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ABSTRACT. Solar energy as free and abundant energy is considered among the renewable energy

that can replace disappearing fossil fuels. Many solar power systems can be used to capture this

energy, but the majority does not have the ability to store this energy in different weather and time

conditions. Therefore, salinity gradient solar ponds used in the present work can overcome this issue

by simultaneously capturing and storing solar energy. A solar pond is being built at Annaba. In this

present work we consider two identical solar ponds subjected to the same solar radiations during a

period of 28 days, and exposed to the same climatic conditions, initial and at the limits. in the first

pond, nanoparticles of conductive metal, namely copper, are injected with a concentration of 0.09%,

while the second pond does not contain any nanoparticles. a comparative study was carried out on

the temperature profile in the two solar ponds mentioned above to see the influence of nanoparticles

on the thermal performance of the solar pond. The mathematical model adopted in this work is based

on the equation of heat conduction in two dimensions with an external source of energy to the system.

The method of finite differences with ADI scheme was used to determine the temperature distribution

in two different directions according to the horizontal axis ox and to the vertical axis OZ representing

the depth. An average temperature and insolation values for the last ten years were obtained using

the data provided by Annaba saline station. Finally, a comprehensive study was carried out in order to

highlight the convergence, consistency and stability properties of the discrete model representing the

solar pond.
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1. INTRODUCATION

The solar pond is a device that consists of capturing and storing solar energy
using a salinity gradient. Its construction is simple and it is not expensive in
economic terms, it requires no battery to store energy and it is well suited to rural
and sunny areas. it does not represent any source of fossil fuel pollution with
their associated pollution problems has led many scientists to conduct studies and
investigations on this subject. it does not represent any source of pollution which
led many researchers to conduct studies and investigations on this subject. The
replacement of non-renewable fossil energy is a major challenge for humanity in
the next years to come, due to the release of CO2 which causes global warming. As
a result, it is now essential to replace this energy with other renewable and clean
sources. In this context, solar energy by its abundance (average of 800W/m2) and
as free of cost energy is potentially interesting. Several works have shown that
it is possible to exploit this light energy by transforming it into different forms:
electrical (photovoltaic), thermal (generation of vapors and others), chemical, etc.
However, despite this abundance and availability, solar energy has not been able
to replace fossil energy because, mainly, the high cost of storage. The salinity
gradient solar pond can be a good alternative for the collection and especially the
storage for a relatively long period of solar energy in thermal form. This pond
is the cheapest mean energy storage known to date. The idea of the solar pond
appears in 1902 when Kalecsinsky was observed in Transylvania than in natural
saline lakes, the temperature at a depth of 1, 32m reached 70◦C in summer and
26◦C in winter. Since then, the idea of artificially create salinity gradient in ponds
for the collection and storage of solar energy. The salinity gradient solar pond
constitutes of three superposed zones.

- An upper convective zone of a few centimeters thickness UCZ (Upper Con-
vective Zone). This zone is made up of very low salt water.

- A bottom convective zone LCZ (: Lower convective zone) of greater thick-
ness is generally saturated with salt, and therefore the densest.

- These last two areas are separated by a third zone called a non-convective
zone NCZ (for: Non Convective Zone) or salinity gradient zone. This zone
is itself made up of several sublayer of different salinities, which prevents
any natural convection due to increasing density with depth.
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Firstly, when solar radiation reaches the bottom of the pond it heats the lower con-
vective layer of the pond, the density of the latter must therefore decrease due to
thermal expansion, on the other hand, because of its very high salinity, its density
remains however large compared to higher layers, likewise, the salinity gradient
which exists in the non-convective zone is favorable to avoid any convection cur-
rent natural. Several works have studied the different aspects of this means of
storage as well as the use of solar energy. From most interesting aspects, we can
mention here the importance of the NCZ and its temperature gradient. Different
salts have been used for the purpose improve the performance of the solar pond.
Since, the idea to artificially create salinity gradient solar ponds has begun. The
depletion of Several works have shown that it is possible to use the solar energy by
transforming it into different forms: electrical, thermal, chemical, etc. .. Despite
this abundance and availability, solar energy could not replace traditional energy
sources due to the high cost of storage [2].

FIGURE 1. Scheme showing the three zones of a solar pond

Salinity gradient solar ponds may be the best mean to capture and store solar
energy especially for a relatively long period in thermal form and at lower cost.
A solar pond consists of three zones as illustrated in1. The bottom of this zone
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is painted black to have a maximum absorption coefficient. It is from this zone
that the heat is extracted through hot water and sent towards the exchangers
for various applications such as air conditioning, power generation, desalination,
etc. . . In most studies solar ponds modeling is carried out using one-dimensional
mathematical model, in other words, the heat diffusion is assumed only in the
vertical direction while keeping the temperature along a layer constant. But, in
our case, both the diffusion of horizontal and vertical heat was taken into account
and the results of numerical simulation have shown that the difference of the tem-
perature within the same layer of NCZ is significant and can reach 5◦C during one
season. This result shows the important role of two-dimensional modeling in solv-
ing the problem numerically. It should be noted that the experimental solar pond
located at the coordinates 36◦54′15′′ North and 7◦45′07” east, with a depth of 2m,
dug into the ground. The walls are covered with a PVC liner in order to minimize
heat loss. Thermocouples Chrome-Alumel (K type) are designed and calibrated in
the laboratory and spaced in the wall of the pond with an interval of 10cm. To our
knowledge, in previous studies, no attempts are made to solve numerically the
thermal performance of salt-gradient solar ponds by using the ADI (Alternating
Directions Implicit) method. SuraTundee et al. [1], Murthy et al. [3], Saxena et
al. [4], and Jaeferzadeh et al. [5] studied the one-dimensional governing equation
of heat conduction with solar absorption inside the solar pond. The prediction of
the evolution of the temperature and salinity profiles was carried out in transient
behavior. Few works, Ben Mansour et al. [6], Mazidi et al. [7], Boudiaf et al. [8]
and Refaee et al. [9], have studied numerically the thermal performance, i.e, the
distribution of temperature and salinity using two-dimensional transient model
taking into account the influence of external factors. A Finite-Volume method has
been used therein to solve a two-dimensional heat and mass transfer model. They
used computer software to compute the temperature profiles. We also quote the
recent work of Berkani et al. using the Crank Nicholson scheme [10]. The essen-
tial objective of this study is the numerical simulation of two solar ponds of the
same dimensions and exposed to the same meteorological and weather conditions.
In this direction, the comparison between these two ponds must concern the tem-
perature profile in order to ultimately show the role that the nanoparticles of the
conductive metal such as copper can play in the rise of temperature at the level of
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the storage zone. For this purpose, two solar ponds were studied numerically the
first one is ordinary solar pond without the the presence of Cu (copper) nanopar-
ticles, however the second one contains 28.5kg (concetration of 0, 09%) is used to
study the inflence of the great thermal conductivity (and therefore the fluid ther-
mal conductivity) of nanoparticles on the energy performance of this latter pond.
The essential contribution of this work includes the following points:

- The use for the first time of meteorological data from the city of Annaba
(Algeria).

- Demonstration of the influencing role that copper nanoparticles can play
on the temperature profile.

- The ADI method used in the numerical resolution of the mathematical
problem finds its first application in a real solar pond.

It is important to mention that the statistical data used concerning the ambient
temperatures and the intensity of the local solar radiation were provided by the
meteorological station of the city of Annaba for the last 10 years. And finally the
convergence, the consistency, and the stability were taken into account to validate
the method of numerical resolution.

2. DESCRIPTION AND MATHEMATICAL FORMULATION OF THE
PROBLEM

In this study, we use a two-dimensional mathematical model with an initial con-
dition and four boundary conditions. In addition, the discrete model uses an im-
plicit scheme similar to the prediction-correction type called ADI (Alternating Di-
rection Implicit) that falls into the category of fractional step methods or splitting
methods which have important qualitative properties such as stability, accuracy
and convergence. The time and spatial discretization steps are taken successively
as the 1

4
, 1

8
and 1

16
of the total duration 28 days, the horizontal length (6.72 meters

along OX of the basin) and the thickness (vertical) of the NCZ ( 1 meter along the
depth OZ) respectively. Thus:

∆x = ∆z = ∆t =
1

4
,∆x = ∆z = ∆t =

1

8
,∆x = ∆z = ∆t =

1

16
.
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We consider the following in salinities mass percentages:

S = 5.5%;S = 11%;S = 16.5%;S = 22%.

An increasingly fine mesh is considered taking into account the change in physical
properties and thermo-physics. To our knowledge, it is for the first time that the
convergence, stability and consistency properties have been used in the study of
two-dimensional mathematical modeling of heat transfer phenomena in the salt
gradient solar pond using climate data for Annaba city (Algeria). The assumptions
of this model are:

- The heat loss through the vertical walls along the OY axis are neglected.
- The thermo-physical properties vary from one layer to another.
- The total attenuation of solar radiation in the area is described by Giestas

et al. model [11].

By applying the energy balance to a control volume ∆x∆y∆z from the non con-
vective zone fig 2 we get Accumulated energy= output thermal flux- input thermal
flux + generated energy

(qt+∆t − qt)× x.∆y.∆z = (Qx −Q(x+ ∆x)).∆y.∆z.∆t

+ (Qz −Q(z + ∆z)).∆x.∆y.∆t+ (Ez − E(z + ∆z)).∆x.∆y.∆t(2.1)

FIGURE 2. heat balance over square control volume
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Dividing equation 2.5 by ∆t.∆x.∆y.∆z 6= 0 we get:

(2.2)
(qt+∆t − qt)

∆t
=

(Qx −Qx+∆x)

∆x
+

(Qz −Q(z + ∆z))

∆z
+
Ez − Ez+∆z)

∆z
.

By application of 1st order Taylor series the equation 2.2 becomes:[(
qt + ∂qt

∂t
− qt

)
∆t

]
=

[
(Qx −

(
Qx + ∂Qx

∂x

)
∆x)

∆x

]

+

[
(Qz −

(
Qz + ∂Qz

∂z

)
∆z)

∆z

]

+

[
(Ez −

(
Ez + ∂Ez

∂z

)
∆z)

∆z

]
.(2.3)

Taking the limits of each terms when ∆x,∆y,∆z,∆t tends toward 0 equation 2.3
become:

(2.4)
∂qt
∂t

= −∂Qx

∂x
− ∂Qz

∂z
− dEz

dz
,

where:
∂qt
∂t

= ρCp
∂T

∂t
; Qx = −kx

∂T

∂x
; Qz = −kz

∂T

∂z
.

By replacing q,Qx, Qy, Qz by their expression 2.4 in equation we get:

ρCp
∂T

∂t
=

∂

∂x

(
kx
∂T

∂x

)
+

∂

∂z

(
kz
∂T

∂z

)
− dE

dz
.

As thermal conductivity k is the same in all direction kx = kz = k, the last
equation becomes:

(2.5)
∂T

∂t
=

k

ρCp

(
∂2T

∂X2
+
∂2T

∂Z2

)
− 1

ρCp

dE

dZ
.

The thermo-physical properties such as thermal conductivity k, the density ρ,
specific heat CP and solar radiation E change from one layer to another according
to the following formulae:

- The thermal conductivity k is given by the following formula [5]

(2.6) k = 0, 553− 0, 0000813S + 0, 0008(T − 20).

- The density ρ is given by Perry [12]

(2.7) ρ = 998− 0.4(T − 293.15) + 650.s.
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- The absorption of solar radiation by the pond E is given by [11]

(2.8) E = Ese
−µz.

Here, it is assumed that the water is slightly turbid corresponding to an extinction
coefficient µ = 0.5m−1 for a depth Z. The specific heat CP expressed as a function
of temperature is given by the following correlation [12]

(2.9) Cp = 0.0048s2 + 4.396s+ 4180.

2.1. Initial and boundary conditions. The resolution of this equation requires
the determination of initial and boundary conditions. In our case we have a single
initial condition and four boundary conditions. Initial condition:

(2.10) At t = 0, T (x, z, 0) = Ta,

where Ta is the constant ambient temperature.
Boundary conditions:

(1)

(2.11) At z = z1, T (x, z1, t) = Ta.

(2) At the interface z = z1 + z2, the temperature is calculated on the basis of
energy balance applied to the LCZ:

(2.12) z3ρCp
∂T

∂t
= −k∂T

∂z
+ ELCZ −Qout,

where ELCZ represents the insolation entering the storage zone LCZ and
Qout represents the heat loss from the storage zone LCZ.

(3) At x = 0, the temperature is calculated from the following equation:

(2.13) − k∂T
∂x
|x=0 = h(T − Ta).

(4) At x = L, the temperature is calculated from the following equation:

(2.14) − k∂T
∂x
|x=L = h(T − Ta),

where h is the convection heat transfer coefficient between the wall of the
pond and the air. This is assessed to be approximately 20W/m2.◦C [11]. k
represents the thermal conductivity of water.
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3. DISCRETISATION OF THE PROBLEM

The ADI method is a 2 steps implicit scheme of prediction-correction type where,
on one hand, the backward implicit Euler scheme is used for prediction on a dis-
cretization temporal step of ∆t

2
in the horizontal direction Ox, and, on the other

hand, the forward Euler implicit scheme is used for correction along the depth Z.
Dividing the horizontal spatial domain [0, L] = [0, 6.72m] into M sections, hav-

ing each a length of ∆x = L
M

= 6.72
M

and the vertical spatial domain [0, Z2] = [0, 1]

into N sections, having each a length of ∆z = Z2

N
= 1m

N
.

The time domain [0, T ] = [0, 28days] is divided into P segments, each of duration

∆t = T
p

=
28days

p
.

Letting x = i∆x for i = 1, 2, . . . ,M, Z = j∆Z for j = 1, 2, . . . , N and t = n∆t for
n = 1, 2, . . . , P Equation (1) can be rewritten as follows:

step 1:

(3.1)
T
n+ 1

2
i,j − T ni,j

∆t
2

=
k

ρCp

[
δ2
x

∆x2
T
n+ 1

2
i,j +

δz2

∆Z2
T ni,j

]
− 1

ρCp

[
En
i,j+1 − En

i,j−1

2∆Z

]
.

step2:

(3.2)
T n+1
i,j − T

n+ 1
2

i,j

∆t
2

=
k

ρCp

[
δ2
x

∆x2
T
n+ 1

2
i,j +

δz2

∆Z2
)T n+1

i,j

]
− 1

ρCp

En+ 1
2

i,j+1

−
E
n+ 1

2
i,j−12∆Z/


with the notation:

(3.3) δ2
xT

n
i,j = T ni−1,j − 2T ni,j + T ni+1,j

(3.4) δ2
zT

n
i,j = T ni,j−1 − 2T ni,j + T ni,j+1

δ2
xandδ2

z are the central difference operators in x and z direction respectively
Putting rx = k∆t

(ρCp∆x2)
and rz = k∆t

(ρCp∆z2)
, we get:

(3.5) T
n+ 1

2
i,j = T ni,j +

rz
2
δ2
zT

n
i,j +

rx
2
δ2
xT

n+ 1
2

i,j − rz
∆Z

4K

[
En
i,j+1 − En

i,j−1

]
(3.6) T n+1

i,j = T
n+ 1

2
i,j +

rx
2
δ2
xT

n+ 1
2

i,j +
rz
2
δ2
zT

n+1
i,j − rz

∆Z

4k

[
E
n+ 1

2
i,j+1 − E

n+ 1
2

i,j−1

]
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After discretization, equations (3.5) and (3.6) can be rewritten as below:

−rx
2
T
n+ 1

2
i−1,j + (1 + rx)T

n+ 1
2

i,j − rx
2
T
n+ 1

2
i+1,j

=
rz
2
T ni,j−1 + (1− rz)T ni,j +

rz
2
T ni,j+1 − rZ

∆Z

4k

[
En
i,j+1 − En

i,j−1

](3.7)

−rz
2
T n+1
i,j−1 + 1 + rzT

n+1
i,j −

rz
2
T n+1
i,j+1

=
rx
2
T

(
i−1,jn+ 1/2) + 1− rxT

n+ 1
2

i,j +
rx
2
T
n+ 1

2
i+1,j −

rZ∆Z

4k

[
E
n+ 1

2
i,j+1 − E

n+ 1
2

i,j−1

]
.

(3.8)

Thus, with the initial condition at (n = 0), T 0
i,j = Ta for i = 0, 1, 2 . . . ,M ,j =

0, 1, 2, . . . , N , and assuming that the solution T ni,j, for i = 0, 1, 2, . . . .,M and j =

0, 1, 2, . . . , N , has been computed, equation (3.4) is being used to compute T
n+ 1

2
i,j

at all interior points, for i = 0, 1, 2, . . . .,M−1 and j = 0, 1, 2, . . . , N−1. The matrix
form of the general equation (3.4) is rewritten as:

(3.9) [I + Ax]T
n+ 1

2
j = fnz,j + Snj ,

where I is the identity matrix and T
n+ 1

2
j is the temperature vector at time (n + 1

2
)

and is given by:

T
n+ 1

2
j =


T
n+ 1

2
1,j

T
n+ 1

2
2,j
...

T
n+ 1

2
M−1,j

 ,
Ax is an (M − 1)(N − 1)× (M − 1)(N − 1) block tri-diagonal matrix and is given
by:

Ax =



2Dx −Dx 0 . . . . . . 0

−Dx 2Dx −Dx . . . . . . . . .

0 −Dx 2Dx −Dx . . . . . .

. . . . . .
. . . . . . . . . . . .

. . . . . .
. . . . . . . . . . . .

0 . . . . . . . . . −Dx 2Dx


,
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where

Dx =



rx
2

0 . . . . . . 0

0 . . . . . . . . . . . .
... . . . . . . . . . . . .
... . . . . . . . . . . . .

0 . . . . . . . . . . . .


,

Dx are (M − 1)× (M − 1) diagonal matrices.

fnz,j =



T n1,j + rz
2

(T n1,j−1 − 2T n1,j + T n1,j+1)

T n2,j + rz
2

(T n2,j−1 − 2T n2,j + T n2,j+1)
...
...

T nM−1,j + rz
2

(T nM−1,j−1 − 2T nM−1,j + T nM−1,j+1)


,

Further, Snj is the source term at time n depending only on the layer position in
the pond and is given by:

Snj = −rz
∆Z

4k
=


Cz 0 . . . . . . 0

0 . . . . . . . . .
...

...
...

...
...

0 . . . . . . . . . Cz

 ,
where

Cz =


−1 0 1 0 . . . 0

0 . . . . . . . . . . . .
...

...
...

...
...

...
...

0 . . . . . . −1 0 −1

 .
Equation (3.8) is used to compute T n+1

i,j at all interior points for i = 0, 1, 2, . . . .,M−
1 and j = 0, 1, 2, . . . , N − 1. The matrix form of the general equation (3.8) can be
written as follows:

(3.10) [I + Az]T
n+1
i = f

n+ 1
2

x,i + S
n+ 1

2
j ,
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T n+1
i is the temperature vector at time (n+ 1) and is given by:

T n+1
i =


T n+1
i,1

T n+1
i,2
...

T n+1
i,N−1

 ,

S
n+ 1

2
j is the source term at time n + 1

2
and f

n+ 1
2

x,i is an (M − 1)(N) × (M − 1)(N)

block tridiagonal matrix.

4. NUMERICAL RESOLUTION

To solve numerically the model, by fixing j and varying i from 1 to 4, we get two
systems of equations where each includes 16 equations with 24 unknowns. The
first system has as unknowns the temperature at time n + 1

2
that will be solved as

a function of temperature at time n and the second system includes as unknowns
the temperature at time n+1 which will be solved as a function of the temperature
at time n+ 1

2
. So equation ( 3.7) gives the following expression:

[P ]



T
n+ 1

2
0,j

T
n+ 1

2
1,j

T
n+ 1

2
2,j

T
n+ 1

2
3,j

T
n+ 1

2
4,j

T
n+ 1

2
5,j


=

rz
2

[I]


T n1,j−1

T n2,j−1

T n3,j−1

T n4,j−1

+ (1− rz)[I]


T n1,j
T n2,j
T n3,j
T n4,j

+
rz
2

[I]


T n1,j+1

T n2,j+1

T n3,j+1

T n4,j+1



+ rz
∆Z

4k
[I]


En

1,j−1

En
2,j−1

En
3,j−1

En
4,j−1

− rz∆Z

4k
[I]


En

1,j+1

En
2,j+1

En
3,j+1

En
4,j+1


with

[Px] =


− rx

2
(1 + rx)

rx
2

0 0 0

0 − rx
2

(1 + rx) − rx
2

0 0

0 0 − rx
2

(1 + rx) − rx
2

0

0 0 0 − rx
2

(1 + rx) − rx
2

 ; [I]


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
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Equation (3.8) gives:

[Qx]



T
n+ 1

2
0,j

T
n+ 1

2
1,j

T
n+ 1

2
2,j

T
n+ 1

2
3,j

T
n+ 1

2
4,j

T
n+ 1

2
5,j


= −rz

2
[I]


T n1,j−1

T n2,j−1

T n3,j−1

T n4,j−1

+ (1 + rz)[I]


T n1,j
T n2,j
T n3,j
T n4,j

− rz
2

[I]


T n1,j+1

T n2,j+1

T n3,j+1

T n4,j+1



+ rz
∆Z

4k
[I]


E
n+ 1

2
1,j−1

E
n+ 1

2
2,j−1

E
n+ 1

2
3,j−1

E
n+ 1

2
4,j−1

− rz
∆Z

4k
[I]


En

1,j+1

En
2,j+1

En
3,j+1

En
4,j+1

 ,
with

Qx =


rx
2

(1− rx) rx
2

0 0 0

0 rx
2

(1− rx) rx
2

0 0

0 0 rx
2

(1− rx) rx
2

0

0 0 0 rx
2

(1− rx) rx
2

 .
Equation (3.5) gives a system of 16 equations with 24 unknowns (Fig. 3) by
varying i from 1 to 4 for each value of j which is varied in its turn from 1 to 4.

FIGURE 3. Temperature distribution for a given calculation at the
first step
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FIGURE 4. Temperature distribution for a given calculation at the
second step

Equation (3.8) gives a system of 16 equations with 24 unknowns (Fig. 4) by
varying i from 1 to 4 for each value of j which is varied in its turn from 1 to 4.

4.1. Incorporation of the initial and boundary conditions. The use of initial
and boundary condition equations reduces the number of unknowns to 16 in equa-
tions (3.7) and (3.8):

- At the pond water surface, the temperatures

T
n+ 1

2
0,1 , T

n+ 1
2

0,2 , T
n+ 1

2
0,3 , T

n+ 1
2

0,4

are equal to the ambient temperature by the application of the first bound-
ary condition.

- At the interface z = z1 + z2, the temperatures

T
n+ 1

2
51 , T

n+ 1
2

52 , T53(n+ 1/2), T
n+ 1

2
54

are calculated by the 2nd boundary condition and from the discretization
of equation (2.12):

(4.1)
T

(
i,jn+ 1

2
)− T ni,j

∆t
2

=
−k

ρZ3Cp

[
T ni,j − T ni,j−1

∆Z

]
+
ELCZ −Qout

ρZ3Cp
.
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- At the bottom of the basin i.e. i = 5, we obtain

(4.2) T
n+ 1

2
5,j = T n5,j

[
1 +

−k∆t

2ρCp∆zZ3

]
−

k∆tT n5,j−1

2ρCp∆zZ3

+
((ELCZ −QOUT )∆t)

2ρCpZ3

.

In our case T n5,j = T n4,j since the temperature of the LCZ is equal to the tem-
perature of the last layer NCZ. Qout represents about 14% of the incident
energy [12].

- At x = 0, i.e. i varying from 1 to 4, the temperatures

T n+1
1,0 , T n+1

2,0 , T n+1
3,0 , T n+1

4,0 ,

are determined by the 3rd boundary condition and from the discretization
of equation (2.13):

(4.3) T(i, 0)(n+ 1) = T(i− 1, 0)(n+ 1)[(k − h∆x)/k] + h∆x/kTawithT0, 0 = Ta.

- At x = L, which corresponds to j = 5, the temperatures

T n+1
1,5 , T n+1

2,5 , T n+1
3,5 , T n+1

4,5 ,

are determined by applying the 4th boundary condition and from the dis-
cretization of the equation (2.14) we get:

(4.4) T n+1
i,5 = T n+1

i−1,5

[
k − h∆x

k

]
+
h∆x

kTa
.

Finally, by adopting the same reasoning for the second and third grids, we obtain
a linear system of the form AT = B where A is a sparse matrix, T is the temper-
ature field to be determined and B is the RHS vector of the discretized equation.
Equation (3.7) gives a system of equations having as unknowns the temperature
at time (n+ 1

2
) in function of temperature at time n. Equation (3.8) gives a system

of equations having as unknowns the temperature at time (n + 1) as function of
temperature at time (n+ 1

2
). For the step ∆x = ∆z = ∆t = 1

4
, we obtain 4× 4 un-

knowns at time (n+ 1
2
) and 4×4 unknowns at time (n+1); for ∆x = ∆z = ∆t = 1

8
,

8× 8 unknowns at time (n+ 1
2
) and 8× 8 unknowns at time (n+ 1), whereas, for

∆x = ∆z = ∆t = 1
16

, this number reaches 16 × 16 unknowns at the time (n + 1
2
)

and 16 × 16 unknowns at the time (n + 1). The Gauss-Seidel iterative method is
used because of its high stability w.r.t rounding errors.
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5. RESULTS AND DISCUSSION

5.1. Different Meshes and temperature profile.
First mesh:

FIGURE 5. 1st mesh representation for discretization step Deltax =

∆y = ∆t = 1
4

Second mesh:

FIGURE 6. 2nd mesh representation for discretization step ∆x =

∆y = ∆t = 1
8
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Third mesh:

FIGURE 7. 3rd mesh representation for discretization step ∆x =

∆y = ∆t = 1
16

The temperature profile according to the horizontal direction ox and along the
depth oz is given at the points A,B,C (Tables 1 and 2; Figures 5,6 and 7) which
are located respectively at the left, middle and right of the NCZ zone.

5.2. Discussion. The simulation results obtained are displayed in the tables be-
low and indicate a temperature variation along a layer. Moreover, we also observe
a high and rapid heating in the central part of the pond than at its periphery this
can be explained by heat loss at the walls and, according to the calculations, the
upper part of the NCZ heats up less than its lower part. For a given layer the
horizontal temperature range can reach 5◦C, confirming the importance of the
two-dimensional treatment compared to the one-dimensional which considers the
temperature as being constant in a given layer. To calculate the error, a reference
solution Tref has been taken as the finest mesh solution corresponding to a mesh

size of h = 1
16

. The percentage relative error is defined by
∣∣∣Tref−ThTref

∣∣∣× 100. Th is the
numerical solution for a given step h. Tables 1 and 2 show that this error decreases
gradually as h tends toward zero.
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This shows a convergence trend of the approximate solution toward the ex-
act solution and thus corroborating the theoretical convergence result given by
proposition 11.6 of the reference [13]. In the solar pond, there is a vertical and
horizontal migration within the same layer under the Soret effect [14]. Vertical
migration of salt is less important at the center of the basin than at the periphery.
Therefore, LCZ is poorer in salt at the periphery than at the center and this helps
locating the optimal point of salt injection for maintenance of the pond. This Soret
effect causes non-uniform vertical salt migration. This would be a factor causing
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non-uniformity of natural convection flows within LCZ and can also adversely af-
fect the physical stability of the solar pond. The temperature reaches a maximum
of 80

circC in the presence of nanoparticles and 73◦C without their presence in
the storage zone LCZ according to the conditions of the considered pond. This
indicates the appropriate time to fill the pond. It should be noted that the pond
containing the copper nanoparticles records a temperature of around 80◦C com-
pared to the pond without metal nanoparticles. We estimate that this temperature
far exceeds the functional temperature, which is around 63◦C. In this work, it
appears that the temperature of LCZ in locations near the NCZ-LCZ interface is
not the same. This confirms that the natural convection has not the same intensity
in the storage layer. The heat extraction point should be carefully chosen because
the temperature is maximum at the center of the pond. The notion of convergence
of a numerical scheme expresses the property of the numerical solution to tend to-
ward the exact solution of the considered problem as the mesh size decreases. It
is possible to show that the convergence is ensured under the conditions of the
Lax-Richtmyer equivalence theorem [15]:

Proposition 5.1. The numerical scheme given by (3.9) and (3.10) is both consistent
and stable.

Proof.
a) Consistency The idea behind the ADI method is to introduce intermediate
calculations to go from T n to T n+1 which requires only the resolution of one-
dimensional problems. Equation (2.5) for the heat transfer is of the form: ∂T

∂t
+

LT = S where, the operator L is independent of time and splits up as follows:

L = L1 + L2,

with

L1 =
−k
ρCp

∂2

∂X2
; L2 =

−k
ρCp

∂2

∂Z2
; S =

−1

ρCp

dE

dZ
.

Equations (5.2) and (3.2) can be rewritten respectively as

2

∆t

(
T
n+ 1

2
i,j − T ni,j

)
− rx

∆t

[
T
n+ 1

2
i−1,j − 2T

n+ 1
2

i,j + T
n+ 1

2
i+1,j

]
− rz

∆t
[T ni,j−1 − 2T ni,j + T ni,j+1] = Snj

(5.1)
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2

∆t
(T n+1

i.j − T
n+ 1

2
i,j − rx

∆t

[
T
n+ 1

2
i−1,j − 2T

n+ 1
2

i,j + T
n+ 1

2
i+1,j

]
− rz

∆t

[
T n+1
i,j−1 − 2Ti,j)

n+1 + T n+1
i,j+1

]
= S

n+ 1
2

j

(5.2)

This system of equations takes the following matrix form:

2

∆t

(
T
n+ 1

2
i.j − T ni.j

)
− rx

∆t



−2 1 0 0 . . . 0

1 −2 1 0 . . . . . .

0 1 −2 1 . . . . . .

. . . . . .
. . . . . . . . . . . .

. . . . . .
. . . . . . . . . 1

0 . . . . . . . . . 1 −2


T
n+ 1

2
i

− rz
∆t



−2 1 0 0 . . . 0

1 −2 1 0 . . . . . .

0 1 −2 1 . . . . . .

. . . . . .
. . . . . . . . . . . .

. . . . . .
. . . . . . . . . 1

0 . . . . . . . . . 1 −2


T nj = Snj

2

∆t

(
T n+1
i.j − T

n+ 1
2

i.j

)
− rx

∆t



−2 1 0 0 . . . 0

1 −2 1 0 . . . . . .

0 1 −2 1 . . . . . .

. . . . . .
. . . . . . . . . . . .

. . . . . .
. . . . . . . . . 1

0 . . . . . . . . . 1 −2


T
n+ 1

2
i

− rz
∆t



−2 1 0 0 . . . 0

1 −2 1 0 . . . . . .

0 1 −2 1 . . . . . .

. . . . . .
. . . . . . . . . . . .

. . . . . .
. . . . . . . . . 1

0 . . . . . . . . . 1 −2


T n+1
j = S

n+ 1
2

j
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Letting

V1 = − rx
∆t



−2 1 0 0 . . . 0

1 −2 1 0 . . . . . .

0 1 −2 1 . . . . . .

. . . . . .
. . . . . . . . . . . .

. . . . . .
. . . . . . . . . 1

0 . . . . . . . . . 1 −2


and

V2 = − rz
∆t



−2 1 0 0 . . . 0

1 −2 1 0 . . . . . .

0 1 −2 1 . . . . . .

. . . . . .
. . . . . . . . . . . .

. . . . . .
. . . . . . . . . 1

0 . . . . . . . . . 1 −2


�

The scheme of alternating directions becomes:

(5.3)
2

∆t

(
T n+ 1

2 − T n
)

+ V1T
n+ 1

2 + V2T
n − Snj = 0,

(5.4)
2

∆t

(
T n+1 − T n

)
+ V1T

n+ 1
2 + V2T

n+1 − Sn+ 1
2

j = 0,

where V1 and V2 are matrices associated with the approximate operators of L1 and
L2 Determining the order of convergence with respect to the space equations (5.1)
and (5.2) can be written in the following form:

T
n+ 1

2
i.j − T ni.j

∆t
+

rx
2∆t

[
−T n+ 1

2
i−1,j + 2T

n+ 1
2

i,j − T n+ 1
2

i+1,j

]
+
rz

2∆t
[−T ni,j−1 + 2T ni,j − T ni,j+1]−

Snj
2

= 0,

(5.5)

T n+1
i.j − T

n+ 1
2

i.j

∆t
+

rx
2∆t

[
−T n+ 1

2
i−1,j + 2T

n+ 1
2

i,j − T n+ 1
2

i+1,j

]
+
rz

2∆t
[−T ni,j−1 + 2T n+1

i,j − T n+1
i,j+1]−

S
n+ 1

2
j

2
= 0.

(5.6)
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Substituting rx and rz with their expression, we obtain:

T
n+ 1

2
i,j − T ni,j

∆t
+

k

2ρCp(∆x)2

[
−T n+ 1

2
i−1,j + 2T

n+ 1
2

i,j − T n+ 1
2

i+1,j

]
+

k

2ρCp(∆z)2

[
−T ni,j−1 + 2T ni,j − T ni,j+1

]
−
Snj
2

= 0(5.7)

FIGURE 8. Temperature profile without the presence of metallic nanoparticles.

FIGURE 9. Temperature profile in the presence of metallic nanoparticles.
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FIGURE 10. Temperature profile evolution with time during 28 days
at three point A, B, C

T n+1
i,j − T

n+ 1
2

i,j

∆t
+

k

2ρCp(∆x)2
− T n+ 1

2
i−1,j + 2T

n+ 1
2

i,j

−T n+ 1
2

i+1,j] +
k

2ρCp(∆z)2
− T n+1

i,j−1 + 2T n+1
i,j − T n+1

i,j+1]−
S
n+ 1

2
j

2
= 0.

(5.8)

Subtracting equation (5.8) from (5.7) gives T
n+ 1

2
i,j as function of T ni,j and T n+1

i,j :

T
n+ 1

2
i,j =

T n+1
i,j + T ni,j

2
+

k∆t

4ρCp(∆z)2

[
T ni,j−1 − 2T ni,j + T ni,j+1 − T n+1

i,j−1

+ 2T n+1
i,j − T n+1

i,j+1

]
+
S
n+1/2
j − Snj

2
.

(5.9)

Knowing that
S
n+1

2
j −Sn

j

2
= 0, and introducing the intermediate function τ(t, x, z)

which resembles to T
n+ 1

2
i,j :

τ(t, x, z)

=
T (t+ ∆t, x, z) + T (t, x, z)

2
+

k∆t

4ρCp(∆z)2
[T (t, x, z −∆z)

− 2T (t, x, z) + T (t, x, z + ∆z)− T (t+ ∆t, x, z −∆z) + 2T (t+ ∆t, x, z)

−T (t+ ∆t, x, z + ∆z)] .

For any solution T of the heat equation, the truncation error coming from equation
(5.5) is

ETrun(T )

=
τ(t, x, z)− T (t, x, z)

∆t
+

k

2ρCp(∆x)2
[−τ(t, x−∆x, z) + 2τ(t, x, z)

(5.10)
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−τ(t, x+ ∆x, z)] +
k

2ρCp(∆z)2
[−T (t, x, z −∆z)

+2T (t, x, z)− T (t, x, z + ∆z)]

where τ is defined by equation (5.10). The Taylor expansion gives

τ = T +
∆t

2

∂T

∂t
+

(∆t)2

4

(
∂2T

∂t2
− k

ρCp

∂3T

∂t∂z2

)
+

(∆t)3

24

(
2
∂3T

∂t3
− 3

k

ρCp

∂4T

∂t2∂z2

)
(5.11)

+ O
[
(∆t)3 + (∆t)(∆z)2

]
and hence

ETrun(T ) =
τ − T

∆t
− k

ρCp

[
(
∂2τ

∂x2
+

(∆x)2

12

∂4τ

∂x4
+
∂2T

∂z2
+

(∆z)2

12

(∂4T

∂z4

]
+O[(∆x)2 + (∆z)2]

(5.12)

Thus

ETrun(T ) =

(
k

ρCp

)3
(∆)2t

24
∆

(
∂4T

∂x2∂z2
−∆2T

)
− k

24ρCp

[
(∆x)2∂

4T

∂x4
+ (∆z)2∂

4T

∂z4

]
+ O

[
(∆x)2 + (∆z)2 + (∆t)2

]
,(5.13)

where ∆ (alone) denotes the laplacian operator. Therefore the scheme is consis-
tent of order 2.

b)] Stability Equations (5.3) and (5.4) are rewritten as

(5.14)
[
I +

∆t

2
V1

]
T n+ 1

2 =

[
I − ∆t

2
V2]T n +

∆t

2
V2

]
Snj ,

(5.15)
[
I +

∆t

2
V2

]
T n+1 =

[
I − ∆t

2
V1

]
T n+ 1

2 +
∆t

2
S
n+ 1

2
j .

By eliminating T n+ 1
2 from relations (5.10) and (5.10), the system giving T n+1

directly as a function of T n is written as
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T n+1 = (I +
∆t

2
V2)−1(I − ∆t

2
V1)(I − ∆t

2
V1)−1(I − ∆t

2
V2)T n

+ (I +
∆t

2
V2)−1(I − ∆t

2
V1)(I +

∆t

2
V1)−1 ∆t

2
Snj +

∆t

2
S
n+ 1

2
j .(5.16)

Since V and W are commutative matrices, we can write

(5.17) T n+1 = W2W1T
n +W1

(
I +

∆t

2
V2

)−1
∆t

2
Snj +

∆t

2
S
n+ 1

2
j ,

with
W1 = (I − ∆t

2
V1)(I +

∆t

2
V1)−1

and
W2 = (I − ∆t

2
V2)(I +

∆t

2
V2)−1.

Given that V1 and V2 are symmetric matrices, and by the use of lemma 3.1 [16],
the matrices W1 and W2 are symmetric. In addition the matrices V and W are also
positive-semi-definite. Hence we have:||W1||2−η(W1) ≤ 1 and ||W2||2−η(W2) ≤ 1.
with η(W ) = max|λk| and |λk| = |1−αµk|

1+αµk
≤ 1, where µk are the eigenvalues of V1

and V2 for α ≥ 0.This confirms the unconditional stability in L2 norm. Since the
ADI numerical scheme is stable and consistent and on the basis of Lax-Richtmyer
equivalence theorem [15], it is also convergent.

5.3. Comparison and validation of results. In most previous works dealing with
solar ponds modeling, the mathematical problem treatment is one-dimensional.
In other words, the heat diffusion occurs only along the vertical direction assum-
ing that the temperature of one layer is constant. But, in fact, both horizontal
and vertical diffusion are taken into account. The results of numerical simula-
tion have shown that a difference in temperature within the same layer exists and
can reach 5◦C for one season which contradicts the one-dimensional assumption
mentioned above and shows the important role played by two-dimensional math-
ematical modeling. Furthermore, if we compare the present work with respect to
the work of Benmansour [17] as well as of Alimi quoted therein which deal with
similar problems of solar ponds in two dimensions in regions with similar climatic
conditions to those of Annaba (Tunisia is 200 km away from Annaba), we remark,
using Figure 8, that there is a similarity between their works (for µ = 0.8m − 1)
and ours (for µ = 0.5m− 1) despite this difference in the coefficient µ.
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FIGURE 11. Comparison of the present work with previous works

6. CONCLUSION

The behavior of a solar pond represented mathematically by using a transient
two-dimensional parabolic model discretized by a numerical scheme based on ADI
method due to its good properties of precision and unconditional stability has been
used. This simulation was carried out by taking into account the influence of the
physical and thermodynamic properties such as thermal conductivity k, the den-
sity ρ, specific heat Cp and solar radiation E. The analysis of the numerical results
leads to the following conclusions: There is a relatively significant horizontal heat
diffusion along the layers which is not observed in the case of one-dimensional
studies of ponds. In addition, the temperature reaches a maximum in the central
vertical plane of the basin and decreases in the vicinity of the walls. This will
give rise to a bigger vertical heat flow at the periphery than at the center. The
horizontal profile of the temperature in one-dimensional simulation appears to be
flat showing that the temperature is uniform in the horizontal plane of the basin
and prevents heat losses through the sides which is far from the reality. The two-
dimensional work, on the other hand, presents a convex profile of temperature
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which highlights the existence of these losses. It can also be noted that temper-
ature values for a given depth become closer with decreasing discretization step,
i.e. indicating a trend of convergence towards the exact solution corroborating
the theoretical convergence result given above. After 28 days, the obtained results
give a maximum estimated temperature in the storage zone of 33◦C in the winter
and a maximum estimated temperature of 66◦C in the summer. Therefore, it is
preferable to fill the pond at the beginning of the summer season to reach quickly
the operating temperature of the solar pond where the latter is considered in the
present case to be greater than 60◦C. The results obtained in the present work
by simulation of heat diffusion equation need to be validated experimentally once
the solar pond is operational.

NOMENCLATURE

Cp: Specific heat [kJ/kg◦C]

E: Radiation intensity [w/m2]

h: Heat Transfer Coefficient [w/m2◦C]

k: Heat Conductivity Coefficient [w/m◦C]

q or Q: Heat transfer rate [w/m2]

s: Salinity of the brine [%]

T : Temperature [◦C]

t: Time [sec]
µ: Extinction Coefficient of Transmission Function [m− 1]

ρ: Density [kg/m3].
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