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BLOW UP OF THE WAVE EQUATION WITH NONLINEAR FIRST ORDER
PERTURBATION TERM

Soumia Abdelhadi1 and Ilhem Hamchi

ABSTRACT. In this work, we study the wave equation with damping, source and
nonlinear first order perturbation terms. Our aim is to prove that if the damping
terms dominated the first order perturbation term then the energy is decreasing
and the solutions with sufficiently negative initial energy blow up in finite time.

1. INTRODUCTION

In this paper, we consider the following system

utt −∆u+ g ∗∆u+ aut + F (t,∇u) = |u|p−2 u in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u (., 0) = u0(.) and ut(., 0) = u1 (.) in Ω,

(1.1)

where Ω is a bounded domain of Rn (n ∈ N∗) with a smooth boundary ∂Ω, T > 0,
p > 2, a > 0 are constants, g and F are a functions satisfying some conditions to
be specified later. Noting that (g ∗ v)(t) =

∫ t
0
g(t− τ)v(τ)dτ for all t ≥ 0.
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When F = 0, the problem of existence and nonexistence of global solution has
been extensively studied by many researches. In the absence of the polyno-
mial source term |u|p−2 u, Messaoudi [14] in 2005 considered system (1.1) with
a = 0. He obtained an exponential decay result of the global solution under some
conditions on the relaxation function g. In 1988 and 1989, Haraux, Zuazua and
Kopackova [9, 10] proved that if g = 0, then a nonlinear damping term of poly-
nomial or arbitrary growth assured the global estimates for arbitrary initial data.
Cavalcanti et al [4] in 2002 proved that the global solution of the semilinear vis-
coelastic wave equation with localized damping term decays exponentially to zero.
In the presence of the polynomial source term |u|p−2 u, Ball [1] in 1977 proved
that if the damping terms are absent, that is for a = 0 and g = 0, then the solutions
blow up when the energy of the initial data is negative. Berrimi and Messaoudi [2]
in 2006 considered the case of a = 0 and g 6= 0, they proved that the solutions
decay exponentially or polynomially depending on the relaxation function g. The
case of a 6= 0 and g = 0 was considered by Levine [11] in 1974, he showed that
the solutions blow up in finite time under some assumptions on the initial energy.
Messaoudi [12] in 2001 proved that if g = 0 and the source term dominated the
polynomial damping term, then the solutions with negative initial energy blow up
in finite time. In 2003, the same author [13] considered, the wave equation with
damping terms (polynomial and viscoelastic). Under some assumptions on g, he
proved that if the source term dominated the polynomial damping term then the
solutions with negative initial energy blow up in finite time and if the polynomial
damping term dominated the source term then for any initial data the global solu-
tion exists. In 2006, he considered the same system and proved that under some
conditions on the relaxation function g, damping and sources terms the solutions
with positive initial energy blow up too [15].

When F 6= 0 and the polynomial source term is absent, the systems of the
second order hyperbolic equation with linear or nonlinear first order perturbation
term have been considered in [3, 5–7]. Noting that, the inclusion of this term
produce serious additional difficulties since we do not have any information about
their influence on the energy of the solution, specially, about the signal of the
derivative of the energy. In 2008, Hamchi [8] considered the case of linear first
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order perturbation term, she introduced a new multiplier to remove the condition
of smallness imposed in the literature on the linear perturbation term.

Our aim in this work is to prove that if the damping terms (linear and vis-
coelastic) dominated the nonlinear first order perturbation term then the energy
is decreasing. So, we can define the auxiliary functional L. After that, we show
that the solutions with sufficiently negative initial energy blow up in finite time.

This paper consists of two sections in addition to introduction. In section 2, we
present some preliminary results needed for our work. In section 3, we give the
proof of main result of this work.

2. PRELIMINARY RESULTS

In this section, we shall give some preliminary results which will be used through-
out this work.

The existence and uniqueness result for system (1.1) is given in the following
theorem

Theorem 2.1. Suppose that

p ≤ 2(n− 1)

n− 2
if n ≥ 3.

g is a C1(R+) positive decreasing function satisfying

1−
∫ ∞

0

g(s)ds > 0

and F is a C1(R+ × Rn) function.
If u0 ∈ H1

0 (Ω)∩H2(Ω) and u1 ∈ H1
0 (Ω) then there exists a unique maximal strong

solution u in [0, T ) of system (1.1). Moreover, the following alternatives hold:

(1) T = +∞,
or

(2) T < +∞ and limt→T (‖ ∇u(t) ‖2
2 + ‖ ut(t) ‖2

2) = +∞.

Proof. As in [16]. �

Now, we consider the energy functional for the local solution u of (1.1) defined
for all t ∈ [0, T ) by
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E(t) =
1

2
‖ ut(t) ‖2

2 +
1

2

(
1−

∫ t

0

g(τ)dτ

)
‖ ∇u(t) ‖2

2 +
1

2
(g ◦ ∇u)(t)− 1

p
‖ u(t) ‖pp,

where

(g ◦ v)(t) =

∫ t

0

g(t− τ) ‖ v(τ)− v(t) ‖2
2 dτ .

We have

Lemma 2.1. Assume that the hypotheses of the Theorem (2.1) are verified and sup-
pose that

| F (t, U) |2≤ 2ag(t) | U |2, ∀ t≥ 0, ∀ U ∈ Rn.(2.1)

Then E is a decreasing function.

Proof. We multiply the first equation in (1.1) by ut(t), integrate it over Ω and use
Green formula to obtain for all t ∈ [0, T )

E ′(t) =
1

2
(g′ ◦ ∇u)(t)− a ‖ ut(t) ‖2

2 −
1

2
g(t) ‖ ∇u(t) ‖2

2 −
∫

Ω

F (t,∇u)ut(t)dx.

Since g′ ≤ 0 then

E ′(t) ≤ −a ‖ ut(t) ‖2
2 −

1

2
g(t) ‖ ∇u(t) ‖2

2 +

∫
Ω

| F (t,∇u) || ut(t) | dx.

If we use the following Young inequality

XY ≤ δµ

µ
Xµ +

δ−θ

θ
Y θ, for all X, Y ≥ 0, δ > 0 and

1

µ
+

1

θ
= 1,(2.2)

with

X =| F (t,∇u) |, Y =| ut(t) | and µ = θ = 2

we find

E ′(t) ≤ 1

2

∫
Ω

[
δ | F (t,∇u) |2 −g(t) | ∇u(t) |2

]
dx+

(
1

2δ
− a
)
‖ ut(t) ‖2

2 .

If we take δ =
1

2a
we obtain

E ′(t) ≤ 1

2

∫
Ω

[
1

2a
| F (t,∇u) |2 −g(t) | ∇u(t) |2]dx.

By (2.1), we find
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E ′(t) ≤ 0, ∀t ∈ [0, T ).

�

Consider the following functional

H(t) = −E(t), ∀ t ∈ [0, T ).

Lemma 2.2. Suppose the conditions of Lemma (2.1) hold. Assume further that
E(0) < 0. Then

0 < H(0) ≤ H(t) ≤ 1

p
‖ u(t) ‖pp, ∀ t ∈ [0, T ).

Proof. From the definition of E, H and the decreasing of E. �

3. MAIN RESULT

In this section, we shall discuss the blow up question of system (1.1).

Theorem 3.1. Under the assumptions of Lemma (2.2) and assume that a and g

verify

α :=
p− 2

2
−

3C∗
√
ag(0)

2
− (

p− 2

2
+

1

p
)

∫ ∞
0

g(τ)dτ > 0,(3.1)

where C∗ is the best constant of the Poincare inequality then the solution of problem
(1.1) blows up in finite time.

Proof. We proceed in 4 steps:
Step 1 Since H is positive then we can define for all ε > 0 the auxiliary functional
L as follow

L(t) = eatH
p+2
2p (t) + εeat

∫
Ω

u(t)ut(t)dx, ∀t ∈ [0, T ).

If we derive the functional L with respect to t we obtain

L′(t) = aeatH
p+2
2p (t) +

p+ 2

2p
eatH

2−p
2p (t)H ′(t) + εaeat

∫
Ω

u(t)ut(t)dx

+ εeat ‖ ut(t) ‖2
2 +εeat

∫
Ω

u(t)utt(t)dx.
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Since H and H ′ are positive then

L′(t) ≥ εaeat
∫

Ω

u(t)ut(t)dx+ εeat ‖ ut(t) ‖2
2 +εeat

∫
Ω

u(t)utt(t)dx.(3.2)

If we multiply the first equation of (1.1) by u(t) and integrate it over Ω we obtain∫
Ω

u(t)utt(t)dx =

∫
Ω

∆u(t)u(t)dx−
∫

Ω

∫ t

0

g(t− τ)∆u(τ)u(t)dτdx

− a

∫
Ω

ut(t)u(t)dx−
∫

Ω

F (t,∇u)u(t)dx+ ‖ u(t) ‖pp .

If we use Green formula and boundary conditions we find∫
Ω

u(t)utt(t)dx = − ‖ ∇u(t) ‖2
2 +

∫ t

0

g(t− τ)

∫
Ω

∇u(t).∇u(τ)dxdτ

− a

∫
Ω

ut(t)u(t)dx−
∫

Ω

F (t,∇u)u(t)dx+ ‖ u(t) ‖pp .(3.3)

First, we have∫ t

0

g(t− τ)

∫
Ω

∇u(t).∇u(τ)dxdτ =

∫ t

0

g(t− τ)

∫
Ω

∇u(t).[∇u(τ)−∇u(t)]dxdτ

+

∫ t

0

g(τ)dτ ‖ ∇u(t) ‖2
2 .

By Schwart inequality, we find∫ t

0

g(t− τ)

∫
Ω

∇u(t).∇u(τ)dxdτ

≥ −
∫ t

0

g(t− τ) ‖ ∇u(t) ‖2‖ ∇u(τ)−∇u(t) ‖2 dτ

+

∫ t

0

g(τ)dτ ‖ ∇u(t) ‖2
2 .

If we exploit Young inequality (2.2) with

X =
√
g(t− τ) ‖ ∇u(τ)−∇u(t) ‖2, Y =

√
g(t− τ) ‖ ∇u(t) ‖2

and
µ = θ = 2,
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we obtain for all β1 > 0∫ t

0

g(t− τ)

∫
Ω

∇u(t).∇u(τ)dxdτ ≥ −β1(g ◦ ∇u)(t)

+

(
1− 1

4β1

)∫ t

0

g(τ)dτ ‖ ∇u(t) ‖2
2.(3.4)

On the other hand, if we use Young and Poincare inequalities we find for all β2 > 0

−
∫

Ω

F (t,∇u)u(t)dx ≥ − 1

2β2

∫
Ω

| F (t,∇u) |2 dx− β2

2
C2
∗ ‖ ∇u(t) ‖2

2, ∀t ∈ [0, T ).

By (2.1), we find

−
∫

Ω

F (t,∇u)u(t)dx ≥ −
(
ag(t)

β2

+
β2

2
C2
∗

)
‖ ∇u(t) ‖2

2, ∀t ∈ [0, T ).

Since g′ ≤ 0 then

−
∫

Ω

F (t,∇u)u(t)dx ≥ −
(
ag(0)

β2

+
β2

2
C2
∗

)
‖ ∇u(t) ‖2

2, ∀t ∈ [0, T ).(3.5)

Now, by the definition of H we have

‖ u(t) ‖pp =
p

2
‖ ut(t) ‖2

2 +
p

2

(
1−

∫ t

0

g(τ)dτ

)
‖ ∇u(t) ‖2

2

+
p

2
(g ◦ ∇u)(t) + pH(t).(3.6)

Replacing (3.4), (3.5) and (3.6) in (3.3) to obtain∫
Ω

u(t)utt(t)dx

≥ − ‖ ∇u(t) ‖2
2 −β1(g ◦ ∇u)(t) +

(
1− 1

4β1

)∫ t

0

g(τ)dτ ‖ ∇u(t) ‖2
2

− a

∫
Ω

ut(t)u(t)dx−
(
ag(0)

β2

+
β2

2
C2
∗

)
‖ ∇u(t) ‖2

2 +
p

2
‖ ut(t) ‖2

2

+
p

2

(
1−

∫ t

0

g(τ)dτ

)
‖ ∇u(t) ‖2

2 +
p

2
(g ◦ ∇u)(t) + pH(t)

= (
p

2
− β1)(g ◦ ∇u)(t)− a

∫
Ω

ut(t)u(t)dx+
p

2
‖ ut(t) ‖2

2 +pH(t)

+

[
p− 2

2
− ag(0)

β2

− β2C
2
∗

2
− (

p− 2

2
+

1

4β1

)

∫ t

0

g(τ)dτ

]
‖ ∇u(t) ‖2

2 .
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If we take β1 =
p

4
and β2 =

√
ag(0)

C∗
we find

∫
Ω

u(t)utt(t)dx ≥
p

4
(g ◦ ∇u)(t)− a

∫
Ω

ut(t)u(t)dx+
p

2
‖ ut(t) ‖2

2 +pH(t)

+

[
p− 2

2
−

3C∗
√
ag(0)

2
− (

p− 2

2
+

1

p
)

∫ t

0

g(τ)dτ

]
‖ ∇u(t) ‖2

2 .

Since g ≥ 0 then∫
Ω

u(t)utt(t)dx ≥
p

4
(g ◦ ∇u)(t)− a

∫
Ω

ut(t)u(t)dx+
p

2
‖ ut(t) ‖2

2 +pH(t)

+ α ‖ ∇u(t) ‖2
2 .(3.7)

Replacing (3.7) in (3.2) to find

L′(t) ≥ εeat(1 +
p

2
) ‖ ut(t) ‖2

2 +εeat
p

4
(g ◦ ∇u)(t) + εeatpH(t)

+ εeatα ‖ ∇u(t) ‖2
2 .

Let β > 0. By writing p = 2β + (p− 2β) and since

H(t) ≥ 1

p
‖ u(t) ‖pp −

1

2
‖ ut(t) ‖2

2 −
1

2
‖ ∇u(t) ‖2

2 −
1

2
(g ◦ ∇u)(t)

we obtain

L′(t) ≥ εeat(1 +
p

2
− β) ‖ ut(t) ‖2

2 +εeat(
p

4
− β)(g ◦ ∇u)(t) + εeat(p− 2β)H(t)

+ εeat(α− β) ‖ ∇u(t) ‖2
2 +εeat

2β

p
‖ u(t) ‖pp .(3.8)

If we take β < min
(p

4
, α
)

, inequality (3.8) takes the form

L′(t) ≥ Ceat[H(t)+ ‖ ut(t) ‖2
2 +(g ◦ ∇u)(t)+ ‖ u(t) ‖pp], ∀t ∈ [0, T ].(3.9)

Step 2 We have

L(0) = H
p+2
2p (0) + ε

∫
Ω

u0u1dx.

If ∫
Ω

u0u1dx ≥ 0,
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then

L(0) ≥ 0.

If ∫
Ω

u0u1dx < 0,

then, if we take

ε <
−H

p+2
2p (0)∫

Ω
u0u1dx

we obtain

L(0) ≥ 0.

then from the increase of L, we find that

L(t) ≥ 0, ∀t ∈ [0, T ).

Step 3 By the definition of L and the following inequality

(µ+ θ)m ≤ 2m(µm + θm), for all µ, θ ≥ 0 and m > 0

with

µ = H(t), θ = ε

∫
Ω

| u(t) || ut(t) | dx and m =
2p

p+ 2

we obtain

L
2p
p+2 (t) ≤ 2

2p
p+2 e

2pat
p+2

[
H(t) + ε

2p
p+2 (

∫
Ω

| u(t) || ut(t) | dx)
2p
p+2

]
≤ Ce

2pat
p+2

[
H(t) +

(∫
Ω

| u(t) || ut(t) | dx
) 2p

p+2

]
,

where C is a generic positive constant.
If we use Schwarz inequality and the embedding Lp(Ω) ↪→ L2(Ω) we find

L
2p
p+2 (t) ≤ Ce

2pat
p+2

[
H(t)+ ‖ u(t) ‖

2p
p+2
p ‖ ut(t) ‖

2p
p+2

2

]
.
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If we use Young inequality (2.2) with

X =‖ u(t) ‖
2p
p+2
p , Y =‖ ut(t) ‖

2p
p+2

2 , µ =
p+ 2

2
and θ =

p+ 2

p

we find

L
2p
p+2 (t) ≤ Ce

2pat
p+2
[
H(t)+ ‖ ut(t) ‖2

2 + ‖ u(t) ‖pp
]
.(3.10)

Step 4 We proceed by contradiction, we assume that T = +∞. By combining
(3.9) and (3.10), we arrive at

L′(t)L−
2p
p+2 (t) ≥ Ce

(2−p)at
p+2 .

A simple integration over (0, t) gives

L(t) ≥ 1[
L

2−p
p+2 (0)− C

(
1− e

(2−p)at
p+2

)] p−2
p+2

.

This leads to a contradiction. �
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