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Mathematical modeling and 3D numerical simulation of a solar pond
exposed to two solar reflectors
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ABSTRACT. The salinity gradient solar pond is simply a pool of water with
different mass percentages of salt that collects and stores solar thermal
energy.

When solar radiation comes into contact with the water in the basin, it
will become the site of two opposing actions, namely the effect of temper-
ature which expands the liquid in its lower parts, thus reducing their den-
sity and favoring ascending currents coming from Archimedes’ buoyancy
and the effect of salinity which increases this density and prevents the
liquid from rising. As a result, the converted thermal energy is trapped
in the bottom of the basin. The more the temperature of the water in-
creases, the more the fields of application in different uses of this thermal
energy widen.

As it is also important to indicate that the high temperature of the
storage area allows ponds located in cold areas to save their operating
temperatures during the winter period. In an attempt to increase the
temperature of the bottom water, we have installed 2 solar reflectors on
both sides of the pond which have the role of reflecting solar radiation
and returning it to the surface of the pond. This has a positive influence
on its thermal performance.
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The mathematical model governing the pond dynamics is based on the
special 3-direction heat equation with an initial condition and 6 boundary
conditions.

The finite volume discretization method in 3D was used, the Camsol
software was applied for finer steps.

The numerical results showed that the pond with reflectors recorded a
temperature exceeding 13◦C compared to the pond without reflectors.

Convergence, consistency and stability were discussed.

1. INTRODUCTION

We live in a world exhausted by fossil fuels, the resulting damage is enormous,
we can mainly cite:

- Their combustion produces carbon dioxide which escapes into the atmo-
sphere, thus contributing to increase the greenhouse effect and causing
global warming whose terrestrial temperature can be increased by 6◦C by
100 years to come. This can lead to natural disasters such as climate
change, rising oceans and their desalination.

- The emanation of CO2 in nature can also have disastrous consequences on
human health such as acute respiratory diseases and cancer.

Solar ponds with salinity gradient can provide a lasting solution to our energy
problems but they also pose some problems on the one hand these ponds undergo
in winter considerable losses of heat towards the ground and the external walls
which negatively influences their performance heat and interfere with their oper-
ation.

If we are interested in this work with solar energy, it is because our country has
an immense potentiality of sunshine since the nature of the majority of its lands is
arid Saharan, which gives us the advantage of being ranked among the sunniest
countries in the world. Examples of solar energy harnessing systems include solar
panels and natural ponds.

Nevertheless, the latter have the property of converting solar radiation into ther-
mal energy, although most of this energy will be lost in the atmosphere due to
convection and/or evaporation.
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The salinity gradient solar pond enjoys the advantage of collecting solar radi-
ation and storing it as thermal energy after transformation for a long period of
time. Its basic principle is to prevent natural convection from occurring, it consists
of 3 areas:

1) Upper convective zone (UCZ): it is generally soft and 30cm thick.
2) Lower convective zone (LCZ): lower thermal energy storage zone, it has a

very high salt concentration and is 70 cm thick.
3) Non-convective zone (NCZ): it is located in the middle between the UCZ

and the LCZ, consisting of 4 layers with different mass percentages of salt.
This prevents the production of any natural convection because of the high
density which increases with depth.

This zone is itself made up of several layers of different salinities ranging from 6%

to 24% with depth, and we will have the low salinity water floating above the high
salinity water.

On the one hand, when the solar radiation reaching the bottom of the basin,
it heats the convective layer at the bottom, the density of which must therefore
decrease due to thermal expansion.

On the other hand, because of its very high salinity, its density remains high
compared to the upper layers, likewise, the salinity gradient which exists in the
non-convective layer is favorable to avoid any current. of natural convection.

It is important to emphasize that the installation of solar ponds with salinity
gradient in Saharan areas during the winter period suffers the pangs of bad cli-
matic conditions whose temperature can drop enormously and especially during
the night, despite the presence of sun during the winter. day, this generates great
losses of thermal energy towards the ground and the walls. This negatively affects
the proper functioning of the pond and disturbs its physical stability.

In the majority of works dealing with the modeling of salinity gradient solar
ponds [2–6], researchers try at all costs to calculate the temperature fields only
according to the depth and consider that this variation according to the 2 other
horizontal and vertical directions is negligible.

This almost always remains true as long as physical stability is maintained.
Generally, when the sun remains the only energy source which feeds the pond,

this one keeps its conservation in salt and consequently there is not an amalgam
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at the level of the layers of the NCZ. This is manifested by a thermodynamic equi-
librium at the level of the pond.

On another note, it was noted that during the winter season, the heat losses lost
by the solar ponds towards the ground and the external walls will be considerable
and consequently the solar ponds lose their physical stability and will no longer
become functional.

In order to remedy this drawback and permanently increase the temperature of
the LCZ storage zone.

We have installed on both sides of the pond 2 identical solar reflectors of the
same dimensions (2m long by 1m wide) and whose task is to collect solar radiation
and send it back to the surface from the pond.

What we bring as a contribution in this present work is the increase of the
thermal performance of the solar pond through the commissioning of two solar
reflectors.

In this situation, the solar pool will not be powered only by the radiation emitted
by the sun, but also by the 2 light sources which are the reflectors. This will
automatically lead to a rise in the temperature field.

The hot water extracted from the bottom of the basin will be conveyed towards
the outside for various uses, the increase in temperature is proportional with the
widening of the fields of application of the ponds.

Our work comes to fill this void and bring a plus to the thermal performance,
especially to ponds that are located in cold desert areas. In this work we assume
the following hypotheses:

- The pond is energetically supplied by the sun and the 2 reflectors.
- The value of parameters such as the density ρ, the specific capacity Cp and

the thermal conductivity k are variable in the NCZ, and depend on the
salinity.

- The model of solar radiation adopted in this work is that of Rabl and Niel-
son [1].

- The effects of weather conditions such as wind and rain are negligible.
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FIGURE 1. Diagram representing the three zones composing the
solar pond

2. MATHEMATICAL MODELING OF THE PROBLEM

The mathematical equation that governs the dynamics of the pond is the follow-
ing:

(2.1)
∂T

∂t
=

k

ρCp

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
− dE

ρCpdz
+ 2SR,

where the term
dE

ρCpdz
represents the amount of energy reaching the pond water

provided by solar radiation and SR represents the source of energy provided by
the solar reflector.

The density ρ, the thermal conductivity k and the specific heat Cp are given
by [6]:

ρ = 998− 0.4 (T − 293.15) + 650s

k = −2× 10−5s2 − 0.0015s+ 0.514

Cp = 4180− 4.369
( s

100

)
ρ+ 0.0048

( s

100

)2
ρ2

such that s is the salinity.
The model of solar radiation used is a triangle formed by the sun and the 2

reflectors.
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a) The sun: is a sphere with a diameter D = 1.4× 106Km and a temperature
of the order of 5779◦k.

It is located at a distance of 150 × 106Km from the earth. Inside, they
take place reactions of nuclear fusion of hydrogen thus releasing energy in
the form of radiation which propagates in all the directions and which are
actually electromagnetic waves. The emittance of the sun M0 is given by
the following Stefan-Boltzmann law

M0 = σT 4 = 63.24× 106W/m2,

where σ is called the Boltzmann constant and is equal to

σ = 5.67× 10−8W/m2k4.

The total power emitted by the sun

φs = SsM0 = πD2M0 = 3.85× 1026W,

where Ss: the surface of the sun = πD2 = 1.5386 × 1018m2. In this sense,
the part of the solar radiation that penetrates will encounter obstacles that
weaken or attenuate it, such as absorbers.

b) solar reflectors: they are located on both sides of the pond and have the
task of capturing solar radiation and sending it back into the pond. These
are 2 giant automated mirrors.

Calculation of average solar power at the equator:

FIGURE 2. The amount of solar energy reaching the equator E and
the pond site A
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PE =
1

4

(
D

2L

)2

M0 = 342W/m2.

E: the equator where the solar radiation is perpendicular.
A: the site of the pond.
α: the angle between the surface normal of point A and the direction of the

sun.
L is the distance between the earth and the sun.

This power will be reduced under the effect of the inclination and the atmosphere.

Calculation of the amount of solar radiation received by the pond:
The period of sunshine is fixed from 1/7 to 28/7, the pond is located in a place

A with coordinates: Latitude 36◦ 53′ 59” Nord; Longitude 7◦ 46′ 00” Est; and

Albedo =
Preflexive
Pincident

= |cosα| ' 13%.

So the pond receives an average flux per unit area:

342−
(

342× 13

100

)
= 297.54W/m2.

In this work we will consider the 2 reflectors as two light sources that can reflect
solar radiation towards the background.

FIGURE 3. Schematic diagram of reflectors
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The quantity of energy provided by the 2 reflectors is given by:

2QR1 = 2AC cos [(α + β)− 90]
Q1

L
= 2AC sin (α + β)

Q1

L

such that AC is the total length of the reflectors.

i: is the angle between the front face of the projected area of the reflectors
and the incident light AB.

Q1: is the amount of solar energy falling on 1m2 of surface perpendicular to
incident light per unit time.

QR1, QR2: the quantities of solar energy reflected by the 1st and 2nd reflectors respec-
tively towards the pond.

The total amount of energy reaching the solar pond (see figure 3) will be the sum
of the energy from the sun that directly enters the pond added to the amount of
energy that will be reflected from both reflectors which will be considered as two
light sources.

S =
1

ρCp

dE

dz
+ 2QR =

1

ρCp

dE

dz
+

2AC sin (α + β)Q1

L
.

In what follows the temperatures of the pond with reflectors will be calculated
and measured along the left and right wall represented respectively by the lines A
and C and in the center represented by the line B in the direction z as shown in
the following figure:

FIGURE 4. Demonstration of the A,B and C lines in the pond
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Incorporation of initial and boundary conditions:

The resolution of the equation (2.1) requires the determination of the initial
and boundary conditions. In our case, we have only one initial condition and 6
boundary conditions.

Initial condition: Just now t = 0, T (x, y, z, 0) = Ta.
Boundary conditions:

- z = z1, T (x, y, z1, t) = Ta.
- At the bottom of the pond, the temperature applied to the LCZ zone is

given by:

(2.2) z3ρCp
∂T

∂t
= −k∂T

∂z
+ ELCZ −Qout

- When x = 0 and y = 0, the temperature is calculated respectively from the
following equations:

(2.3) − k∂T
∂x
|x=0 = Cht(T − Ta)

(2.4) − k∂T
∂y
|y=0 = Cht(T − Ta)

- When x = y = L the temperature is calculated respectively from the fol-
lowing equations:

(2.5) − k∂T
∂x
|x=L = Cht(T − Ta)

(2.6) − k∂T
∂y
|y=L = Cht(T − Ta)

Where Cht is the heat transfer coefficient by free convection on the vertical walls
towards the ambient air, this coefficient is estimated at 20W/m2.

3. NUMERICAL RESOLUTION

Let us apply the finite volume method to discretize the equation governing the
transient thermal behavior of the solar pond.

(3.1)
∂T

∂t
=

k

ρCp

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
+ ST ,
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such as ST = − dE

ρCpdz
+ 2SR.

Here ST represents the total energy source and SR the energy source given by
the reflector.

(x, y, z) ∈ [0, Lx]× [0, Ly]× [0, Lz], such as Lx = Ly = 6, 72m and Lz = 2m.

The computational domain is discretized intoN×M×P cells with center (xi, yj, z`),
(i varying from 0 to N−1, j varying from 0 to M−1 and ` varying from 0 to P−1).

It will be assumed that the space steps in each direction ∆x = xi+ 1
2
− xi− 1

2
,

∆y = yj+ 1
2
− yj− 1

2
et ∆z = z`+ 1

2
− z`− 1

2
.

The numerical method of finite volumes consists in transforming the continuous
problem into a discrete problem possessing a large algebraic system whose matrix
dimension depends on the step of discretization, the more the latter tends towards
zero, the more the size of the matrix increases, which requires the call for a high-
performance computing tool.
The finite volume method is a special version of the weighted residual method
where the projection function equals unity.

Particularly in the problems of physical modeling, the smoothness of the step
of discretization will be essential since it allows us to approach towards the exact
solution.
The finite volume method consists in subdividing the study domain into elemen-
tary volumes so that each main node will be contained in each volume which in
turn will be delimited by 6 interfaces.

The differential equation will be integrated into each finite elementary volume
whose unknown will be represented using an approximation function.

If our choice was based on this method, it is because its implementation is simple
and the control volumes are parallelepipeds.

T n+1 − T n

∆t
=

k

ρCp

∫ z
`+1

2

z
`− 1

2

∫ y
j+1

2

y
j− 1

2

1

∆x

(∂T
∂x

)n
x
i+1

2

−
(
∂T

∂x

)n
x
i− 1

2

 dydz(3.2)

+
k

ρCp

∫ z
`+1

2

z
`− 1

2

∫ x
i+1

2

x
i− 1

2

1

∆y

(∂T
∂y

)n
y
j+1

2

−
(
∂T

∂y

)n
y
j− 1

2

 dxdz
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+
k

ρCp

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

1

∆z

(∂T
∂z

)n
z
`+1

2

−
(
∂T

∂z

)n
z
`− 1

2

 dxdy
− dE

ρCpdz
+ 2SR

T n+1 − T n

∆t
=

k

ρCp

[
T ni+1,j,` − 2T ni,j,` + T ni−1,j,`

(∆x)2

]
(3.3)

+
k

ρCp

[
T ni,j+1,` − 2T ni,j,` + T ni,j−1,`

(∆y)2

]
+

k

ρCp

[
T ni,j,`+1 − 2T ni,j,` + T ni,j,`−1

(∆z)2

]
−
(
En
`+1 − En

`−1

ρCp2∆z

)
+ 2

(
SnR`+1

− SnR`−1

2∆z

)
Let’s put rx =

k∆t

ρCp (∆x)2
; ry =

k∆t

ρCp (∆y)2
; rz =

k∆t

ρCp (∆z)2
et

(3.4) δ2xT
n = T ni+1,j,` − 2T ni,j,` + T ni−1,j,`

(3.5) δ2yT
n = T ni,j+1,` − 2T ni,j,` + T ni,j−1,`

(3.6) δ2zT
n = T ni,j,`+1 − 2T ni,j,` + T ni,j,`−1

such as δ2x, δ
2
y and δ2z are the central difference operators in x, y and z direction.

The equation (3.3) becomes:

T n+1 − T n = rxδ
2
xT

n + ryδ
2
yT

n + rzδ
2
zT

n(3.7)

+ ∆t

[
−
(
En
`+1 − En

`−1

ρCp2∆z

)
+ 2

(
SnR`+1

− SnR`−1

2∆z

)]
.

The solution of the equation (3.7) can lead us to a mathematical instability or even
a divergence of the solution. To y remedy, we will apply the Peaceman-Rachford
approach which consists in dividing the time into 3 fractions, i.e., instead of going

from time n to final time (n+ 1) we will go from n −→ n+
1

3
−→ n+

2

3
−→ n+ 1,
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and the equation (3.7) will generate 3 equations:

T n+
1
3 − T n = rxδ

2
xT

n+ 1
3 + ryδ

2
yT

n + rzδ
2
zT

n(3.8)

+ ∆t

[
−
(
En
`+1 − En

`−1

ρCp2∆z

)
+ 2

(
SnR`+1

− SnR`−1

2∆z

)]
T n+

2
3 − T n = rxδ

2
xT

n+ 1
3 + ryδ

2
yT

n+ 2
3 + rzδ

2
zT

n(3.9)

+ ∆t

[
−
(
En
`+1 − En

`−1

ρCp2∆z

)
+ 2

(
SnR`+1

− SnR`−1

2∆z

)]
T n+1 − T n = rxδ

2
xT

n+ 1
3 + ryδ

2
yT

n+ 2
3 + rzδ

2
zT

n+1(3.10)

+ ∆t

[
−
(
En
`+1 − En

`−1

ρCp2∆z

)
+ 2

(
SnR`+1

− SnR`−1

2∆z

)]
.

Each equation generates a tridiagonal system in one space.

In order to calculate the terms of time T n+
1
3 , T n+

2
3 et T n+1, let’s put

ST = ∆t

[
−
(
En
`+1 − En

`−1

ρCp2∆z

)
+

(
SnR`+1

− SnR`−1

∆z

)]
,

and rx = ry = rz = ρ.

T n+
1
3 =

1 + ρ
(
δ2y + δ2z

)
1− ρδ2x

T n +
ST

1− ρδ2x
(3.11)

T n+
2
3 =

1 + ρ2
(
δ2xδ

2
y + δ2xδ

2
z

)
(1− ρδ2x)

(
1− ρδ2y

) T n +
ST

(1− ρδ2x)
(
1− ρδ2y

)(3.12)

T n+1 =
(1− ρδ2x)

(
1− ρδ2y

)
+ ρδ2y

(
1 + ρ2δ2xδ

2
y + ρ2δ2xδ

2
z

)
(1− ρδ2x)

(
1− ρδ2y

)
(1− ρδ2z)

T n(3.13)

+
ρδ2x (1− ρδ2x)

(
1− ρδ2y

) (
1 + ρδ2y + ρδ2z

)
(1− ρδ2x)

(
1− ρδ2y

)
(1− ρδ2z)

T n

+
ST

1− ρδ2x

[
1 +

ρδ2y
1− ρδ2y

]
.

Eventually we get a system of algebraic equations of the form Y = AX+B, com-
prising 64 equations with 96 unknowns. The initial condition and the boundary
conditions make it possible to eliminate 32 unknowns.
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As for the numerical resolution of this system of equations, we use the iterative
method of Gauss-Seïdel because of its great stability with respect to rounding
errors.

Calculation of solar radiation reaching the solar pond:
The solar radiation model applied is that of Rabl-Nilson

E = Ese
−µz.

Here, Es represents the solar radiation reaching the surface and µ is equal to
0.5m−1 and is called the extinction coefficient.

We consider that the water is moderately turbid and that the sky is clear (ab-
sence of clouds) during the period of sunshine.

Solar radiation calculations will be done every 3 hours, daybreak is assumed at
5 am and noon will be the time when the sun will be perpendicular to the pond.

TABLE 1. Calculation moments of solar radiation
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Average daily energy

Em =

∑
Ei

Ni

=
912.89

8
= 114.11W/m2.

The table 3 gives the energy values in the different levels of the pond:

TABLE 2. The amount of energy in the different depth levels

Concerning the other meshes such as normal, fine and finer, we used the Camsol
software which is designed for the numerical resolution of these large algebraic
systems.

The latter uses several multigrid levels where each level corresponds to a mesh
and a choice of function.

Thus, with each transition from one mesh to another finer, the number of de-
grees of freedom decreases and the meshes constructed thus obtained will be au-
tomatic.

The alignment of these meshes can be carried out thanks to an option using the
successive refinements of the aligned meshes.

4. RESULTS AND DISCUSSIONS

4.1. Choice of meshes. This work consists in calculating the temperature as a
function of time through the following 4 meshes:

- 1st mesh: discretization steps h = 1
4
, system of equations comprising 64

equations with 96 unknowns.
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FIGURE 5. The discretization steps h = 1
4

- 2nd mesh: normal mesh, mesh consists of 4238 domain elements, 840
boundary elements, and 92 edge elements.

FIGURE 6. Mesh normal
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• 3rd mesh: fine mesh, mesh consists of 8673 domain elements, 1252 bound-
ary elements, and 120 edge elements.

FIGURE 7. Fine mesh

• 4th mesh: finer mesh, mesh consists of 27861 domain elements, 2460
boundary elements, and 164 edge elements.

FIGURE 8. Finer mesh
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4.2. The temperature profile. The temperature profile according to the salinity
is given with respect to points A, B and C which are located respectively to the left,
in the middle and to the right of the NCZ zone.

FIGURE 9. Temperature profile at points A,B and C as a function of
salinity for a pond without reflectors

FIGURE 10. Temperature profile at points A,B and C as a function
of salinity for a pond with reflectors
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TABLE 3. The evolution of temperature as a function of salinity for
a pond without reflectors

TABLE 4. The evolution of temperature as a function of salinity for
a pond with reflectors

Discussion:

The concept of convergence of a diagram expresses its property to tend towards
the exact solution of the problem treated for mesh parameters, such as the number
of nodes tending towards infinity.

It is possible to show that convergence is assured if the numerical scheme
adopted in this work is both stable and consistent.
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The stability of a diagram translates its faculty to adopt a regular behavior dur-
ing the introduction of any disturbance due for example to the bad calculation of
a boundary condition or an initial condition.

A scheme is said to be stable if any disturbance of digital origin is damped
or at best not amplified. It will be said to be unstable if, on the contrary, any
disturbance, however minimal it may be, is amplified over time or in space.

If we used in this work the method of Douglas-Rachford to discretize the funda-
mental equation which governs the dynamics of the movement it is to ensure an
unconditional mathematical stability.

This method is also called the method of fractional steps which consists of di-
viding time into 3 fractions of n −→ n+ 1

3
−→ n+ 2

3
−→ n+ 1.

To determine the truncation error and the stability factor, let’s apply the Douglas-
Rachford approach.

Let rx = ry = rz = ρ and assume that the source of energy that powers the solar
pond is zero. Let’s eliminate the indices (i, j, `).

The system of equations (3.8), (3.9) and (3.10) can be written:

T n+
1
3 − T n =

∆t

k2

(
δ2xT

n+ 1
3 + δ2yT

n + δ2zT
n
)

(4.1)

T n+
2
3 − T n+

1
3 =

∆t

k2
δ2y

(
T n+

2
3 − T n

)
(4.2)

T n+1 − T n+
2
3 =

∆t

k2
δ2z
(
T n+1 − T n

)
(4.3)

in more general split form, we can write:(
1− ρδ2x

)
T n+(∗) =

[
1 + ρ

(
δ2y + δ2z

)]
T n(4.4) (

1− ρδ2y
)
T n+(∗∗) = T n+(∗) − ρδ2yT n(4.5) (

1− ρδ2z
)
T n+1 = T n+(∗∗) − ρδ2zT n(4.6)

Let’s eliminate T n+(∗) et T n+(∗∗), we obtain:(
1− ρδ2x

) (
1− ρδ2y

) (
1− ρδ2z

)
T n+1 = ρ2

(
δ2xδ

2
y + δ2yδ

2
z + δ2xδ

2
z

)
T n(4.7)

+
(
1− ρ3δ2xδ2yδ2z

)
T n
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Both the coefficients in (4.7) are consistent 27 point operators. The equation (4.7)
can still be written:

T n+1 = T n + ρ
(
δ2x + δ2y + δ2z

)
T n+1 − ρ2

(
δ2xδ

2
y + δ2yδ

2
z + δ2xδ

2
z

) (
T n+1 − T n

)
(4.8)

+ ρ3δ2xδ
2
yδ

2
z

(
T n+1 − T n

)
Using the Taylor series expansions and the relations

Tx = ∇2T, Txx = ∇4T où ∇2T =
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

The local truncation error of the Douglas-Rachford shema is

− 1

12
ρk4

(
∂4T

∂x4
+
∂4T

∂y4
+
∂4T

∂z4

)
− ρ2k4

2
∇4T

let’s put

(4.9) T n+(∗) = T n+(∗∗) = Gn+1

We can write:

T n+(∗) = Gn +
(
1− ρδ2y

) (
1− ρδ2z

) (
Gn+1 −Gn

)
(4.10)

T n+(∗∗) = Gn +
(
1− ρδ2z

) (
Gn+1 −Gn

)
(4.11)

A standart stability analysis shows that the overall amplification factor is

λ =
1 + A1A2 + A1A3 + A2A3 + A1A2A3

(1 + A1) (1 + A2) (1 + A3)

where, as before,

Ai = 4ρ sin2

(
βik

2

)
, i = 1, 2, 3.

As it is also interesting to note that

rx + ry + rz = 0.4295 ≤ 1

2
.

This further shows that the numerical scheme used is stable.

Error calculation:
In this work, the mesh finer solution was taken as the reference solution. The

relative error in percentage is defined by:
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∣∣∣∣Reference solution− Considered solutionReference solution

∣∣∣∣× 100.

The relative errors of the simulation results are given in the following two tables:

TABLE 5. Relative errors for a solar pond without reflectors

TABLE 6. Relative errors for a solar pond with reflectors

The tables (5) and (6) given, above, show that this error decreases as the step
of discretization tends towards zero, ie, that the number of nodes tends to infin-
ity. This shows a tendency of convergence of the approximate solution towards
the exact solution, thus corroborating the theoretical convergence result given by
proposition (11.6) of the reference [14]. We therefore deduce that the numerical
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scheme adopted is consistent. By referring to the Lax-Milligram theorem which
states that any stable and consistent numerical scheme implies that it is conver-
gent. So the scheme adopted in our work is convergent.

FIGURE 11. Profile convergence diagram of the temperature of the
reference solution

On another register, we noted the following points:

- the pond fed by the sun and the 2 reflectors registers a temperature ex-
ceeding almost 13◦C compared to the pond without reflectors.

- the growth in temperature is very accelerated during the first 3 weeks to
begin to stabilize in the 4th week.

- more intense heating in the central part of the pool represented by point
B, than at the periphery represented by points A and C due to heat loss at
wall level.

- for a given layer the temperature range can go up to 1◦C because of the
permanent presence of solar radiation hitting the center of the basin.

- the layers of the NCZ zone have retained their mass concentrations, this
shows that the pond is physically stable and the thermodynamic equilib-
rium of the LCZ storage zone is maintained.

- the installation of reflectors in sunny Saharan areas is essential because
they contribute to raising the temperature of the pond.
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5. CONCLUSION

- As part of this work, we considered a heat transfer inside a solar pond
equipped with two reflectors.

- This work came to fill a void which consists in increasing the temperature
at the bottom of the pond (LCZ) during the winter season.

- This transfer is governed by the heat equation in 3 spatial dimensions with
appropriate initial and boundary conditions.

- The finite volume method together with the Gauss-Seidel scheme was used
to discretize the governing equation which is of the parabolic type.

- The numerical results showed that there is an increase in heat of the or-
der of 62% if the pond has two reflectors compared to the pond without
reflectors.

- The decrease in the relative error is proportional to the fineness of the
spatial and temporal discretization step.

- We hope that similar work will be carried out to see firsthand if the pond
retains its physical stability, in other words there will be no more amalga-
mation of the different layers of the NCZ.

NOMENCLATURE

Cp : Specific heat [kJ/kg◦C];
E : Radiation intensity [w/m2];
h : Heat Transfer Coefficient [w/m2◦C];
k : Heat Conductivity Coefficient [w/m◦C];
q or Q: Heat transfer rate [w/m2];
s : Salinity of the brine [%];
T : Temperature [◦C];
t : Time [sec];
µ : Extinction Coefficient of Transmission Function [m− 1];
ρ : Density [kg/m3].
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