Figure (8| of the claims shows the divergence from a normal distribution
at the right tail. On the other hand, the p—wvalue of the Shapiro test is < 2.2x 10716,
thus confirming the rejection of the assumption that the claims would normally be
distributed.
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FIGURE 2. Distribution of the claims (left) and normal Q-Q plot (right).

The Hill plot in Figure |5|shows that the data are heavy tailed. We see that there
is a region of stability between £ = 70 and k& = 80.

Hill
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FIGURE 3. Hill plot of the data.
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Using the algorithm based on sample path stability proposed in [3], we find an
optimal value k,,; = 74, then we have a/*P! = 3.57551.

To evaluate how well the estimated tail index fit the data, we use equation ((1.2))
to estimate the underlying distribution function F. Let a/*?! be the estimator of
the tail index o and v > 0 be a high threshold. An estimate of F'(z), can be defined
as

T _aH,k:opt

Fo@)=1—(1— Fy(u) (E) x>

Now we choose k = 74, u = X,,_x, = 2.736901, we can estimate F'(x) by

206 T —3.57551
Fu()=1—(1-22) (=2 x> 2.736901.
(@) < 371> (2.736901) > 273690

We plot the two distribution functions F,,(x): the empirical distribution for Se-
cura data and the estimated distribution F},; (x) for x > 2.7369018 in Figure |7, and
conclude that F;,; fit the empirical distribution F,, equally well.

umive dsiibuions
LR L 005 1,66
L

G

0485
L

€ A

FIGURE 4. Plot F,,; and F,,.

" In Table 1-2 we list some estimations of high II. It can be seen that the esti-
mated I using the POT method is closer to the empirical II than estimated using
the Hill estimator, because the GPD law depends on two parameters (£ and o
(scale parameter)) which provide greater estimation flexibility.
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p 0.8 0.9
5o | 4.920752 | 4.77631
1%, | 5.104383 | 4.816709
7S | 5.037848 | 4.7745

TABLE 2. Estimation of IIj o for Secura data.

P 0.8 0.9
fewe | 5.816162 | 5.693705
M, |6.196342 | 5.847128
797 [ 6.072267 | 5.75874

TABLE 3. Estimation of Il ¢5; for Secura data.

6. APPLICATION FOR NORWEGIAN FIRE INSURANCE DATA

443

Let X="Norwegian fire insurance data" concerning a Norwegian fire insurance
portfolio from 1972 to 1992, with n = 9181 occurrence of the claims in thousands
of Norwegian Kroner. The data are available in the package "Relns" of the statis-
tical software R. The time plot of all the claim values is given in the left of Figure
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FIGURE 5. Time plot for the Norwegian fire insurance data (left)

and the ACF (right).



444 H. Nacera, M. Tawfiq Fawzi, and O. Hakim

From the autocorrelation function (ACF) in the right of Figure |5, it seems rea-
sonable to assume that these data are correlated. In addition the p-value of the
Box-Pierce test is < 2.2 x 1076, showing that these data are correlated. To verify
the stationarity of the data we perform a Phillips-Perron test. We get a p — value
of 0.01, so the data are stationary.

The distribution of the claims are displayed in left of the Figure [f] it is clear
that this distribution is highly skewed to the right even on a log scale. The normal
Q-Q plot in the right of the Figure [6] of the claims shows the divergence from
a normal distribution at the right tail. On the other hand, the p — value of the
Kolmogorov-Smirnov test statistic is < 2.2 x 107!, thus confirming the rejection
of the assumption that the claims would normally be distributed.
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FIGURE 6. Distribution of the claims (left) and normal Q-Q plot (right).

The Hill plot in Figure |7| shows that the data are heavy tailed. For selecting
the optimal sample fraction k,,; and estimate the tail index o we use the heuristic
algorithm proposed in Caeiro and Gomes [3]. Then we find k,,, = 2453, & =
1.308801. o

Using the two estimators (1.7) and (3.3) for p = 0.05, then we obtain VaR, o5 =

—H
6100.69 and CTE, o = 25856.75.

fitl,, — CTE,,
0% 0% We remark
CTE, s

that this percentage increases as the distortion index decreases.

In Figure |8 we plot the percentage of risk loading
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FIGURE 7. Hill plot of the data.
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FIGURE 8. Percentage of risk loading.
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Let X denote the total claim incurred for one insurance portfolio, having a regu-
larly varying loss distribution with tail index «. The pure risk premium is the mean
E(X) of loss X, and the risk loading depends on the excess of a risk measurement
over the mean loss. If an insurance company receives the excess II,_, — E(X)
from investors and invests the capital at the risk-free rate r,, the company needs
to pay the investors at a higher rate r > r(, because their investment is exposed
to risk. Thus Li Zhu and Haijun Li in [[11] proposed that the premium paid by the
policyholder in this simple pricing model is the sum of the pure risk premium and
Ay = EX)+(r—ro)(Ilhp — E(X))

= (I=r+7)EX)+ (r—roll
Since p — 0 we estimate A;_, by

the risk loading:

-~ —_—

A= (1—71+4710)E(X) + (r — ro)II

1-p>

_— 1 <& .
where E(X) = — E X; for @ > 2, and for 1 < o < 2 we use the Peng estima-
n
=1

tor(see [17])

i Xnn—k kX k
E(X) = 1 — F,(z))dz + = Znnzhk
B A A

where F,(z) = ! E I(X; < x).
n
i=1

7. CONCLUSION

The risk measure II which generalized the CTE tells us much more about the
tail of the distribution than does VaR alone and it is a coherent risk measure. In
this paper, we have presented and estimated the new risk measure II by different
approaches.

The POT method produces more efficient estimators and this approach has
shown its importance and success in a number of statistical analysis problems
relating to finance, insurance, hydrology, geographical phenomena, and other do-
mains, but choosing a suitable threshold value « in the POT method is the main
problem. The threshold must be chosen so as to make a trade-off, between bias
and variance.
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