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HIGHER ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL
CONDITION AT RESONANCE

Mohammed Kouidri and Abdelkader Amara1

ABSTRACT. In this work, we prove the existence of solution for the following
higher-order boundary value problem at resonance ω(n)(t) = f(t, ω(t), . . . ,

ω(n−2)(t)) n ≥ 3, t ∈ (0, 1), ω(0) = ω′(0) = . . . = ω(n−3)(0) = ω(n−1)(0) =

0, ω(1) = n−1
ηn−1

∫ η
0
ω(t)dt; η ∈ (0, 1), we have relied on Mawhin’s coincidence de-

gree theory to get existence results.

1. INTRODUCTION

Boundary value problems (BVP) at resonance have been studied in many papers
for ordinary differential equations, see for example [1–14, 19–27] and the refer-
ences therein. In this literature, we show some contributions of researchers to the
finding of the existence of the solution for boundary value problems at resonance.
Assia Guezane-Lakoud et al [15] studed some existence results for third-order dif-
ferential equation

(1.1) ω
′′′

(t) = f(t, ω(t), ω′(t)), t ∈ (0, 1),
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subject to the following nonlocal condition

(1.2) ω(0) = ω
′′
(0) = 0, ω(1) =

2

ηη

∫ η

0

ω(t)dt; η ∈ (0, 1).

Assia Frioui et al [16] studed the existence of solutions of the higher-order ordi-
nary differential equation

(1.3) ω(n)(t) = f(t, ω(t)), t ∈ (0,∞),

with the integral boundary value conditions

(1.4) ω(i)(0) = 0, i = 0, 1 . . . , n− 2, ω(n−1)(∞) =
n!

ηn

∫ η

0

ω(t)dt; η > 0, n ≥ 3.

In [17], the focus of this paper is to provide sufficient conditions that ensure the
existence of solutions for the following nonlinear third-order boundary value prob-
lem

(1.5) ω
′′′

(t) = f(t, ω(t), ω′(t)), t ∈ (0, T ),

with the condition

(1.6) ω(0) = ω
′′
(0) = 0, ω(T ) =

2T

η2

∫ η

0

ω(t)dt; η ∈ (0, 1).

In [18], the existence of at least one solution for the following third-order integral
and m-point boundary value problem on the half-line at resonance

(1.7) (ρ(t)ω′(t))
′′

= f(t, ω(t), ω′(t), u
′′
), t ∈ [0,∞),

with

(1.8) ω(0) =
m∑
j=1

αj

ηj∫
0

ω(t)dt, ω′(0) = 0, lim
t→∞

(ρ(t)ω′(t))′ = 0.

In this paper, we discuss existence results for higher-order differential equation,
these results are determined by applying Mawhin’s coincidence degree theory. Our
assumed problem will more complicated and general than the problems consid-
ered before and aforementioned above, we study the existence of solutions for the
higher-order differential equation given by

(1.9) ω(n)(t) = f(t, ω(t), ω′(t), . . . , ω(n−2)(t)), n ≥ 3, t ∈ (0, 1),
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with the following nonlocal condition

(1.10) ω(0) = ω′(0) = . . . = ω(n−3)(0) = ω(n−1)(0) = 0, ω(1) =
n− 1

ηn−1

∫ η

0

ω(t)dt,

η ∈ (0, 1), where f : [0, 1]× Rn−1 → R is caratheodary function, and η ∈ (0, 1), we
say that the BVP 1.9 is a resonance problem if the linear equation Lx = ω(n), with
the PVC 1.10 has nontrivial solution i.e., dim kerL ≥ 1.

2. PRELIMINAIRES

For the convenience of the reader to understand the coincidence degree theory,
we briefly recall some definitions [13–15].

Definition 2.1. Let X, Y be reaI Banach spaces, the linear operator L : domL ⊂
X → Y is said to be a Fredholm map of index zero provided that kerL, the kernel of
L, is of the same finite dimension as the Y/ImL, where ImL is the image of L.

Let L be a Fredholm map of index zero, and P : X → X, Q : Y → Y be
continuous projectors, such that ImP = kerL, kerQ = ImL, X = kerL ⊕ kerP ,
and Y = ImL⊕ ImQ.

We denote the inverse of the map L|domL∩kerP : domL ∩ kerP → ImL by Kp,
i.e.,

Kp = (L|domL∩kerP )−1 : ImL→ domL ∩ kerP.

Definition 2.2. Let L be a Fredholm map of index zero and Ω be an open bounded
subset of Y ,such that domL ∩ Ω 6= ∅, the map N : X → Y is said to be L− compact
on Ω, if the map QN(Ω) is bounded and Kp(I −Q)N : Ω→ X is compact.

For more details, see [14,15].

Theorem 2.1. Let L be a Fredholm operator of index zero and let N be L−compact
on Ω. Assume that the following conditions are satisfied

(i) Lω 6= λNω, for every (ω, λ) ∈
[
(domL\KerL) ∩ ∂Ω

]
× (0, 1).

(ii) Nω /∈ ImL, for every ω ∈ KerL ∩ ∂Ω.

(iii) deg(JQN |kerL, kerL ∩ ∂Ω, 0) 6= 0, where J : ImQ → kerL is a linear iso-
morphism, Q : Y → Y is a projection as above with ImL = kerQ.

Then, the equation Lω = Nω has at least one solution in domL ∩ Ω.



658 M. Kouidri and A. Amara

In the following, we shall use the classical spaces C[0, 1], C1[0, 1], . . . , Cn−1[0, 1]

and L1[0, 1].
For ω ∈ Cn−1[0, 1], we use the norm

‖ω‖∞ = max
ω∈[0,1]

|ω(t)|,

‖ω‖ = max
ω∈[0,1]

{
‖ω‖∞ , ‖ω

′‖∞, . . . , ‖ω(n−2)‖∞
}
,

and denote the norm in L1[0, 1] by ‖ω‖1. We will use the Sobolev space W n,1(0, 1),
which may be defined by

W n,1(0, 1) =
{
ω : [0, 1]→ R : ω, . . . , ω(n−1) are absolutely continuous on

[0, 1] withω(n) ∈ L1[0, 1]
}
.

Let X = Cn−1[0, 1], Y = L1[0, 1], L is the linear operator from domL ⊂ X → Y

with
domL =

{
ω ∈ W n,1(0, 1) : ω verify the condition 1.10

}
and

Lω = ω(n), ω ∈ domL.

We define N : X → Y by setting

Nω = f(t, ω(t), ω′(t), .., ω(n−2)(t)), t ∈ (0, 1).

Then, BVP 1.9, can be written as Lω = Nω.
In order to apply Theorem 2.1, in the following Lemma 2.1, we shall show that

L is a Fredholm operator of index zero and construct a linear continuous projector
operator Q satisfying condition (iii) in Theorem 2.1.

Lemma 2.1. We have

(i) kerL =
{
ω ∈ domL : ω = ctn−2, c ∈ R, t ∈ (0, 1]

}
.

(ii) ImL =
{
y ∈ Y :

∫ 1

0
(1− s)n−1y(s)ds− (n−1)

nηn−1

∫ η
0

(η − s)ny(s)ds = 0
}
.

(iii) ImL : domL ⊂ X → Y is a Fredholm operator of index zero, and the linear
continuous projector operator Q : Y → Y can be defined as Qy = k(Ry)t

such that

Ry =

∫ 1

0

(1− s)n−1y(s)ds− (n− 1)

nηn−1

∫ η

0

(η − s)ny(s)ds.
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(iv) The linear operator Kp : ImL→ domL ∩ kerP can be written as

Kpy =
1

(n− 1)

∫ η

0

(η − s)n−1y(s)ds.

(v) ‖Kpy‖ < ‖y‖1, for all y ∈ ImL.

Proof.
(i)

kerL =
{
ω ∈ domL : ω(t) = ω(0) + ω′(0)t+ . . .

+
ω(n−1)(0)

(n− 1)
ω(n−1)(0)tn−1, t ∈ (0, 1]

}
=
{
ω ∈ domL : ω(t) =

ω(n−2)(0)

(n− 2)
tn−2, t ∈ (0, 1]

}
= {ω ∈ domL : x = ctn−2, c ∈ R, t ∈ (0, 1]}

(ii) The problem

(2.1) ω(n) = y

has a solution ω(t) satisfied

ω(0) = ω′(0) = . . . = ω(n−3)(0) = ω(n−1)(0) = 0,(2.2)

ω(1) =
n− 1

ηn−1

∫ η

0

ω(t)dt; η ∈ (0, 1),

if and only if

(2.3)
∫ 1

0

(1− s)n−1y(s)ds− (n− 1)

nηn−1

∫ η

0

(η − s)ny(s)ds = 0.

Then, from 2.1, we have

ω(t) = ω(0) + ω′(0)t+ . . .+
ω(n−3)(0)

(n− 3)!
tn−3 +

ω(n−2)(0)

(n− 2)!
tn−2

+
ω(n−1)(0)

(n− 1)
ω(n−1)(0)tn−1 +

1

(n− 1)!

∫ η

0

(η − s)n−1y(s)ds

=
ω(n−2)(0)

(n− 2)
ω(n−2)(0)tn−2 +

1

(n− 1)!

∫ η

0

(η − s)n−1y(s)ds.(2.4)
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From 2.2, we have

ω(1) =
(n− 1)!

ηn−1

∫ η

0

ω(t)dt

=
(n− 1)

ηn−1

∫ η

0

[
ω(n−1)(0)

(n− 2)
ω(n−2)(0)tn−2 +

1

(n− 1)

∫ t

0

(t− s)n−1y(s)ds

]
dt

=
(n− 1)

ηn−1

[∫ η

0

ω(n−2)(0)

(n− 2)
ω(n−2)(0)tn−2dt+

1

(n− 1)

∫ η

0

∫ t

0

(t− s)n−1y(s)dsdt

]

=
(n− 1)

ηn−1

[
ω(n−2)(0)

(n− 2) (n− 1)
η(n−1) +

1

(n− 1)

∫ η

0

∫ t

0

(t− s)n−1y(s)dsdt

]

=
ω(n−1)(0)

(n− 2)
ω(n−2)(0) +

(n− 1)

n!ηn−1

∫ η

0

(η − s)ny(s)ds.

(2.5)

From 2.4 and 2.5, we obtain

(n− 1)

n!ηn−1

∫ η

0

(η − s)ny(s)ds =
1

(n− 1)!

∫ 1

0

(1− s)n−1y(s)ds∫ 1

0

(1− s)n−1y(s)ds− (n− 1)

nηn−1

∫ η

0

(η − s)ny(s)ds = 0.

We consider the condition 2.3 verified, from 2.4 find

ω(t) = ct(n−2) +
1

(n− 1)!

∫ 1

0

(t− s)n−1y(s)ds,

where c is an arbitrary constant, then ω(t) is a solution of 2.1, Hence,

ImL =
{
y ∈ Y :

∫ 1

0

(1− s)n−1y(s)ds− (n− 1)

nηn−1

∫ η

0

(η − s)ny(s)ds = 0
}

is valid.

(iii) For y ∈ Y , we take the projector Qy as Q : Y → Y can be defined as Qy =

k.(Ry).t such that

Ry =

∫ 1

0

(1− s)n−1y(s)ds− (n− 1)

nηn−1

∫ η

0

(η − s)ny(s)ds

is clear that dim ImQ = 1, we have
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Q2y = Q(Qy)

= k

[∫ 1

0

(1− s)n−1 (kRy) sds− (n− 1)

nηn−1

∫ η

0

(η − s)n (kRy) sds

]
t

= (kRy) t = Qy

which implies that the operator Q is projector. Futher ImL = kerQ. Let

y = (y −Qy) +Qy

y −Qy ∈ kerQ = ImL

Qy ∈ ImQ

and
Q2y = Qy,

that
ImQ ∩ kerL = {0} ,

than we have
Y = ImL⊕ kerQ

since
dim kerL = 1 = dim ImQ = co dim ImL = 1,

L is a Fredholm operator of index zero,

(iv) Taking P : X −→ Y as follows

Pω(t) = ω(n−2)(0)t.

Then, the generalized inverse Kp : ImL→ domL ∩KerP of L can be written as

Kpy =
1

(n− 1)!

∫ 1

0

(1− s)n−1y(s)ds.

Obviously ImP = kerL and

P 2ω = P (Pω) = P (ω(n−2)(0)t) = ω(n−2)(0)t = Pω.

It follows from ω = (ω − Pω) + Pω that
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X = kerP + kerL, kerP ∩ kerL = {0} .

Then X = kerP ⊕ kerL. From the definitions of Kp and P it is easy to se that
generalized invers of L is Kp. in fact for y ∈ ImL, we have

(LKp)y(t) = [(Kpy) t](n) = y(t).

For ω ∈ domL ∩ kerP, we know

(KpL)ω(t) = (Kp)ω (t)(n) =
1

(n− 1)!

∫ t

0

(t− s)n−1ω(n)(s)

= ω(t)− ω(0)− . . .− ω(n−1)(0)

(n− 1)!
.

In view of ω ∈ domL ∩ kerP

ω(0) = . . . . . . = ω(n−3)(0) = ω(n−1)(0) = 0

and Px = 0 thus (KpL)ω(t) = ω(t). This shows that

Kp = (L|domL∩Kp)−1.

(v) We have

‖Kpy‖∞ ≤
∫ 1

0

(1− s)n−1 |y(s)| ds ≤
∫ 1

0

|y(s)| ds = ‖y‖1 ,

and from[
Kpy

](n−2)
=

(n− 1)× (n− 2)× . . .× 2

(n− 1)!

∫ t

0

(t− s)y(s)ds =

∫ t

0

(t− s)y(s)ds

‖[Kpy](n−2)‖∞ ≤
∫ 1

0

(1− s)|y(s)|ds ≤
∫ 1

0

|y(s)|ds = ‖y‖1.

Then ‖Kpy‖ < ‖y‖1, for all y ∈ ImL. This completes the proof of lemma �

3. MAIN RESULTS

Theorem 3.1. Let f : [0, 1]× R→ R be a continuous function, assume that:

(H1) There exist functions a1(t), a2(t), . . . , an−1(t), b(t),∈ L1[0, 1], such that, for all
(ω1, ω2, . . . , ωn) ∈ Rn, t ∈ [0, 1], satisfying one of the following inequalities:
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|f(t, ω1, ω2, . . . , ωn−1)| ≤
n−1∑
i=1

ai(t)|ωi|+ b(t).(3.1)

(H2) There exists a constant M > 0, such that, for ω ∈ domL, if |ω(n−2)(t)| > M ,
for all t ∈ [0, 1], then,∫ 1

0

(1− s)n−1f(s, ω(s), ω(1)(s), . . . , ω(n−2)(s))ds

− (n− 1)

nηn−1

∫ η

0

(η − s)nf(s, ω(s), ω(1)(s), . . . , ω(n−2)(s))ds 6= 0.

(H3) There exists a constant M∗ > 0, such that for any ω(t) = ctn−2 ∈ kerL with
|c| > M∗, either

c

[ ∫ 1

0

(1− s)n−1f(s, csn−2, (n− 2)csn−3, . . . , (n− 2)!c)ds

− (n− 1)

nηn−1

∫ η

0

(η − s)nf(s, csn−2, (n− 2)csn−3, . . . , (n− 2)!c)ds

]
< 0,

or else

c

[ ∫ 1

0

(1− s)n−1f(s, csn−2, (n− 2)csn−3, . . . , (n− 2)!c)ds

− (n− 1)

nηn−1

∫ η

0

(η − s)nf(s, csn−2, (n− 2)csn−3, . . . , (n− 2)!c)ds

]
> 0.

Then BVP 1.9 with condition 1.10 has at least one solution in Cn−1 [0, 1] ,

provided
n−1∑
i=1

‖ai(t)‖ ≤
1

2
.

Proof. We need to construct the set Ω satisfying all the conditions in Theorem 2.1,
which is separated into the following four steps.

STEP 1. First we show that the following set

Ω1 = {ω ∈ domL\ kerL : Lω = λNω, for some λ ∈ (0, 1]}

is bounded. In fact, Suppose that ω ∈ Ω1, and Lω = λNω, thus, λ 6= 0, QNω = 0

so it yields
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∫ 1

0

(1− s)n−1f(s, ω(s), ω′(s), . . . , ω(n−2))ds

− (n− 1)

nηn−1

∫ η

0

(η − s)nf(s, ω(s), ω′(s), . . . , ω(n−2))ds = 0,

thus, from (H2), there exists t0 ∈ [0, 1], such that |ω(n−2)(t0)| ≤M .
In view of

ω(n−2)(0) = ω(n−2)(t0)−
∫ t0

0

ω(n−1)(t)dt

and

ω(n−1)(t) = ω(n−1)(0) +

∫ t

0

ω(n)(s)ds,

then, we have

|ω(n−2)(0)| ≤|ω(n−2)(t0)|+
∫ 1

0

(∫ 1

0

ω(n)(s)ds
)
dt

= M + ‖ω(n)‖1

= M + ‖Lω‖1

≤M + ‖Nω‖1,(3.2)

(3.3) ‖Pω‖ = |ω(n−2)(0)| ≤M + ‖Nω‖1.

Again for ω ∈ Ω1, ω ∈ domL\ kerL, then (I −P )ω ∈ domL∩KerP , LPx = 0, thus
from Lemma 2.1, we know

(3.4) ‖(I − P )ω‖ = ‖KpL(I − P )ω‖ ≤ ‖L(I − P )ω‖1 = ‖Lω‖1 ≤ ‖Nω‖1.

From (3.3)(3.4), we have

(3.5) ‖ω‖ ≤ ‖Pω‖+ ‖(I − P )ω‖ ≤ 2‖Nω‖1 +M.

If (3.1) holds, then from (3.5), we obtain

(3.6) ‖ω‖ ≤ 2

[
n−1∑
i=1

‖ai‖1‖ω(i−1)‖∞ + ‖b‖1 +
M

2

]
.
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From ‖ω‖∞ ≤ ‖ω‖, and (3.6) we have

(3.7) ‖ω‖∞ ≤
2

1− 2‖a1‖1

[
‖a2‖1‖ω(1)‖∞ + . . .+ ‖an−1‖1‖ω(n−2)‖∞ + ‖b‖1 +

M

2

]
.

From ‖ω′‖∞ ≤ ‖ω‖, (3.6) and (3.7) one has

‖ω′‖∞
[
1− 2‖a2‖1

1− 2‖a1‖1

]
≤

2
[
‖a3‖1‖ω(2)‖∞ + . . .+ ‖an−1‖1‖ω(n−2)‖∞ + ‖b‖1 + M

2

]
1− 2 ‖a1‖1

,

i.e.,

(3.8) ‖ω′‖∞ ≤
2
[
‖a3‖1‖ω(2)‖∞ + . . .+ ‖an−1‖1‖ω(n−2)‖∞ + ‖b‖1 + M

2

]
1− 2 ‖a1‖1 − 2 ‖a2‖1

.

Similarly, we can find

(3.9) ‖ω(2)‖∞ ≤
2
[
‖a4‖1‖ω(3)‖∞ + . . .+ ‖an−1‖1‖ω(n−2)‖∞ + ‖b‖1 + M

2

]
1− 2 ‖a1‖1 − 2 ‖a2‖1 − 2 ‖a3‖1

.

...

(3.10)
∥∥ω(n−3)∥∥

∞ ≤
2
[
‖an−1‖1 ‖ω(n−2)‖∞ ‖b‖1 + M

2

]
1− 2 ‖a1‖1 − 2 ‖a2‖1 − . . .− 2 ‖an−2‖1

= M1

(3.11)
∥∥ω(n−2)∥∥

∞ ≤
2

1− 2 ‖a1‖1 − 2 ‖a2‖1 − . . .− 2 ‖an−1‖1

[
‖b‖1 +

M

2

]
.

From (3.11) there exists M1 > 0, such that

(3.12)
∥∥ω(n−2)∥∥

∞ ≤M1.

Thus, from (3.10) and (3.12), there exist M2 > 0, such that

(3.13)
∥∥ω(n−3)∥∥

∞ ≤M2.

Similarly there exist Mi > 0 (i = 1, 2, . . . , n− 1)

(3.14)
∥∥ω(n−i−1)∥∥

∞ ≤Mi.

Hence,

‖ω‖ = max
{
‖ω‖∞ , ‖ω′‖∞ , . . . ,

∥∥ω(n−2)∥∥
∞

}
≤ max {M1,M2, . . . ,Mn−1} .
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Again, from (3.1), and (3.12)-(3.13), we have

‖ω(n)‖1 = ‖Lω‖1 ≤ ‖Nω‖ ≤ ‖a1‖1M1 + . . .+ ‖an−2‖1Mn−2 + ‖b‖1.

So, Ω1 is bounded.

STEP 2. The set Ω2 = {ω ∈ kerL : Nω ∈ ImL} is bounded. In fact, ω ∈ Ω2, ω ∈
kerL = {ω ∈ domL : ω = ctn−2, c ∈ R, t ∈ [0, 1]}, and QNx = 0, thus,∫ 1

0

(1− s)n−1f(s, csn−2, (n− 2)csn−3, . . . , (n− 2)!c)ds

− 1

nηn−1

∫ η

0

(η − s)2f(s, csn−2, (n− 2)csn−3, . . . , (n− 2)!c)ds < 0.

From (H2), ‖ω‖∞ = |c|, so ‖ω‖ = |c| ≤M , thus Ω2 is bounded.

STEP 3. We show that the set Ω3 = {ω ∈ kerL : −λJx + (1 − λ)JQNx = 0, λ ∈
[0, 1]}, where, J : kerL→ ImQ is the linear isomorphism given by

J(c) = ctn−2, ∀c ∈ R, t ∈ (0, 1].

Then, Ω3 is bounded.

I) If the first part of (H3) holds, that is, there exists M∗ > 0,such that, for
any c ∈ R, if |c| > M∗, then,

n(n+ 1)(n+ 2)c

n+ 2− ηn−1
[ ∫ 1

0

(1− s)n−1f(s, csn−2, csn−3, . . . , c)ds

− 1

nηn−1

∫ η

0

(η − s)n−1f(s, csn−2, csn−3, . . . , c)ds
]
< 0.(3.15)

Since, for ω = c0t
n−2, then, for t ∈ (0, 1], we obtain

λc0 = c(1− λ)
n(n+ 1)(n+ 2)

n+ 2− ηn−1
[ ∫ 1

0

(1− s)n−1f(s, csn−2, csn−3, . . . , (n− 2)!c)ds

− 1

nηn−1

∫ η

0

(η − s)n−1f(s, csn−2, csn−3, . . . , (n− 2)!c)ds
]
< 0.

If λ = 1, then c0 = 0. Otherwise, if |c0| > M∗, then in view of (3.15) one
has
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λc20 = c(1− λ)
n(n+ 1)(n+ 2)

n+ 2− ηn−1
[ ∫ 1

0

(1− s)n−1f(s, csn−2, csn−3, . . . , c)ds

− 1

nηn−1

∫ η

0

(η − s)n−1f(s, csn−2, csn−3, . . . , c)ds
]
< 0,

which contradicts λc20 ≥ 0. Thus, Ω3 ⊂ {ω ∈ KerL : ‖ω‖ ≤ M∗} is
bounded.

II) If the second part of (H3) holds, that is, there exists M∗ > 0, such that, for
any c ∈ R, if |c| > M∗, then,

c
n(n+ 1)(n+ 2)

n+ 2− ηn−1

[ ∫ 1

0

(1− s)n−1f(s, csn−2, csn−3, . . . , c)ds

− 1

nηn−1

∫ η

0

(η − s)n−1f(s, csn−2, csn−3, . . . , c)ds

]
> 0

Similarly, we can verify Ω3 is bounded.

Step 4. Let Ω be a bounded open subset of X, such that ∪i=3
i=1Ωi ⊂ Ω. By the

Ascoli-Arzela theorem, we can show that Kp(I − QN) : Ω → Y is compact, thus,
N is L−compact on Ω. Then, by the above argument, we have

(i) Lω 6= λNx, for every (x, λ) ∈ ((domL\ kerL) ∩ ∂Ω]× (0, 1).
(ii) Nω /∈ ImL, for every ω ∈ kerL ∩ ∂Ω.

(iii) Let H(ω, λ) = ±λω + (1− λ)QNω = 0.

According to the above argument, we know H(x, λ) 6= 0, for ω ∈ kerL ∩ ∂Ω, by
the homotopy property of degree, we get

deg(JQN |kerL,Ω ∩ kerL, 0) = deg(H(., 0),Ω ∩ kerL, 0)

= deg(H(., 1),Ω ∩ kerL, 0)

= deg(±J,Ω ∩ kerL, 0)

6= 0.

According to definition of degree on a space which is isomorphic to R, and

Ω ∩KerL = {ct : |c| < d}.
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We have

deg(−I,Ω ∩ kerL, 0) = deg(−J−1IJ, J−1(Ω ∩ kerL), J−l{0})

= deg(−I, (−d, d), 0)

= −1 6= 0.

If the second part of condition (iii) of Theorem 2.1 holds, let

H(x, λ) = −λx+ (1− λ)JQNx.

Similar to the above argument, we have

deg(JQN| kerL,Ω ∩ kerL, 0) = deg(H(., 0),Ω ∩ kerL, 0)

= deg(H(., 1),Ω ∩ kerL, 0)

= deg(I,Ω ∩ kerL, 0)

= 1.

Then, we have
deg(JQN| kerL,Ω ∩ kerL, 0) 6= 0

Then by, Theorem 2.1, Lx = Nx has at least one solution in domL∩Ω, so that the
BVP (1.9)(1.10) has at least one solution in C1[0, 1]. The proof is completed. �
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