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DESIGN OF MULTISTABLE SYSTEM OF COUPLED DIFFERENT LORENZ AND
NUCLEAR SPIN GENERATOR SYSTEMS

Jayanta Kumar Sarkar, Mohammad Ali Khan1, and Gour Chandra Mahata

ABSTRACT. In this paper, we propose a new theoretical scheme design of multi-
stable system of coupled Nuclear spin generator and Lorenz systems. In the system
coupled Nuclear spin generator and Lorenz systems reduces to a single modified
Lorenz system. We derive the existence conditions of fixed points and the condi-
tions of local stability of the modified system is also derived. To obtain multistable
behaviour maximum lyapunov exponent of the system and bifurcation analysis
are analyzed. Dynamical behaviour with respect to multistable parameter using
MATCONT software are also analyzed. The main observation is that: In coupling
two m-dimensional dynamical systems multistable behaviour can be obtained if i
number of variables of the two systems are completely synchronized and j num-
ber of variables keep a constant difference between them, where i + j = m and
1 ≤ i, j ≤ m−1. Numerical simulation results are presented to verify the proposed
schemes.

1. INTRODUCTION

Multistability is the property whereby the solutions of a dynamical system can
alternate between two or more exclusive lyapunov stable and convergent equi-
librium states under asymptotically slowly changing inputs or system parameters.
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Multistable systems are observed in laser physics [1], condensed matter physics
[2] and electronic oscillators [3] etc. and biological system namely population
dynamics [4], neuroscience [5] and climate dynamics [6]. The dynamics of mul-
tistable systems are extremely sensitive to the initial state due to the coexistence
of different attractors and as a result very small perturbations of the initial state
might cause a large change in the final state. The mechanisms behind multistable
behaviour of many natural system’s are not completely known. Understanding
the rules behind multistability behaviour of a dynamical system remains one of
the fundamental problem of dynamical systems theory. In extreme multistability
the number of coexisting attractors is infinite. Techniques for designing extreme
multistable systems had been reported by Sun et.al. [7]. In their technique the
choice of coupling plays the vital role. Synchronization of two or more coupled
nonlinear systems are fundamental concept of nonlinear dynamics. Many synchro-
nization techniques were proposed since the pioneer work of Pecora and Carroll
[8]. In 1997, Feudel et.al.[9] have studied the behaviour of multistable systems
that one obtained from conservative ones by adding a small amount of damping.
Layton et.al. [10] have studied multistability in tubuloglomerular feedback and
spectral complexity in spontaneously hypertensive rats in 2006. In 2011, Geltrude
et.al.[11] have discussed multistability of chaotic systems to explore a complexity
deterministic closed loop mechanism to control bursting phenomenon. In 2015,
Li et.al. [12] have studied multistability in symmetric chaotic systems using am-
plitude control techniques. Since multistability and amplitude control sometimes
involved in dynamical systems with involutional symmetry. Hens et.al.[13] have
shown that the coexistence of infinitely many attractors in two coupled m dimen-
sional systems will be possible if m− 1 of the variable of the two systems are com-
pletely synchronized and one of them keeps a constant difference between them
and Pal et.al.[14] observed the coupling two m− dimensional dynamical systems
in multistable nature by obtaining i number of variables of the two systems are
completely synchronized and j number of variables keep a constant difference
between them, where i + j = m and 1 ≤ i, j ≤ m − 1. Very recently, in 2017,
Bao et.al.[15] have illustrated that the long term dynamical behaviour closely de-
pends on memristor initial conditions, thus leading to the immergence of hidden
extreme multistability in the memristive hyper chaotic systems. In the same year
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2017, Khan et. al.[16] have introduced a generalized scheme for designing multi-
stable systems by coupling two different dynamical systems. The basic idea of the
scheme is to design partial synchronization of states between the coupled systems
and finding some completely initial condition-dependent constants of motion.

The basic idea of the scheme is to design multistability of states between the cou-
pled systems and finding some completely initial condition-dependent constants
of motion. We discuss our scheme coupling two different Lorenz and Nuclear
spin generator systems. The bifurcation diagrams of the system with respect to
multistability parameters are shown here.

The paper is organized as follows: In Section 2, a generalized scheme for de-
signing multistability system is proposed and discussed taking two coupled Lorenz
system and Nuclear spin generator system. The existence conditions of local stabil-
ity is discussed in Section 3. Numerical simulation results are presented in Section
4. Finally, a conclusion is drawn in Section 5.

2. GENERALISED SCHEME FOR DESIGNING MULTISTABLE SYSTEMS

Consider the coupled two dynamical systems in the following way

ẋ1 = f1(x1, x2, x3, . . . , xn) + u1(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn)

ẋ2 = f2(x1, x2, x3, . . . , xn) + u2(x1, x3, x3, . . . , xn; y1, y2, y3, . . . , yn)

ẋ3 = f3(x1, x2, x3, . . . , xn) + u3(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn)(2.1)

. . .

ẋn = fn(x1, x2, x3, . . . , xn) + un(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn)

and

ẏ1 = g1(y1, y2, y3, . . . , yn) + v1(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn)

ẏ2 = g2(y1, y2, y3, . . . , yn) + v2(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn)

ẏ3 = g3(y1, y2, y3, . . . , yn) + v3(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn)(2.2)

. . .

ẏn = gn(y1, y2, y3, . . . , yn) + vn(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn)

where u1, u2, u3, . . . , un and v1, v2, v3, . . . , vn are the controllers. We define the error
as ei = yi − xi, i = 1, 2, . . . , n. Now we obtain the error dynamical system
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ė1 = g1(y1, y2, y3, . . . , yn)− f1(x1, x2, x3, . . . , xn) + v1 − u1
ė2 = g2(y1, y2, y3, . . . , yn)− f2(x1, x2, x3, . . . , xn) + v2 − u2
ė3 = g3(y1, y2, y3, . . . , yn)− f3(x1, x2, x3, . . . , xn) + v3 − u3(2.3)

. . .

ėn = gn(y1, y2, y3, . . . , yn)− fn(x1, x2, x3, . . . , xn) + vn − un

We choose the controllers u1, u2, u3, . . . , un and v1, v2, v3, . . . , vn suitable such that
the above system become multistable. Hens et al.[13] propose that the coupled
systems (1)and (2) have multistable behaviour if (n− 1) states of the two systems
synchronize and one state variable keeps constant difference with corresponding
state variable of the other system. They choose controllers u1, u2, u3, . . . , un and
v1, v2, v3, . . . , vn in such way that

ė1 = 0

ė2 = −e2
ė3 = −e3(2.4)

. . .

ėn = −en

Here, we generalize the results of Hens et al.[13] and conjecture that "multistable
systems can be designed choosing u1, u2, u3, . . . , un and v1, v2, v3, . . . , vn in such
way that i (1 ≤ i ≤ n − 1) number of state variables synchronize and (n − i)

number of state variables keeps constant difference". Therefore according to our
scheme we choose u1, u2, u3, . . . , un and v1, v2, v3, . . . , vn in such way that

ė1 = 0

ė2 = 0

ė3 = 0

. . .

ėi = 0(2.5)

˙ei+1 = −ei+1
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˙ei+2 = −ei+2

. . .

ėn = −en

where 1 ≤ i ≤ n− 1. Then for such choice the system formed by coupling (1) and
(2) may show multistability.

Now we choose the function L = (e2i+1 + e2i+2 + e2i+3 + . . . + e2n)/2 is a lyapunov
function for the above system because

V̇ = ei+2 ˙ei+2 + ei+3 ˙ei+3 + . . .+ enėn

= −e2i+1 − e2i+2 − e2i+3 − . . .− e2n.

Hence the errors ei+1, ei+2, ei+3, . . . , en must tend to zero i.e., yi+1 = xi+1, yi+2 =

xi+2,. . . ,yn = xn, as t tends to→∞ and e1, e2, e3, . . . , ei remains constant in time.
Therefore y1 = x1+ c1, y2 = x2+ c2, y3 = x3+ c3, . . . , yi = xi+ ci and yi+1 = xi+1,

yi+2 = xi+2,. . . ,yn = xn.
Now the dynamics of the coupled system(1) and (2) is equivalent to the follow-

ing system:

ẋ1 = f1(x1, . . . , xn) + u1(x1, . . . , xn;x1 + c1, . . . , xi + ci, xi+1 . . . , xn)

ẋ2 = f2(x1, . . . , xn) + u2(x1, . . . , xn;x1 + c1, . . . , xi + ci, xi+1 . . . , xn)

ẋ3 = f3(x1, . . . , xn) + u3(x1, . . . , xn;x1 + c1, . . . , xi + ci, xi+1 . . . , xn)(2.6)

. . .

ẋn = fn(x1, . . . , xn) + un(x1, . . . , xn;x1 + c1, . . . xi + ci, xi+1 . . . , xn)

where c1, c2, c3, . . . , c′is are initial condition dependent constants. The system (6)
shows multistable behaviour if its dynamics changes qualitatively with varition of
c1, c2, c3, . . . , c

′
is. Notice that we have chosen ė1 = ė2 = · · · = ėi = 0 in general

ė1, ė2, . . . ėi may be chosen as any polynomial functions of ei+1, ei+2, ei+3, . . . , en.
In the following section, we shall discuss our scheme coupling two different

Lorenz and Nuclear spin generator systems. Example of a proposition.
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3. CONSTRUCTION OF MULTISTABLE SYSTEMS USING LORENZ AND NUCLEAR SPIN

GENERATOR SYSTEMS

We consider the coupled Lorenz system [17] and Nuclear spin generator system
[18] in the following form:

ẋ1 = σ(x2 − x1) + u1

ẋ2 = rx1 − x2 − x1x3 + u2

ẋ3 = x1x2 − bx3 + u3(3.1)

ẏ1 = −βy1 + y2 + v1

ẏ2 = −y1 − βy2(1− κy3) + v2

ẏ3 = β[α(1− y3)− κy22] + v3

where u1, u2, u3, v1, v2, v3 are controllars and we choose u1 = σ(x1 − y1), u2 =

x2−y2, u3 = 0 and v1 = (σ−1)y2+βy1, v2 = y1+(β−1)y2+rx1−y2−y3(βκy2+x1),
v3 = βκy22 + x1x2 − βα(1− y3)− by3 in such way that the above system reduces to

ẋ1 = σ(x2 − y1)

ẋ2 = rx1 − y2 − x1x3
ẋ3 = x1x2 − bx3(3.2)

ẏ1 = σy1

ẏ2 = rx1 − y2 − x1y3
ẏ3 = x1x2 − by3

We now show that the six dimensional dynamical system is a multistable sys-
tem. Following Sun et al.[19] we construct the governing equations for the syn-
chronization errors e1 = y1 − x1, e2 = y2 − x2 and e3 = y3 − x3 as

ė1 = σe2

ė2 = −x1e3(3.3)

ė3 = −be3
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It follows that e3 must tend to zero with time i.e., y3 = x3. Since x1 is a bounded
physical quantity therefore

ė1 = 0

ė2 = 0(3.4)

which implies e1= constant=c1 and e2= constant=c2. Hence, y1 = x1 + c1 and
y2 = x2 + c2 where c1, c2 are some constants (dependent on the initial condition of
the full system). Each new set of initial conditions gives rise to different value of
c1 and c2. Therefore, the dynamics of the system of equations (7) is equivalent to
following three dimensional system

ẋ1 = σ(x2 − x1 − c1)

ẋ2 = rx1 − x2 − c2 − x1x3(3.5)

ẋ3 = x1x2 − bx3.

The system (7) is a multistable system if the dynamical behaviour of the system
(11) varies with the variation of the value of c1 and c2.

4. PRELIMINARIES

4.1. Dissipativity and existence of attractor. For the above system(11), we ob-
serve that∇V = ∂ẋ1

∂x1
+ ∂ẋ2
∂x2

+ ∂ẋ3
∂x3

= −(σ+b+1) < 0, as σ > 0 and b > 0. So, the above
system is dissipative, with an exponential contraction rate dV

dt
= −(σ + b + 1)V .

That is, a volume element V0 is contracted by the flow into a volume element
V0e

−(σ+b+1)t in time t. This means that each volume containing the system trajec-
tory shrinks to zero as t→ +∞ at an exponential rate,−(σ + b + 1). Therefore,
system orbits are ultimately confined to a specific subset of zero volume, and the
asymptotic motion settles onto an attractor.

4.2. Equilibrium Points. We first study the nature of equilibrium points of the
system (11). An equilibrium point (x1, x2, x3) is such that the solution of a system
does not change in time. The equilibrium point of the system (11) is the point
E∗ ≡ (x∗1, x

∗
2, x
∗
3), where x∗2 = x∗1+c1, x

∗
3 = b(rx∗1−x∗1−c1−c2)/x∗1(x∗1+c1) and x∗1 is

the real root of the cubic equation x31+c1x
2
1+b(1−r)x1+b(c1+c2) = 0. Therefore,

existence of non-trivial equilibrium points depend on the parameter value c1 and
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c2. E∗ exist when 4 = 19b2c21 + 18b2c1c2(1 − r) + 4b3r3 + r2b2c21 − 4b3 + 12b3r(1 −
r)− 27b(c1 + c2)− 18b2c1r − 4bc41 − 4bc31c2 − 2rb2c21 > 0.

The Jacobian matrix of the system (11) at the equilibrium point E∗ = (x∗1, x
∗
2, x
∗
3)

is given by

J(E∗) =

 −σ σ 0

r − x∗3 −1 −x∗1
x∗2 x∗1 −b

 .(4.1)

The eigenvalues of the Jacobian matrix are the roots of the following equation

λ3 + a1λ
2 + a2λ+ a3 = 0.

where, a1 = σ(x∗1x
∗
2 + bx∗3 − br) + σ(x∗1

2 + b), a2 = x∗1
2 + b + bσ + σx∗3 + σ − σr,

a3 = b+ 1 + σ.
The equilibrium point E∗ = (x∗1, x

∗
2, x
∗
3) is stable if a1 > 0, a3 > 0 and a1a2−a3 >

0, otherwise E∗ is unstable.

5. NUMERICAL RESULTS

We perform the dynamical behaviours of the system (11) through numerical
analysis with the parameter values which are taken form Lorenz system [17].
We have varied the vital parameters c1 and c2 throughout the whole numerical
simulations.

First, we discuss the simulation results of the system (11) with bifurcation and
maximum lyapunov exponent. The bifurcation and maximum lyapunov exponent
of the system(11) for different values of c1 and c2 are plotted for fixed σ = 10,
r = 28 and b = 8/3. The bifurcation and maximum lyapunov exponent diagram
with respect to c1 of the system(11) are plotted in figures 1(a),(b) to 4(a),(b)
for c2 = −2, c2 = −1, c2 = 1 and c2 = 2 respectively. Also the bifurcation and
maximum lyapunov exponent diagrams with respect to c2 of the system(11) are
plotted in figures 5(a),(b) to 7(a),(b) for c1 = −1, c1 = 1 and c1 = 2 respectively.
The multistable behaviour of the system(11) is established from these diagrams.
In figure 8 extinction region of c1 and c2 of the system (11) are plotted for σ =

10, r = 28 and b = 8/3. Figure 8 depicts regions of stable state, unstable state
and stable state. Notice that in Figure 8 the boundaries between the different
dynamical regions are not perfectly distinct. Because, in Figure 8 that the high
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periodic oscillations and chaotic region there are small areas. This occurs because
there is some degree of sensitivity to small changes in parameter values resulting in
sharp transitions between different dynamical outcomes. For internal bifurcation
scenarios of the system (11), we study a pattern of bifurcation sequences in next
Section.

6. HOPF BIFURCATION AND CONTINUATION

Our main aim of this section is to investigate the bifurcation scenarios of the
system(11) with respect to the parameter c1 and c2. These are done by studying
the change in the eigenvalues of the Jacobian matrix and following the contin-
uation algorithm. We choose initial points x10 = 9.5043676, x20 = 15.565189,
x30 = 18.166588 fixing the parameter values σ = 10, r = 28 and b = 8/3. The
characteristics of Hopf point, limit cycle and the general bifurcation nature are
explored using the software package MATCONT2.5.1. In this package we use
prediction-correction continuation algorithm based on the Moore-Penrose matrix
pseudo inverse for computing the curves of equilibria, limit point (LP) and its
continuation curves.

The continuation curves from the equilibrium point of x3 with respect to c1 for
c2 = −5(Red line), c2 = 0(Blue line) and c2 = 5(Magenta line) for the fixed
parameter values σ = 10, r = 28, b = 8/3 are presented in figure 9. Exis-
tence of two Hopf points (H1, H2), two limit points (LP1, LP2) are observed in
figure 9 for all those cases. The Hopf points H1 and H2 for c2 = −5 are located
at (x1, x2, x3, c1, c2) ≡(9.5043676,15.565189,18.166588,-0.022349081,-5.0) and
(x1, x2, x3, c1, c2) ≡(9.5043676,15.565189,18.166588,2.293176,−5.000) with first Lya-
punov coefficient is to be 0.002076872, indicating a sub critical Hopf bifurcation.
Therefore, there are two complex eigenvalues of the equilibrium with real λ2,3 ≈ 0

at the parameter. First Lyapunov coefficient is positive implies that a unstable
limit cycle appears from the equilibrium point. The limit points LP1 and LP2

occur at (x1, x2, x3, c1, c2) ≡ (9.5043676,15.565189,18.166588,18.741569,−5.00) with
normal form of coefficient a = −0.2615149 and (x1, x2, x3, c1, c2) ≡ (9.5043676,
15.565189,18.166588,-24.076094,-5.00) with normal form of coefficient
a = −0.2585899. The Hopf points H1 and H2 for c2 = 0 are located at (x1, x2, x3, c1,
c2)≡ (9.5043676,15.565189,18.166588,-1.2610557,0.000) and (x1,x2, x3, c1,c2)≡
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(9.5043676,15.565189,18.166588,1.2610557,0.000) with first Lyapunov coeffi-
cient is to be 0.002029014, indicating a sub critical Hopf bifurcation. Therefore,
there are two complex eigenvalues of the equilibrium with real λ2,3 ≈ 0 at the
parameter. First Lyapunov coefficient is positive implies that a unstable limit
cycle appears from the equilibrium point. The limit points LP1 and LP2 occur
at (x1, x2, x3, c1,c2)≡(9.5043676, 15.565189,18.166588,-21.280859,0.00) with
normal form of coefficient a = −0.2599334 and (x1, x2, x3,c1,c2)≡ (9.5043676,
15.565189, 21.28085918.166588,21.280859,0.00) with normal form of coefficient
a = −0.2599334. The Hopf points H1 and H2 for c2 = 5 are located at (x1, x2, x3,
c1, c2)≡ (9.5043676,15.565189,18.166588,-2.293173,5.00) with first Lyapunov
coefficient is to be 0.002076873 and (x1, x2,x3, c1,c2) ≡ (9.5043676, 15.565189,
18.166588, 0.022354, 5.0) with first Lyapunov coefficient is to be 0.001964840,
indicating a sub critical Hopf bifurcation. Therefore, there are two complex eigen-
values of the equilibrium with real λ2,3 ≈ 0 at the parameter. First Lyapunov
coefficient is positive implies that a unstable limit cycle appears from the equilib-
rium point. The limit points LP1 and LP2 occur at (x1, x2, x3, c1,c2)≡ (9.5043676,
15.565189, 18.166588, -24.076094, 5.0) with normal form of coefficient a =

−0.2585901 and (x1, x2, x1,c1,c2)≡(9.5043676, 15.565189, 18.166588, 18.741569,
5.0) with normal form of coefficient a = 0.2615148. The bifurcation results to-
gether with normal coefficients with respect to c1 are listed in Table 1.

The continuation curves from the equilibrium point of x3 with respect to c2

for c1 = −5 (Red line), c1 = 0 (Blue line) and c1 = 5 (Magenta line) for the
fixed parameter values σ = 10, r = 28, b = 8/3 are also presented in figure
10. Existence of two Hopf points (H1, H2), two limit points (LP1, LP2) are also
observed in figure 10 for all these cases. The bifurcation results together with
normal coefficients with respect to c2 are also listed in Table 2.

Table 1: Bifurcation points of the system(11) in figure 9, to-
gather with first Lyapunov coefficients, normal form coeffi-
cients and eigenvalues for parameters σ = 10, r=28 b = 8/3.
H1, H2- Hopf points; LP1, LP2-Limit Points.

c2 c1 Label First Lyapunov Eigenvalues
coefficients/ Normal
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form coefficient

-5.0000 -0.022349081 H1 l1 = 0.002076872 −13.666, ±i10.43590
-5.0000 2.293176 H2 l1 = 0.002076872 −13.666, ±i10.9509
-5.000 -18.741569 LP1 a = −0.2615149 −19.2776, 0.0000, 5.61162
-5.0000 24.076094 LP2 a = −0.2585899 −19.2436,−0.000001148, 5.57762
0.0000 -1.2610557 H1 l1 = 0.002029014 −13.666, ±i10.7053
0.0000 1.2610557 H2 l1 = 0.002029013 −13.666, ±i10.7053
0.0000 -21.280859 LP1 a = −0.2599334 −19.259, 0.0000, 5.59298
0.0000 21.280859 LP2 a = −0.2599334 −19.259, 0.0000, 5.59298
5.0000 -2.293173 H1 l1 = 0.002076873 −13.666, ±i10.8509
5.0000 0.022354 H2 l1 = 0.001964840 −13.666, ±i10.4359
5.0000 -24.076094 LP1 a = −0.2585901 −19.2436, 0.0000, 5.57761
5.0000 18.741569 LP2 a = 0.2615148 −19.2776, 0.0000, 5.61162

TABLE 2. Bifurcation points of the system(11) in figure 10, togather
with first Lyapunov coefficients, normal form coefficients and eigen-
values for parameters σ = 10, r=28 b = 8/3. H1, H2- Hopf points;
LP1, LP2-Limit Points.

c2 c1 Label First Lyapunov Eigenvalues
coefficients/ Normal

form coefficient
-5.0000 -17.569229 H1 l1 = 0.001737604 −13.666, ±i9.60221
-5.0000 22.684046 H2 l1 = 0.002156435 −13.666, ±i11.6893
-5.000 -50.443686 LP1 a = 0.2822183 −19.6054, 0.00000, 5.9394

-5.0000 157.38987 LP2 a = 0.2981529 −20.7374,−0.00000, 7.07142
0.0000 -5.0813 H1 l1 = 0.001963648 −13.666, ±i10.4313
0.0000 5.0813 H2 l1 = 0.001963647 −13.666, ±i10.434
0.0000 -88.170607 LP1 a = 0.2946126 −20.00, 0.0000, 6.334
0.0000 88.170607 LP2 a = −0.2946126 −20., 0.00000, 6.334
5.0000 -17.569224 H1 l1 = 0.001737605 −13.666, ±i9.60221
5.0000 -22.684046 H2 l1 = 0.002156435 −13.666, ±i11.6893
5.0000 -50.443686 LP1 a = 0.2822182 −19.6054, 0.0000, 5.9394
5.0000 157.38987 LP2 a = −0.2981532 −20.7374,−0.00000, 7.07142
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7. CONCLUSION

We introduce a generalised scheme for designing multistable coupling Lorenz
system. In this scheme the two state variables of the coupled systems synchronize
and other state variables keep constant difference. In this scheme the coupled
Lorenz system reduces to a single modified Lorenz system. Equilibrium points of
the proposed system are determined and the local stability criteria is derived. Mul-
tistable nature of the coupled Lorenz system is described through bifurcation and
maximum lyapunov exponent diagrams. One and two parameter bifurcation anal-
ysis is done using MATCONT software. Our investigation and predictions may be
very useful for designing multistable systems in different branches such as biology,
physics and engineering sciences.
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