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EXISTENCE RESULTS OF GENERALIZED PROPORTIONAL FRACTIONAL
DIFFERENTIAL EQUATIONS AT RESONANCE CASE BY THE TOPOLOGICAL
DEGREE THEORY

M. Azouzi', L. Guedda, and Z. Laadjal

ABSTRACT. In this paper we study the existence of solutions to multi-point bound-
ary value problem of fractional differential equations at resonance, involving the
Generalized Proportional Fractional derivative(GPF derivatives). the concerned
results are obtained via extansion of Mawhin’s continuation theorem. An illustra-

tive example is presented.

1. INTRODUCTION

Recently, the theory of fractional differential equations (FDEs) is the subject of
numerous research works. resulting from the modeling of various problems of
physics, chemistry and biology,. ... See, [8-11].

Indeed, many techniques are always used to prove the existance of solutions for
ordinary and fractional equations. The readers can be referred to [6,|7,(13,14],
but here we interest on using the topological degree theory. This methode is an
effective tool for the existance of solutions to boundary value problems (BVPs for
short). See [[15-17].
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In [1]], Fahd, et al., proposed the generalized proportional fractional derivatives
(GPF for short) and integrals. It have three advantages: the generated fracional
integrals have a semi-group property, the kernal of the fractional operator include
exponential function, and when the order p tends to 1 reduce to the Riemann-
Liouville and Caputo fractional derivative and integral.

The aim of this paper is to study the existance of solutions for a class of fractional
differential equations by using the extension of Mawhin’s continuation theorem,
More specifically, we consider the following generalized proportional fractional
differential equation, with multi-point boundary conditions of the form:

(1.1) DIPu(t) = f(tu(t), D Put) 0<t<1
(1.2) u(O) =0,
(1.3) D5 (1) = Y 0: DT u(i),

=1

where “©;” denote the generalized proportional fractional derivative of Caputo

type of order o € (1,2],p € (0,1],0 <m; < 1, 0; € R, i o; = 1, m € N*, and
=1

f:]0,1] x R x R — R is a given continuous function.

To investigate the problem, we use the condition
(1.4) Zamffo‘e_‘s(l_m) =1,
i=1

where § = 21
The article is organized as following: Section 2, we give some definitions and
lemmas, In Section 3, we will demonstrete a theorem of existence of solutions for

the problem ((1.1)-(1.2)-(1.3|). Finally, we give an example to prove our results.

2. PRELIMINARIES ABOUT THE FRACTIONAL CALCULUS AND COINCIDENCE DEGREE
THEORY

In this section we give some definitions and lemmas from the theory of frac-
tional calculus.We start by defining Generalized Proportional fractional integrals
and derivatives. these definitions are adopted from [[12], [5].
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Definition 2.1 ( [1]). For p € (0,1] and o > 0. The left generalized proportional
fractional integral of of f is defined by

(2.1 (TP f) (t) = pal“l(a) /at (t —s)*! ¢ o) f (s)ds,

where t € [a, b).

Definition 2.2 ( [1]). For p € (0,1] and « > 0. The left generalized proportional
fractional derivative of Caputo type of the function f € C™|a,b] is given by

oLty = T (D) ()

(22) = m /a't (t — S)n—a—l epT_l(t—S) (DTL,Pf> (S) dS,
wheren —1 < a <n,n €N, and (D" f)(t) = (D*f)(t) = (1 —p)f(t) + pf'(t), and
(2.3) (D™ f)(t) = (DD’ --- D’ f)(t), forn > 1.

Remark 2.1. In the case p = 1, the definitions [2.1|and [2.2|reduce to a left Riemann—
Liouville fractional integral and left Caputo fractional derivative, respectively.

Remark 2.2 ( [5]). We can writeen the formula for p € (0,1], as follows

n—1

(2.4) (D™Pf)(t) = p" [ () + Y CrpF (1= p)"F P (1),
k=0

where Ct = () = #lk),

Proposition 2.1 ( [1]). For p € (0,1], and «, 8 € C such that « >0, 8 > 0and n
is the integer part of « then for f € L'|0, 1] we have:

(2.5) TSP TS () = TP T f(t) = Tg 7 £ (1),
(2.6) (TPtP=1e) (z) = —pal“r(éﬁj— B):caﬂg*leam,
2.7) (CQS’ptﬁ_leét)(x) = Ifo(zr—ﬁﬁ(i)mﬁ_a_leh, R(B) > n,

(2.8) DI (1) = f(1),
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k=n—1
(2.9) T (COFPF) (1) = f (1) — > atte”, fec™o,1],
k=0
where ¢, = (D’:ZQ(“).

Definition 2.3 ( [5]). Let « € C (R(«) > 0), and t > 0. The lower incomplete
Gamma function is defined by

t
(2.10) (e, t) :/ y* e Vdy.
0

Also, the lower regularized incomplete Gamma function is defined by

Y(a,t)
I(a)

(2.11) B, t) =
Remark 2.3. The function ‘g is also called "Incomplete Gamma function".

Lemma 2.1 ( [5]). Let ,n € Rt o > 0 It is clear that P(«, t) is a non-decreasing
function with respect to t € [0, 1]. And moreover

t2
(2.12) / Yy e Vdy = y(a, ty) — yla,ty),ts >t > 0,
t1
(2.13) PBla,t) € [0,1] forall t € [0, 1],
(2.14) trél[gxii]‘ﬁ(oz ) |1 = P(a, 1),
(2.15) min P(a, n(t — a)) = P(a, t)]=o = 0.
t€(0,1]

Lemma 2.2 ( [5]). Let p € (0,1], t1,t2 € [0,1] (t; < t2), and « > 0. Then

(2.16) / e s = AT 38 =601~ 1)) = (o, =001~ ).

Lemma 2.3 ( [5]). Let p € (0,1}, and 0 <t; <ty < 1.Forall0 < o > 0, then
t1

(2.17) lim |(t2 —5)> ! Ot2=s) _ (t; — 3)“‘165(t1_5)| ds = 0.

to—t 0
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Lemma 2.4 ( [5]). Let p € (0,1], 3> 0, and g5(t) = **t?,t € [0, 1], then

(52)7%, if —5¢elo1],
2.1 t) =
@19 et .
e’ if —2¢0,1orp=1L

Lemma 2.5. For 0 > 0, the linear space

k=[0]
Col0.1] = Quu(t) =Tt + > atie’s ! 2 €C0,1] ¢,
k=0

where [0] is the integer part of 6 and ¢, € R with the norm

k=[6]
lullgo = lullo + D 196 ul| .,
k=1

is a Banach space.

Lemma 2.6 ( [12]). M c C?]0,1] is relatively compact set if and only if
(1) M is uniformly bounded: there exists m > 0, such that ||ul| .o < m, for every
u e M.
(2) M is equicontinuous: for every € > 0, there exists § > 0, such that for all
t1,to € [0,1], |ta — t1] < J, we have

u(ty) —u(t)| < eand [*DFFPu(ty) =D Pu (t))] < e,
forallu e M with k=0,1,2,...,[0].

Next, we present the notations and nomenclatures with regard to the coinci-
dence degree, see ( [12]).

Definition 2.4 ( [12]). Let X,Y be two real Banach spaces, €2 be an open bounded
subset of X, and L : dom(L) C X — Y is alinear operator, N : X — Y is nonlinear
mapping. If Im L is a closed set of Y and dimker(L) = codim Im (L) < +o0, then
L is called a Fredholm operator of index zero. In this case there exist two linear
continuous projectors P : X — X, @ : Y — Y such that Im P = ker L, and ker ) =
Im L and we can write X = ker(L) @ ker(P), Y = Im (L) ® Im (Q). It follows that
Lp = Ligom(t)nkerp : dom(L) Nker P — Im L is invertible. We denote the inverse
of Lp by Kp. If dom(L) N Q # 0, the mapping N will be called L-compact on € if
QN(Q) is bounded and K (I — Q)N : Q — X is compact.
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Theorem 2.1. Let X,Y be two real Banach spaces, L : dom(L) C X — Y be a
Fredholm operator of index zero and N : X — Y be an L-compact mapping on ).
Assume that the following conditions are satisfied:

(1). Lu # ANw for all (u,\) € (dom(L)\ ker L) N 082 x (0, 1),

(2). QNu # 0 for all x € ker L N OS2,

(3). deg(QNjxerr, 2 Nker L,0) # 0.
Then the equation Lu = Nu has at least one solution in dom L N ().

In this paper,we will consider the Banach spaces
X =C7M0,1] = {u:u(t) = T M2(t); 2(t) € C[0,1]},

with the norm
llullx = [l + [|“D6""ul]

oo’

where ||u|| , = max;epqy |u (t)] and Y = L0, 1] with the norm ||y||, = ||y]|, -
Define the two operators L, N : dom(L) C X — Y as follows:

(2.19) Lu(.) =° D%Pu(t) u € dom(L),
and

(2.20) Nu(t) = f(t,u(t),c D5 u(t)),
where

dom(L) = {u € X s.t. D§ u(t) € L'0,1],u(0) = 0,

D u(l) = 3 o 0598“_1’”U(77i)} .
i=1

Notice that problem(1.1)-(1.2)-(1.3)) can be converted to the abstract operator
equation Lu = Nu, u € dom(L).

3. THE EXISTENCE OF SOLUTIONS TO MULTI-POINT BOUNDARY VALUE PROBLEM OF
FRACTIONAL DIFFERENTIAL EQUATIONS AT RESONANCE, INVOLVING THE
GENERALIZED PROPORTIONAL FRACTIONAL DERIVATIVE

Firstly, we consider the following constants:

1 i=m i
(3.1) A= / 1=5) s — Z O-i/ =9 s,
0 i=1 70
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—1
_ st _ 1 s
(3.2) L, = Orgtagxl !te ‘ = max{ 5 €%},
(3.3) Ly = max [t*%"| = max{(a _ 2)2_0‘ e’}
' 27 o<t de b
ol 26
(3.4) k= pTla)e

T (L1 + L) + (1 + p* 1T (a))

and the function

(3.5) A(t) = F(ga—:la)tzae&,t € [0,1].
Also, we define the two linear operators 1,1, : Y — Y by
(3.6) Ly = /01 1)y (s)ds,
and
(3.7) Ly = iinfai /Om' M=)y () ds.
=1

3.1. Some auxiliary lemmas.

Lemma 3.1. Let L be the operator defined by (2.19), then

kerL:{cte&:ceR} and ImL={yeY: Ly— Ly=0}

619

Proof. For each u € ker L, we have Lu (t) =° ©g"u (t) = 0. So, it’s equivalent to

u(t) = coe® + erte’, t € [0,1].

As condition (1.2)), imply ¢y = 0. So, u (t) = cite’.
Now, for all y € Im L, there exist u € dom (L) such that

Dy ult) =y (t).

By (2.9) we get
u(t) = T3Py (t) + coe® + cyte’.
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From the condition (1.2), we find ¢, = 0, and in view of conditions (1.3)-(1.4),
we obtain that
u(t) = erte” + T3Py (t).
Thus ,
C@g_l’pu(t) = (Cﬁg_l’pte&) + l/ eﬁ(t_s)y(s)ds.
0

p
Applying (2.7) we get

cqya—lp ®) ! p2agdt | 1 /t 5(t—s) (s)d
Tult) = ——— e - e s)ds.
’ rG3-a) pho &

From ‘@5 " u(1) = i o; ‘@5 Pu(n;),we obtain
=1

a—1 1 =m a—1
c1p 5 1/ 5(1—s) cp 2—a 07
e"+— [ e y(s)ds = E Oim—1; e

0 —1 I'(3—a)

I'3—a) P
1 i=m i
+ - Z ai/ M=%y (s)ds,
[ 0

also

1 i=m i
/ 19y (s)ds = Z O’i/ M=%y (s)ds.

We conclude that
On other hand, suppose that y € Y satisfies (3.8).
If u(t) = [)"‘F;(a)f(]t(t — 5)21e(t=%)y(s)ds, then u € dom(L), indeed wu(t) =

T 7Py (t) and we can easily show the boundary conditions(1.2)-(1.3) hold,
which means that “©y"u(t) = y(t) soy € Im (L). O

Remark 3.1. It easy to show that A # 0.

Proof. As + < 0, suffices to proof that S o (1—e)+e’—1<0,or S o (1—
=1 =1
) 4+ ¢° — 1 > 0, By the resonance condition (1.4), we have

iai (1 - 65m) + 66 — 1 = iai 65772' (T]i27a - 1) .
=1 i=1
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In fact, for all i = 1,2,...,m, o; > 0,m; € ]0;1[, 0 < &’ < 1, 0y’ > 0, and
(n~* —1) < 0, we have o; € (;~* — 1) < 0, by the condition Z o; = 1, there

exists at least ig € {1,2,..., m} such that o;, # 0 and hence ;, e S (mo *-1) <0
which prove that

iai e (7" —1) <0.
i=1
Therefore A # 0. l

Lemma 3.2. We can define two linear continuous projectors P and () as follow

P : X — X such that Pu (t) = F(3—15>t ot ol Lp (1),
pre
and 1
QY —= Y such that Qy(t) = Z(]ly — Ly),
where A # 0.

The inverse of the operator Lp = Lijgom(r)nkerp IS the operator Kp : ImL —
dom (L) Nker P defined by

1 t
Kpy(t) = J)" y (t) = / t— )19ty (s)ds,
py(t) = Jo""y (1) paF(a)O( ) (s)
and checking
(3.9) I1Kpyllx <yl

1 14p° 7T (@)
where C' = T

Proof. For all u € X, we get
QI Py (1) =¢ D5 Pu (1)

We have

T _ a—1
O ) oo (1) = 0 (1),

craa—1, _
Dy PPu(t) = e T(3—a)

then 3 o)
craa—1,
P(PU(t)) = Wt ot @ pPU(l) = PU(t),

fort € [0,1].
We note that Im P =ker L, ker P = {u € X;*®§ " u (1) = 0}.
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From Lemma we have

(3
Pu(t)] = —t‘”C@‘“” 1
Pu)l = —C=5 | (V)]

LlF(S ) crao—1

< W' D Tu(l))|
Ly
< WHUHX,
on other hand
(3.10) DI Py(t)] < 22 fepa-tey(1)| < L2
. } 0 U()‘_p 65’ 0 U()‘_WHUHX

Then

O Li+ Ly
(3.11) 1Pullx = | Pull,, + ||*D5 " Pul| , < St ) el

For all y € Y, taking +( I,y — Lby) = v, thus
Qy = Q(Qy)
= l /166(1_5) Uds_zi’:”a/m =) yds
A \Jo i=1 0
= %A:U,

so Q? = Q. Furthermore, we have
(3.12) 1Qully < Cllylly -
where ¢ = 42

For any u € dom (L) N ker P, by proposition [2.1] - [2.9| we can write
KpLu (t) = J3° D5 u (t) = u(t) + coe® + erte’,

with ¢ € (0, 1] and ¢y, ¢; are two real constants. As KpLxz € dom (L) Nker P, then ¢
=0 and

a—1

— cga 1,p ()"’Cl P 66

098‘71”3 (u () + clte‘;t) I3 _a)

-

a—1
I'd—a)
which imply that ¢; = 0, therefore KpLu = u.

= 6620,
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If y € ImLwe get LKpy(t) = D5"Jy""y (t) = y(t) which show that Kp =
(Lp)~" ., and the other hand

[Kpyll = 175yl + 1760l
C ;-

A

This complete the proof. O
Lemma 3.3. L is a Fredholm operator of index 0.

Proof. Forany y € Y, we canwrite y = (I — Q)y + Qy. (I — Q)y € ker@Q = Im L,
Que ImQtheny € ImL+ Im@Q. Assume thaty € ImLN Im@ thus y =c€R
such that

1 i=m i
0 —  Jo

i.e ¢ = 0, which imply that InZL N Im@ = ¢ an hence Y = ImL & Im@Q. As
dim Im @ = dimker L = 1, then L is a Fredholm operator of index 0. O

Lemma 3.4. Assume that M is an open bounded subset in X such that dom (L) N
M +# ¢.The operator N L-compact on M.

Proof. The boundness of M imply that there exists R > 0 such that for all v € M,
we have |july = |lull, + ||*D5™*ul|, < R. By the continuity of f there exists
A > 0 such that |f (s,u(s))| < A for all u € M. So, we get

|QNul, < C|Null, < CA,
and
(3.13) 17 - Q) Null, < [Null, + [QNull, < (C+ 1)A,
we conclude that
1Kp (I — Q) Nullx < C"[|(I = Q) Nu|l, <C'(C+1)A,

then QN (M) and KpgN (M) are bounded, we only need to prove that KpoN (M)
is equicontinuous. Putting 0 < ¢; <ty <1,
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|[Kp (I — Q) Nu(ty) — Kp (I — Q) Nu(t1)]
1 2 a—1 5t2 s) U
T(a) (t2 — s) (I = Q) Nu(s)ds

- /tl(tl — 5)27 1) (I — Q) Nu(s)ds
0

:w&®<

— /tl(tl — s)o"le‘s(trs) (I — Q) Nu(s)ds
0

/t1 (ty — 5)° 1279 (] — Q) Nu(s)ds
0

1 )

PT(a) (/t1 |(t2 — 5)* 1?27 — (t; — 5)* 1’| |(T — Q) Nu(s)| ds
0

+ /t2 (to — S)C“*le‘;(t?*s) (I — Q) Nu(s)ds

+["Mm—@*%Wrﬂubwwngm§

_ t1
< H(] ?() ];[qu (/ |(t2 . S)a—165(t2—s) _ (tl _ S)a—leé(m—s) ds
pella 0

to
+ / |(t2 — 5)“’165@2’3)! ds) :
t1

Using Lemma [2.2] and the inequality (3.13) we get
|Kp (I = Q) Nu(tz) — Kp (I = Q) Nu(t)]

(Sa;(la))A </O 1 ‘(tz B 8)0{7166“278) — (- 5)" 1,8(t-5)| g
(C+1)A
(1—p)e

From Lemma [2.3] we obtain

[B(a, =(t2 — t1)) — 0].

’Kp([-@)NU(tQ)—KP(I—Q)NU(t1)| —0ast; — to.

On other hand, we have



RESULTS OF GENERALIZED PROPORTIONAL FRACTIONAL DIFFERENTIAL EQUATIONS. .. 625

D) PEp(I-Q)Nu(t) = Jy"(I—Q)Nu(t)
t
= l/ =9 (I — Q) Nu (s) ds.
P Jo
Similarity,

“D5 Y Kp (I — Q) Nu(ts) =Dy " Kp (I — Q) Nu(ty)|

to t1

! / -9 ([ = Q) Nu(s)ds — / 1) (1 — Q) Nu(s)ds
0 0

t1 to

(C+1A (/ }65(152—3) B eé(tl—s)} ds+/ ea(tQ—s)dS> ’

P
p 0 i1
from Lemma [2.3] (with o = 1) we get

D5 Kp (I — Q) Nu(ta) = D5 " Kp (I — Q) Nu(t))| — 0 ast; — .

According to the Lemma Kp (I — Q) N (M) is compact, which show that N
is L-compact on M. OJ

3.2. An existence theorem for the Generalized Proportional fractional differ-
ential equations.
Theorem 3.1. Suppose that there exists:

(C}) There exists a L'—Carathéodory function ® : [0,1] x R, x R, — R, which
is non decreasing with respect to the last two variables such that

f (tz,y)l < @ (¢ |2l [yl),

forall (z;y) e R*and t € [0,1].
(C2) A real My > 0, such that if we have |“D5~"u (t)| > M, for all t € [0,1],
then

Lf (8 u(t), D 2 u(t)) — Lof (8 u(t), D5 u(t)) # 0.
(C3) Areal M, > 0, such that for |c| > M;, then either

(3.19) c (IlN(cte&) — IQN(cte&) >0,
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or

(3.15) c(I N (cte®) — I,N(cte®)) < 0,

then the fractional BVPs (|1.1)-(1.2)-(1.3) has at least one solution in dom (L)
C X, provided that

par(a)€25
Ly + Ly) +e*(1 + p*~'I'())

1
(3.16) /0 O (t,r,r)dt < Tl r+f.

Where (3 is a positive constant.

Proof. Stepl: Let
Q1 ={uedom(L)\ker L: Lu=ANu,\ € [0,1]}
We will show that it is a bounded set. Notice that if u € Q; then \ € (0, 1], because

Q; Nker L = ¢,which allows us to write Nu = Liu € Im L = ker @, then

1
QNu = / 179 (s, u(s), D5 P u(s))ds
0

i=m U
- Z Ui/ =9 (s, u(s), D5 Pu(s))ds = 0.
i=1 0

By the condition (C5), there exists t, € [0, 1] such that |D§™""u (t;)| < M,. On the
other hand, we have

t
D ult) = DM ult) + [ O Dy () ds

to
t

= 098‘1% (to) + / St f (s, u(s),’ @8‘_1”’14 (s)) ds,
to

then

t
BAPDF Pult)| < D5 u(to)] + / I f (s,u(s), DG u(s)) ds

to

Furthermore, we can write

u=I—-P)u+Pu =KpL(I—P)u+ Pu
:KPLU+PU,
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then
ull x < [[KpLullx + [|Pul|y .

By using (3.17)), we obtain

F(3 5tc a—1
|Pu(t)] = W’t Dy Fu(1)]
Ll 1
< — Dy
< A1)
< W(MOJFHNUH)
and
crya—1,p L2 crya—1
‘D5 Pu(t)| = 5‘90 u(1)]
Ly
< —migs (Mo + [[Nzl),).
Then Lo+ L
1 2
[ Pullx < g (Mo + || Null,) -
By simple calculations, we have
1+ p* ()
[KpLully < ——=—~— [INull,
. p°T () !

which gives

L+ L I'(a) (L1 + L S(1+ p>~'
(3.18) [ullx < (plaiej) M, + (p (@) (L1 + ;3;(5)6(5 e (a)>> INu||s.

It is easy to see that
(3.19) INu ()] = |f (s,u(s) "D Pu(s))ds|.

According to conditions (C;) and (3.16)), we obtain

(320)/ |f (s,u(s) Dy u(s))|ds < /ch( )|, |06 u (s)]) ds

1
< / B (s, [[ully  lull) ds
< klully + 8.

Then || Nu||; < k.||u||x + § substitude this result in (3.20) we get
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a) (Ly + L) +¢€° I (a

HUHX < (l—;la‘i‘li—?) M, + (/)F( ) (L + Lpa)r—lga)e(él +p F( ))) HNqu
L1+ Lo pF(oz) (Ll + LQ) + ed (1 + po"lf(a))

< (Gre) o T(@)e R

Dot Lo\ 3y s s (D)t L) 46 (1 7T (a)
(5 ) e At ( T )#

We conclude that

I'(a)(L1+La)+ed (1402710 (a)
(Btr) vy + (Rt M) )

1—¢69

lullx <

Thus €2, is bounded.

Step 2: Let
Q={ueckerL: Nue ImL}.

For all u € (2, there exists a real constant ¢ such that u (t) = c te®,t € [0,1] and as
Nu € Im L then

QNu=0.
In view of (03) there exists ¢, € [0, 1] satisfying [*D§~"u (t,)| = )—)tz redti| <
My i.e |c] < L —202 - which yields that
Lyp*~!
s 2F
||u||X |C 1| + CP(?) — O{)
L2pa71
— L+ 28
‘d(1+r@—a0
Ly +1
pa 1L ( 1+ )

then ()5 is bounded.

Step 3: Assume that condition (C5) — (3.14) holds. Let
Qy={ueckerL: AJu+ (1 -X)QNu=0,\€[0,1]},

where J is the isomorphism defined by J : ker L — ImQ; J (c te’") = c.
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For u = c te® € Q3, we have

- = —1 —A ds
(3.21) Au+(1=A) QNu=Ac+ A (L1 f(s,cse”,A(s))

—Lf(s,cse’, A(s))) = 0.
If A =0, we get QNu = 0 so by the condition (C3) there exists ¢, € [0, 1] such that

craya—1,p Cpail 2—a ot
D5 u (t2)| = T3 oyl (e < Mo,

(3 —a)

So, |c| < %, and hence

L2pa—1 L2pa—l M
et L Y I T Li+1
T3 —a) ‘C|(1+F(3—a) = a1L<1+)

In the case A # 0, in view of the condition (C3) — (3.14]) we get

lullx = leLa] + |

—Ac? = u _A/\)C(Ilf(s cse® A(s)) — I f(s, cse®, A(s))) > 0,

which contradict (3.14). Then |¢| < M; which show that Q3 is bounded.
If (C3) — (3.14) holds, we prove by the same method that

Qs={uckerL: -Au+(1-XN)QNu=0,X¢e€][0,1]}

is bounded set. It remains to check that all conditions of Theorem ) are
fulfilled. Let Q; Uy U Q3 C Q. As €4, ), and 23 are bounded sets, then

(1) Lu # ANu for all (u, A) € (dom(L)\ ker L) N9 x (0,1),

(2) QNu # 0 for all z € ker L N 092,

(3) Without loss of generality, assume that (C5) — - 3.14) holds and define the
operator

F(u,\) = AJu+ (1 — \)QNu;

as (23 is bounded then, F'(\, u) # 0 for all (u, A) € (ker LNON) x (0, 1) Thus, by the
homotopy property of degree, we have

deg(QNyer, 2Nker L,0) = deg(F(.,0),2Nker L,0) = deg(F(.,1),2Nker L,0)
= deg(J,Q2Nker L,0) # 0.

Consequently, the equation Lu = Nu has at least one solution in dom(L) C X.
Namely, BVPs (1.1))-(1.2)-(1.3|) has at least one solution in the space X. O
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4. A NUMERICAL EXAMPLE

Consider the boudary value problem

D ?u(l) = 01°Dg " u (m) + 02°Dg " u (1)
where .
3 1 p—1 6 — 2ed
a=—,p=—0=——=—10,= ~ (.7638..,
273 P P 3t — 26t
3ei — 6 1
oy = ~ 023, ==, ==,
2 3@% — 26% 771 772
and
0

7 (00,05 *u(t)) =

vt <oty ] - o

3
4ed -7

Notice that obviously,condition (A;) holds with

. » 0 ift € [0;1]
( . ) (,x,y)— 45_7[‘7;—|—y—|—1](t—i)el_t lftE[}lal}
and
1 1 !
(2r + 1)k /( )
(I)zf7 , dt = (Dt, 5 dt = ¢
/(; ( TT) A ( TT) 464_7 1 4
4.2)

dei — 7

2 + 1 det — 7
_ (2r+ )ﬁ,<e4 )_gr+f<m,+f,

Choosing M, = 3 Assume that | DZ"?u(t) |> M, foreach ¢ € [0;1]. if | D2 u(t) |>

M, for all ¢t € [0; 1] we have

f <t,u(t)7CD§’%u(t)> S My (t - i) et

4ea — 7

then
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K ! 1
. -2+ M, — =
det —7[ i 0]/}1 (8 4> dS

~
=
IS
Il
—
2
Cb‘
—
B
s
VR
\.03
<
—~
V)
N—
T o
)
(==
o=
<
—
V)
N—
N~
QL
V2]
V

o
==}
—
=
¢}
o
—
=
)
=
=
[aV]
=]
s
:':)
Q
-
(==
=

u(t) < —M, forall t € [1;1] we get

11 1
f (t,u(t),CD§’2u(t)> < f [1— My —1] (t - —) et
det — 7 4

S0,

1 11 ! 1

I, Nu = / e=(1-9) (s,u(s)f D¢ 2u(s)> ds < — (—MO)/ (s - —) ds
: det — AN

9
= — /; MQ <0

32 (4ez - 7)

]QNU = 0.

This assure that the condition (As) is satisfied.
Taking M, =7,

K

1
c (IlN (cte’t) — LN (cte’t)) =cliN (cte’t) = c/le P

: [sin (cte™) + %% — 1] (s - i) ds

= f c[Ac+ B
der — 7

A:mél (S_;J \/Ee_st,B:/}llsin(cte_t—l) (s—i) ds.
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We have A = \/2 [! (s — 1) v/se~*ds ~ 9.0401 x 1072 > 0, [B| < [} 2 (s — 1) ds =
—6thus]§|§%:11060—625 If ¢ > 7, we have —c < —7 < —6.25 < & then

Ac + B > 0 which imply that ¢ (I1N (cte™) + LN (cte™)) > 0 If ¢ < —7, we get
B <6.25 <7 < —cthus Ac + B < 0, therefore ¢ (I; N (cte™) 4+ IN (cte™)) > 0
Then condition is fufilled and the problem 1 has at least one solution in C'z[0; 1]

REFERENCES

[1] F. JARAD, T. ABDELJAWAD, J. ALZABUT: Generalized fractional derivatives generated by a
class of local proportional derivatives, Eur. Phys. J. Spec. Top. 226 (2017), 3457-3471.

[2] A. ERDELYI, W. MAGNUS, F. OBERHETTINGER, F.G. TRICOMI: Higher Transcendental
Functions, Vol. II. McGraw-Hill, New York, (1953).

[3]1 A.A. KiLBAS, H.M. SRIVASTAVA, J.J. TRUJILLO: Theory and Applications of Fractional
Differential Equations, Elsevier B.V., Netherlands, 2006.

[4] A. ERDELYI, W. MAGNUS, F. OBERHETTINGER, F.G. TRICOMI: Higher Transcendental
Functions, Vol. II. McGraw-Hill, New York, (1953).

[5]1 Z. LAADJAL, T. ABDELJAWAD, F. JARAD: On existence-uniqueness results for propor-
tional fractional differential equations and incomplete gamma functions, Adv. Differ. Equ. 2020
(2020), art. no. 641.

[6] Z. LAADJAL, T. ABDELJAWAD, F. JARAD: Sharp estimates of the unique solution for two-
point fractional boundary value problems with conformable derivative, Numer. Methods Partial
Differential Eq., (2021), 1-10,

[71 Z. LAADJAL, Q.H. MA: Existence and uniqueness of solutions for nonlinear Volterra-Fredholm
integro-differential equation of fractional order with boundary conditions, Math. Meth. Appl.
Sci., 44(10) (2019), 8215-8227.

[8] Y. CHEN, X. TANG: Positive solutions of fractional di erential equations at resonance on the
half-line, Bound. Value Probl. 2012(64) (2012), 13 pp.

[9] H.E. ZHANG: Nonlocal boundary value problems of fractional order at resonance with integral
conditions, Adv. Difference Equ. (2017), paper no. 326, 12 pp.

[10] M. SHAOIB, T. ABDELJAWAD, M. SARWAR, F. JARAD: Fixed point theorems for multi-
valued contractions in metric spaces with applications to fractional differential and integral
equations, IEEE Access, 7, (2019), 127373-127383.

[11] B. ALQAHTANI, A. FULGA, F. JARAD, E. KARAPINAR: Nonlinear F-contractions on b-metric
spaces and differential equations in the frame of fractional derivatives with Mittag-Leffler kernel,
Chaos Soliton Fract., 128 (2019), 349-354.

[12] J. MAWIN: Topological degree and boundary value problems for nonlinear differential equations
in topological methods for ordinary differential equations, Lecture Notes Math., 1537 (1993),
74-142.



RESULTS OF GENERALIZED PROPORTIONAL FRACTIONAL DIFFERENTIAL EQUATIONS. .. 633

[13] J. WANG: The existence of solutions to boundary value problems of fractional differential equa-
tions at resonance, Nonlinear Analysis, 74 (2011), 1987-1994.

[14] S.DJEBALI AND L. GUEDDA: Nonlocal p-Laplacian boundary value problems of fractional
order at resonance, Panamerican Mathematical Journal. 29 (2019), 45-63.

[15] A. A11, B. SAMET, K. SHAH, ET AL: Existence and stability of solution to a toppled systems
of differential equations of non-integer order, Bound. Value Probl., 2017 (2017), art. no. 16.

[16] R.A. KHAN AND K. SHAH: Existence and uniqueness of solutions to fractional order multi-
point boundary value problems, Communications in Applied Analysis, 19 (2015), 515-520.

[17] M.B. ZADA, K. SHAH AND R. A. KHAN: Existence theory to a coupled system of higher
orderfractional hybrid di erential equations by topological degree theory, Int. J. Appl. Comput.
Math., 4 (2018), art.no. 102.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF HAMMA LAKHDER EL-OUED

FACULTY OF EXACT SCIENCES, OPERATOR THEORY, EDP AND APPLICATIONS LABORATORY
ALGERIA.

Email address: azouzi-mounira@univ-eloued.dz

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF HAMMA LAKHDER EL-OUED

FACULTY OF EXACT SCIENCES, OPERATOR THEORY, EDP AND APPLICATIONS LABORATORY
ALGERIA.

Email address: guedda-lamine@univ-eloued.dz

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
UNIVERSITY CENTER OF ILLIZI

33000 Irrizr

ALGERIA.

Email address: z.laadjal@cuillizi.dz



	1. Introduction
	2. Preliminaries about the fractional calculus and coincidence degree theory
	3. The existence of solutions to multi-point boundary value problem of fractional differential equations at resonance, involving the Generalized Proportional Fractional derivative
	3.1. Some auxiliary lemmas
	3.2. An existence theorem for the Generalized Proportional fractional differential equations

	4. A numerical example
	References

