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HIGHER ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL
CONDITION AT RESONANCE

Mohammed Kouidri and Abdelkader Amara!

ABSTRACT. In this work, we prove the existence of solution for the following

higher-order boundary value problem at resonance w™(t) = f(t,w(t),...,
w2 () n = 3,t € (0,1), w(0) = & (0) = ... = w"3(0) = wH(0) =
0,w(l) = :[_11 Jo w(t)dt;n € (0,1), we have relied on Mawhin’s coincidence de-

gree theory to get existence results.

1. INTRODUCTION

Boundary value problems (BVP) at resonance have been studied in many papers
for ordinary differential equations, see for example [1-14,/19-27]] and the refer-
ences therein. In this literature, we show some contributions of researchers to the
finding of the existence of the solution for boundary value problems at resonance.
Assia Guezane-Lakoud et al [15]] studed some existence results for third-order dif-
ferential equation

"

(1.1 w (t) = f(t,w(t),d (1)), te(0,1),
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subject to the following nonlocal condition
1 2 n
(1.2) w(0) = &' (0) = 0, (1) = —n/ w(t)dt; e (0 1).
nJo

Assia Frioui et al [16] studed the existence of solutions of the higher-order ordi-
nary differential equation

(1.3) w™(t) = f(t,w(t)), t € (0,00),
with the integral boundary value conditions
. | n
(1.4) w90)=0,i=0,1...,n—2, w" V(o) = ﬁ/ w(t)dt; 7 >0,n>3.
n" Jo

In [17]], the focus of this paper is to provide sufficient conditions that ensure the
existence of solutions for the following nonlinear third-order boundary value prob-
lem

"

(1.5) w (t) = f(t,w(t), (), t e (0,7),
with the condition

(1.6) w(0) = ' (0) = 0,w(T) = 2 /Onw(t)dt;n € (0,1).

In [[18], the existence of at least one solution for the following third-order integral
and m-point boundary value problem on the half-line at resonance

(1.7) (PO (1)) = f(t,w(t), o' (t),u

with

1

), t €[0,00),

t—o00

(1.8) w(0) = Z a; / w(t)dt,  W'(0)=0, lim (p(t)w'(t)) = 0.

In this paper, we discuss existence results for higher-order differential equation,
these results are determined by applying Mawhin’s coincidence degree theory. Our
assumed problem will more complicated and general than the problems consid-
ered before and aforementioned above, we study the existence of solutions for the
higher-order differential equation given by

(1.9) Ww(t) = flt,w®),w't),...,w" D), n>3,tec(0,1),
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with the following nonlocal condition

(1.10) w(0) =w/'(0) =... =w™H(0) =w™V(0) =0, w(l)= 7:7;_11 /nw(t)dt,

n € (0,1), where f : [0,1] x R""! — R is caratheodary function, and € (0, 1), we
say that the BVP is a resonance problem if the linear equation Lz = w™, with
the PVC has nontrivial solution i.e., dimker L > 1.

2. PRELIMINAIRES

For the convenience of the reader to understand the coincidence degree theory,
we briefly recall some definitions [[13-15]].

Definition 2.1. Let X,Y be real Banach spaces, the linear operator L : domL C
X — Y is said to be a Fredholm map of index zero provided that ker L, the kernel of
L, is of the same finite dimension as the Y/ImL, where ImL is the image of L.

Let L be a Fredholm map of index zero, and P : X — X, @Q : Y — Y be
continuous projectors, such that /m P = ker L, kerQ = Im L, X = ker L & ker P,
andY =Im L& ImQ.

We denote the inverse of the map L|gom rakerp : dom L Nker P — Im L by Kp,
ie.,

Kp = (L|gom rrkerp) 2 ImL — dom L Nker P.

Definition 2.2. Let L be a Fredholm map of index zero and ) be an open bounded
subset of Y,such that domL N Q # (), the map N : X — Y is said to be L — compact
on Q, if the map QN () is bounded and K,(I — Q)N : Q — X is compact.

For more details, see [14,/15].

Theorem 2.1. Let L be a Fredholm operator of index zero and let N be L—compact
on ). Assume that the following conditions are satisfied
() Lw # ANw, for every (w,\) € [(domL\KerL) N o] x (0,1).
(ii) Nw ¢ ImlL, for every w € KerL N OS.
(iii) deg(JQN |xer 1, ker L N 0N, 0) # 0, where J : Im@Q — ker L is a linear iso-
morphism, () : Y — Y is a projection as above with ImL = ker Q.

Then, the equation Lw = Nw has at least one solution in domL N Q.
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In the following, we shall use the classical spaces C|0,1],C'[0,1],...,C"1[0,1]
and L'[0, 1].
For w € C"71(0, 1], we use the norm

Jolloc = mac ()]

lwll = max {lol e lloos - ™2l }

and denote the norm in L'[0, 1] by ||w]||,. We will use the Sobolev space W"'(0, 1),
which may be defined by

w™(0,1) = {w :[0,1] = R: w,...,w" Y are absolutely continuous on
[0, 1] withw™ € L0, 1]}.
Let X = C"7'[0,1], Y = L'[0,1], L is the linear operator from domL C X — Y
with
domL = {w € W™(0,1) : w verify the condition 1.10}

and
Lw = w™, w € domL.

We define N : X — Y by setting
Nw = f(t,w(t),w'(t),..,w" (), t € (0,1).

Then, BVP can be written as Lw = Nw.

In order to apply Theorem in the following Lemma [2.1} we shall show that
L is a Fredholm operator of index zero and construct a linear continuous projector
operator () satisfying condition (iii) in Theorem

Lemma 2.1. We have

() ker L = {w € domL :w = ct" 2, c € R, t € (0,1]}.
(ii) ]mL:{yEY:fol(l—s)” Yy(s ds—m?nlfo s)ds = 0}.
(iii) ImL : domL C X — Y is a Fredholm operator of lndex zero, and the linear

continuous projector operator () : Y — Y can be defined as Qy = k(Ry)t
such that
1
—1
Ry= [ =9yt - L2
0

TlT]n_l

| on=srutsyas.
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(iv) The linear operator Kp : ImL — domL Nker P can be written as

Kypy = (n i 1) /On(n — 5)" 'y(s)ds.

™) [[Kpyll < llylly, forally € ImL.

Proof.
€y
ker L = {w € domL : w(t) = w(0) +w'(0)t+...
w(n—l) (O) (n—1) n—1
w™=2)(0)
(n—2)
={wecdomL:z=ct"?cecR tec(0,1]}

— {w € domL :w(t) = "t € (0, 1]}
(ii) The problem
2.1) W =y

has a solution w(t) satisfied

(2.2) w(0) =w'(0)=... =w™30) = w1V (0) =0,
n—1 [7
o) =2 [etvdsn e ©.1),
if and only if
1
n—1 (n B 1) K n o
(2.3) /0 (1 —3s)""y(s)ds — e /0 (n —s)"y(s)ds = 0.
Then, from we have
o / w(n73)<0) n—3 w(n72)(0) n—2
w(t) =w(0) +w'(0)t+...+ (n—3) "+ (n—2)'t
w(n—l) (O) (n—1) n—1 ! n—1
e TR U sl RUES IO
w(n_Q)(O) n— n— 1 ! n-—
@H =IO / (1 — 5)"y(s)ds
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From [2.2] we have

w(l) = (”’nn_})! /Onw(t)dt
e g f / e
_ (7;;11) '(n _“;)2(1503 1>77” N n_l / / dsdt}

(2.5)
=2 a0+ O [ s

From[2.4]and we obtain
n—1) ["
o = srusyis =
0

nlyn—1
/o (1—5)""y(s)ds — % /On(n — $)"y(s)ds = 0.

We consider the condition [2.3] verified, from [2.4] find
1 1
_ (n—2) _ o\n-1
w(t) =ct + 1) /0 (t —s)"y(s)ds,

where c is an arbitrary constant, then w(t) is a solution of 2.1, Hence,

ImL = {y eyY: /01(1 —5)" " ty(s)ds — (;177;11) /On(n —s)"y(s)ds = O}

is valid.

5 [ 0=

(iii) For y € Y, we take the projector Qy as ) : Y — Y can be defined as Qy =
k.(Ry).t such that

(n—1)
TlT]n_l

Ry = /0 (1—3s)"y(s)ds —

is clear that dim /m(@ = 1, we have

[ on=sruss
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Q% = Q(Qy)
1 _ n
=k [/ (1—35)""'(kRy) sds — (n _11) / (n—s)" (kRy) sds| t
0 nn" 0
= (kRy)t = Qy
which implies that the operator () is projector. Futher ImL = ker (). Let
y=(—Qu)+Qy
y—Qy €ker@Q = ImL
Qy € ImQ
and
Q% = Qy,
that

Im@QNker L = {0},
than we have
Y =ImL ®kerQ

since
dimker L =1 =dim ImQ@ = codim ImL =1,

L is a Fredholm operator of index zero,

(iv) Taking P : X — Y as follows
Pu(t) = w™2(0)t.

Then, the generalized inverse Kp : ImL — domL NKerP of L can be written as

1 ! .
Ky = =5y | (1= 97 u(s)as.

Obviously ImP = ker L and
P2w = P(Pw) = P(w™ 2(0)t) = w2 (0)t = Pw.

It follows from w = (w — Pw) + Pw that
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X =ker P + ker L, ker P Nker L = {0} .

Then X = ker P @ ker L. From the definitions of K'p and P it is easy to se that
generalized invers of L is Kp. in fact for y € ImL, we have

(LEp)y(t) = [(Kpy) ] = y(t).

For w € domL N ker P, we know

(KpLtt) = (K7)w () = 5 [ (1= 9" (9
=)
:w(t)—w(O)—...—rl()o!)
In view of w € domL N ker P
w0)=...... = w"3(0) = w™V(0) =0

and Pz = 0 thus (KpL)w(t) = w(t). This shows that
Kp = (L|domLﬁKp>_1‘
(v) We have
1 1
1Kl < / (1= )" Jy(s)|ds < / ly(s)|ds = [1y], .

and from

[pr}(n_g): mM—1)x(n—2)x...x2

(n—1)! /0 (t = s)y(s)ds = /0 (t = s)y(s)ds

1)) < / (1 8)ly(s)lds < / w(s)\ds = [lyll.

Then || K,y|| < ||y||1, for all y € ImL. This completes the proof of lemma O

3. MAIN RESULTS
Theorem 3.1. Let f: [0,1] x R — R be a continuous function, assume that:

(H1) There exist functions ay(t), as(t), ..., an,_1(t), b(t), € L]0, 1], such that, for all
(wr,wa, ..., wy) € R™ t € [0, 1], satisfying one of the following inequalities:
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n—1

(31) |f(t,w1,w2,...,wn_1)| S az(t)|wz| —|—b(t)
1

%

(H2) There exists a constant M > 0, such that, for w € domL, if |w "2 ()| > M,
forallt € |0,1], then,
1
[ =875, 0000, D )
0

(n—1)
nnn—l

/On(n —5)"f(s,w(s), w(l)(s), . ,w(”’Q)(s))ds # 0.

(H3) There exists a constant M* > 0, such that for any w(t) = ct"? € ker L with
lc| > M*, either

C

/1(1 —8)" " f(s,e8" 2 (n—2)es™ 2, ..., (n—2)le)ds
0

_ (Zﬁ:? /On(n —8)"f(s,e5" 2, (n—2)es" %, (n— 2)!0)‘“} <0,
or else

C|:/0 (1 — S)n_lf(87 Csn_Qv (TL - Z)Csn_s’ T (n - 2)'C>d8
B (Zn:_? /On(n —8)"f(s,es" %, (n —2)es" 3. (n— 2)!c)d51 > 0.

Then BVP [1.9| with condition has at least one solution in C"~110,1],
provided

DN | —

> lto)l <

Proof. We need to construct the set € satisfying all the conditions in Theorem |2.1}
which is separated into the following four steps.
STEP 1. First we show that the following set

Q ={w € domL\ker L : Lw = ANw, for some X € (0,1]}

is bounded. In fact, Suppose that w € €, and Lw = ANw, thus, A # 0,QNw = 0
so it yields
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/0 (1— )" Lf(s,w(s),w'(s),...,w" P)ds

(n—1)
nnn—l

/077<n — )" f(s,w(s),0'(5),...,w")ds = 0,

thus, from (H2), there exists t, € [0, 1], such that |w™=?(¢,)| < M.
In view of .
0
W 2(0) = w2 (1)) —/ WD (1) dt
0

and .

wm V() = w™(0) +/ w™ (s)ds,
0

then, we have

=20 <200 + [ ([ )5 )

= M + |jw™]|;
(3.2) <M +[[Nw||1,
(3.3) | Pw|| = [w™2(0)] < M + |[Nw]|;.

Again for w € Qy, w € domL\ ker L, then (I — P)w € domL N KerP, LPx = 0, thus
from Lemma we know

(3.4 (I = P)w| = [|[KpL(I — P)w| < |L(I — P)wlly = |[Lw[i < [[Nw]]:.
From (3.3)(3.4), we have
(3.5) |l < [[Pw| + [[(I = P)w|| <2[|[Nwl[y + M.

If (3.1I) holds, then from (3.5]), we obtain
n—1

. <2 i (i-1) .
(3.6) Jwl| < ;:1 laill ot oo + 11l + =
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From |jw||, < ||wl|, and we have

2 M
3.7 JUR — WY+ ... . =2 1o —1.
B.7) |lwllee < =2l [Ilaz\llllw loo + -+ [Jan—1]1]|w oo + [1B]]1 + 5

From ||w/]|s < ||, and (3.7) one has

oot - 2oty 2l o+ ol oo + o+ 5]
0 1—2“(11”1 o 1_2Ha1H1 ,
ie.,
2 [las|i]|w@||oe + - - - + llan |l |w® 2o + ||b]|, + X4
(3.8) 1/ [loe < [llas 1]l [lan—1l1]l loo + 11811, + 5]

1=2llall, = 2[lazll,
Similarly, we can find

2 [laallsllo@loc + - - - + llan-1ll1 &l + [IBll;, + 5]

(3.9) [w®]|oe <
1=2faill; = 2azll, — 2 |las]l,
2 [lan_1]l; o™ 2 |16]l, + A4
* 71 =2y, = 2lazll; = .. = 2|[an-2];
2 M
11D || < [HbHﬁ—}-
1=2aill; = 2azlly — - = 2 lap-1ll, 2

From there exists M; > 0, such that

(3.12) w2 < M.

Thus, from (3.10) and (3.12)), there exist M, > 0, such that
(3.13) |w™ | < Ms.

Similarly there exist M; >0 (i =1,2,...,n—1)

(3.14) Hw("‘i‘l)Hoo < M;.

Hence,

|lwl|| = max{||(,u||Oo ol - ||w("_2)HOO} < max{My, My, ..., M, 1}.
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Again, from (3.1)), and (3.12))-(3.13)), we have
™l = [[Lwlly < [Nw|l < flaslls My + - - + [lan—alli Mn—s + [[b]]1-

So, 2, is bounded.

STEP 2. The set )y = {w € ker L : Nw € ImL} is bounded. In fact, w € Qy,w €
ker L = {w € domL :w = ct" % c € R,t € [0,1]}, and QNz = 0, thus,

/1(1 —8)" " f(s,e8" 2 (0 —2)es™ 3, .. (n— 2)lc)ds
0

1 ! 2 -2 -3
— " —2)es" L. —2)! .
] /o m—=39)f(s,cs" %, (n—=2)es" 2, ..., (n—2)le)ds < 0

From (H2), ||w|« = |¢|, so ||w]|| = |¢| < M, thus €5 is bounded.

STEP 3. We show that the set Q3 = {w € ker L : —=AJz + (1 — \)JQNz = 0,\ €
[0,1]}, where, J : ker L — Im() is the linear isomorphism given by

J(c) =ct"* Ve e R, t € (0,1].
Then, €25 is bounded.

) If the first part of (H3) holds, that is, there exists M* > 0,such that, for
any ¢ € R, if |¢| > M*, then,

e DO BT [ sy e s

n+2—n1

1 n
/ (n—8)""1f(s,cs™ % es" 3. ,c)ds] < 0.
0

Tl?’]n_l

(3.15) —

Since, for w = cyt" 2, then, for ¢ € (0, 1], we obtain

) [/01(1 —8)" f(s,e8" 2 es" 3 (n = 2)e)ds

nn+1)(n+2
Acg = c(1 = )) Ez—i—Q)—(r]”—l

1 K n— n— n—
n—l/ (n—s)""f(s,es" 2, cs" 2, ..., (n—2)le)ds| < 0.
nn 0

If A\ =1, then ¢y = 0. Otherwise, if |cq| > M*, then in view of (3.15) one
has
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n(n+1)(n+2
n+2—n1

n
/ (n—8)""1f(s,cs" %, es" 3 ... c)ds| <0,
0

Mg = c(1 —\) ) [/1(1 —5)" " f(s,c8" 2 es" 0, c)ds
0

1
nnn—l
which contradicts A\¢2 > 0. Thus, Q3 C {w € KerL : |jw|| < M*} is
bounded.

II) If the second part of (H3) holds, that is, there exists M* > 0, such that, for
any ¢ € R, if |¢| > M*, then,

n(n+1)(n+2

¢ n+2—n1
1

nnnfl

) {/01(1 —8)" " f(s,c8" 2 es" P, c)ds

n
/ (n—s)""1f(s,cs" 2 cs"®, ... c)ds| >0
0

Similarly, we can verify {23 is bounded.

Step 4. Let Q be a bounded open subset of X, such that Ui=3Q); C Q. By the
Ascoli-Arzela theorem, we can show that Kp(I — QN) : Q — Y is compact, thus,
N is L—compact on Q. Then, by the above argument, we have

(i) Lw # ANz, for every (x,\) € ((domL\ ker L) N 98] x (0,1).
(ii) Nw ¢ ImL, for every w € ker L N 0.
(iii) Let H(w,\) = £Aw + (1 = A)QNw = 0.

According to the above argument, we know H(x,\) # 0, for w € ker L N 09X, by
the homotopy property of degree, we get

deg(JON |xer, 2 Nker L,0) = deg(H(.,0),Q2Nker L, 0)
=deg(H(.,1),2Nker L,0)
= deg(£J,Q2Nker L,0)
# 0.
According to definition of degree on a space which is isomorphic to R, and

QN KerL = {ct:|c| <d}.
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We have
deg(—1,QNker L,0) = deg(—J '1.J,J " (QNker L), J'{0})
= deg(—1,(—d,d),0)
= —1+£0.
If the second part of condition (iii) of Theorem holds, let
H(z,\) = - x+ (1 —=)A)JQNz.
Similar to the above argument, we have

deg(JQN|ker 1, 2N ker L,0) = deg(H(.,0),2Nker L,0)
=deg(H(.,1),2Nker L,0)
= deg(I,Q2Nker L,0)
=1.

Then, we have
deg(JQNker 1, 2 Nker L,0) # 0

Then by, Theorem Lz = Nz has at least one solution in domL N, so that the
BVP (1.9)(1.10) has at least one solution in C*[0, 1]. The proof is completed. [
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