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THE MATRIX LINEAR UNILATERAL AND BILATERAL EQUATIONS
G. Gomathi Eswari! and A. Rameshkumar

ABSTRACT. In this article the method of solving matrix linear equations over com-
mutative Bezout domains by means of standard form of a pair of matrices with
respect to generalized equivalence is found. The criterions of uniqueness of partic-
ular solutions of matrix linear equations are determined. The formulas of general
solutions of matrix linear equations AX + BY = C and AX + YB = C are deduced.

1. INTRODUCTION

The matrix linear equations play a fundamental role in many talks in control
and dynamical systems theory [1-4]. The such equations are the matrix linear
bilateral equations with one and two variables

(1.1) AX+XB=C

(1.2) AX+YB=C
and the matrix linear unilateral equations

(1.3) AX + BY = C,

Ycorresponding author
2020 Mathematics Subject Classification. 15XX, 15A06.
Key words and phrases. Pair of matrices, Linear Unilateral Equations, Bilateral Equations.
Submitted: 31.07.2022; Accepted: 15.08.2022; Published: 24.08.2022.
697



698 G. Eswari and A. Rameshkumar

where A, B, and C are matrices of appropriate size over a certain field F or over
aring R. X,Y are unknown matrices. Equations (1.1), (1.2) are called Sylvester
equations. The equation AX + X AT = C, where matrix A” is transpose of A, is
called Lyapunov equation and it is special case of Sylvester equation. Equation
(1.3) is called the matrix linear Diophantine equation [3, 4]. Roth [5] established
the criterions of solvability of matrix equations (1.1), (1.2) whose coefficients
A, B, and C are the matrices over a field F.

2. STANDARD FORM OF A PAIR OF MATRICES

Let R be a commutative Bezout domain with diagonal reduction of matrices [9],
that is, for every matrix A of the ring of matrices M (n, R), there exist invertible
matrices U,V € GL(n, R) such that

(2.1) UAVy = DA = diag(py, ..., bn), dsdixs, i=1,...,n—1.

If € R,i = 1,...,n, then the matrix D* is unique and is called the canonical
diagonal form (Smith normal form) of the matrix A. Such rings are so-called
adequate rings. The ring R is called an adequate if R is a commutative domain in
which every finitely generated ideal is principal and for every a,b € R with a # 0;
a can be represented as a = cd where (¢,b) = 1 and (d;,b) # 1 for every nonunit
factor d; of d [10].

Definition 2.1. The pairs (A;, As) and (B, Bs) of matrices A;, B; € M(n, R),1 =
1,2 are called generalized equivalent pairs if A; = UB;V;,i = 1,2 for some invertible
matrices U and V; over R.

In [7,8], the forms of the pair of matrices with respect to generalized equivalence
are established.

Theorem 2.1. Let R be an adequate ring, and let A, B € M (n, R) be the nonsingular
matrices and

(22) DA =& = diag(¢la"'7¢n)7DB = w = dlag(¢17a¢n)

be their canonical diagonal forms then the pair of matrices (A, B) is generalized
equivalent to the pair (D4, T?), where T® has the following form:
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U 0 ... 0
T8 _ toatr s
0

tathr tnata ... Un,
tzg € R(SZ.]., where 62] = (¢z/¢]7 1/%/2/}])7 Z7.] = 17 27 s 7n7i > ]
The pair (D4, DP) defined in Theorem 2.2 is called the standard form of the
pair of matrices (A, B) or the standard pair of matrices (A, B).

Definition 2.2. The pair (A, B) is called diagonalizable if it is generalized equivalent
to the pair of diagonal matrices(D4, DP) that is, its standard form is the pair of
diagonal matrices (D*, D?).

Example 1. Let A, B € M(n, R). If (¢n/é1,%n /Y1) = 1, than the pair of matrices
(A, B) is diagonalizable.

It is clear taking into account by a Corollary that if (det A,det B) = 1, then the
standard form of matrices (A, B) is the pair of diagonal matrices (D#, DP). Let us
formulate the criterion of diagonalizability of the pair of matrices [5].

Definition 2.3. Diophantine equation is a polynomial equation usually involving
two (or) more unknown variables, Such that the only solutions of interest are the
integer ones. ax + by = ¢ where x,y are unknowns and a, b, c are integers.

3. THE MATRIX LINEAR UNILATERAL EQUATIONS AX + BY =(C

3.1. The Construction of the Solutions of the Matrix Linear Unilateral Equa-
tions with Two Variables.

Suppose that the matrix linear unilateral equation (1.3) is solvable, and let
(D4, TP) be a standard form of a pair of matrices (A, B) from (1.3) with respect
to generalized equivalence, that is,

DA =& =UAV, = diag(¢y,. .., ¢n),

(23 0 ... 0
(3.1 TB _ UBVj = ot Yo ... 8

a1 toathe ... Uy
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is a lower triangular matrix of the form (2.3) with the principal diagonal
(3.2) DB:\P:diag(wlw"awn)a

where U, V4, Vg € GL(n, R).
Then (1.3) is equivalent to the equation

(3.3) DA% +TPj=¢,
where & = v 7, = vz'y and ¢ = uc.

The pair of matrices 7y, 3, satisfying (3.3) is called the solution of this equation.
Then

(3.4) xo = Vady, yo = VBYo

is the solution of (1.3). The matrix equation (3.3) is equivalent to the system of
linear equation:

$1Z11 + ¢1Y11 = €11,
O1T12 + P1Y12 = Ci2,

(3.5) O1T1n + P1Y1n = Cin,
P2T21 + O1t21Y11 + P2U21 = Co1,

gbnjnn + ¢1tn1g1n + ...+ ¢n—1tn,n—1gn—1,n + ¢ngnn = Enn7

with the variables z;;, ¢;;, ¢,7 =1,...,n, wheret;;, i,j=1,...,n, from (3.3), or
(3.6) Pilij + Z VitijUi; + 0ilij = Cij, 1,j=1,...,n,
i=1

where & = [|Z; |1, § = [|7;]|7 and ¢ = [T
The solving of this system reduces to the successive solving of linear Diophantine
equations of the form

(3.7) Gillij + Oillij = Cij.

Using solutions of system (3.6), we construct the solutions Z, § of matrix equation
(3.3). Then X = V42 and Y = Vpy are the solutions of matrix equation (1.3).
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3.2. The General solutions of the Matrix Equation AX + BY = C with the
Diagonalizable Pair of Matrices (A, B).

Suppose that the pair of matrices (A, B) is diagonalizable, that is,
( ) UAVA:DA:q):diag<¢la"'v¢n)>
3.8
UBVg = D® =V = diag(¢r, . .., Un).

For some matrices U, V4, Vg € GL(n, R). Then (1.3) is equivalent to the equation
(3.9) PX =0Y =C,

where X =V, 'X,Y =V;'Y and C = UC.
From matrix equation (3.9) we get the system of linear Diophantine equation:

(3.10) Oilij + Gy = Ciy 1,7 =1,...,n
Let x§3)7 yfj), i,7 = 1,...,n be a particular solution of corresponding equation of

system (3.10), that is, j(q) is the solution of congruence ¢;7;; = ¢;( mod 1),
i) € Ry, and i) = (& — ¢ily)) /i -

The general solution of corresponding equation of system (3.10) by the formula
will have the following form:

Vi s

(311) fi‘i] :JN;Z(O) z+¢z 59 yzg _yi' _Tz+¢z K i,jzl,...,n,

J dw di;
where d;; = (¢5,v;),r; are arbitrary elements of R, , and k;; are any elements of
R,i,j = 1, ...,n. The particular solution of matrix equation (3.9) is

0

(3.12) = 12518, 90 = 13511,
where xl(J), yg)), i,j = 1,...,nis a particular solution of corresponding equation of
system (3.10). Then
(3.13) Xo=VaXo, Yo=VpY,

is a particular solution of matrix equation (1.3).

Theorem 3.1. Let the pair of matrices (A, B) from matrix equation (1.3) be diago-
nalizable and its standard pair be the pair of matrices (, V) in the form (3.8). Let
X, Yy, be a particular solution of matrix equation (3.9). Then the general solution
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of matrix equation (3.9) is

X=X+ diag(ﬂrl, Cey ﬂ7“n)L + Uk,
dll dnn
(3.14) Y =Y, + diag(ﬂrl, ce ﬁ7“71)[/ — Ok,
dll dnn
where d;; = (¢i,1;),r; are arbitrary elements of Ry,,, i = 1,...,n; L = ||l;||T,
Ly =1, 4,5 = 1,...,n;k = |k;||}, ki; are arbitrary elements in R. The general

solution of matrix equation (1.3) has the form X = V, X,y = VgY.

Example 2. Consider the equation

(3.15) AX +BY =C.
For the matrices

-2 4 1 3 9 12
(3.16) A — 9 - b] == )

—6 8 5 7 11 10
are matrices over 7 and
(3.17) X — T11 13 vy = Y11 Y12

To1 T22 Y21 Y22

are unknown matrices. The matrix equation (3.16) is solvable.

The pair of matrices (A, B) from matrix equation (3.16) by a theorem is diago-
nalizable[6]. Let A, B € M(n,R) and A be a nonsingular matrix. Then the pair of
matrices (A, B) is generalized equivalent to the pair of diagonal matrices (D*, D?)
if, and only if, the matrices (adjA)B and (adjD*)D?P are equivalent, where adjA is
an adjoint matrix[7].

Since the matrices

8 —4|| |1 3 ~12 -4
3.19a adjA)B = =
(3-19a) (adj4) 6 6llls 7 H 4 4 ‘
8 ollll6 o 8 0
(3.19b) (adjD*)D? = — :
0 6|[|l0 —8 0 -8
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From (3.19a) and (3.19 b) are equivalent. Therefore,
UAV, = DA = ® = diag(6,8), ¢1 =6,y =38,

(3.18) UBVp = D? =V = diag(6,—8), ¢1 =6,¢s = —8,
where
0 1 5 2 35
3.19 U= L V= : —
(3.19) 1 5 A7 2 1 B7 9

Then (3.16) is equivalent to the equation &z + Vg = ¢, where

X = VA_lX _ |4 A ’
X21 X22
(3.20) o
- Yu Y - 1110
Y=Vgly = P, C=UC= .
Yor Yoo 46 38

From matrix equation (3.22), we get the system of linear Diophantine equations:

6211 + 6911 = 11, 6212 + 6y12 = 10,

(321) 8.%12 - 8@21 - 46, 8%22 - 8]]22 = 38

The particular solution of each linear equation of system (3.24) has the following

form

Ty =309 =1, &3 = 0,91 =2
(3.22) B = 4,55 = -10, 35 = —4,55) = 9.
The particular solution of matrix equation (3.22) is

1 2
—10 —9||°

30 0
-4 —4

) 0_‘

(3.23) Xo =

Then by (3.14) the general solution of matrix equation (3.22) is

30 0
-4 —4

6ki1  Gkio
—8ka1  —8kay

r1 1

—Try —T
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(324) }7 _ 1 2 _ rn M _ 6]€11 6]%’12
-10 -9 Ty T 8kay  8kaz
or
v 30 + 6k11 6k12
—4—T2—8]€21 —4_T2_8k22
~ 1 —6k 2 — 6k
(3.25) X = H 2
—10—7“2—8/{521 —9—T2—8/€22

where r; is from Z, = {0}, rq is arbtrary element of Z3 = {0, 1,2}, and k;;, i,j = 1,2
is arbitrary element of Z.
Finally, the general solution of matrix equation (3.16) is

142 — 27’2 + 30k11 — 16k21 -8 — 27"'2 + 30k12 — 16l€12

X=VX=
56 — Tro + 12/{711 - 8/{721 —4 — To + 12k11 — SICQQ

—47 — 57"2 - 18]{711 — 401{321 -39 — 57‘2 — 18]{312 - 40/{312

(3.26) Y =V3Y =
—19 — 27”2 - 6k11 - 16]{321 —16 — 2T2 - 6k312 - 16]{?22

3.3. The Uniqueness of Particular Solutions of the Matrix Linear Unilateral
Equation.

The conditions of uniqueness of solutions of bounded degree (minimal solu-
tions) of matrix linear polynomial equations We present the conditions of unique-
ness of particular solutions of matrix linear equation over a commutative Bezout
domain R [8].

Theorem 3.2. The matrix equation (3.3) has a unique particular solution

(3.27) Xo= 715, Yo=lag Iy

such that 5:5;)) € Ry,,i,j=1,...,nif and only if, (detD*, detT?) = 1.

Proof. From matrix equation (3.3), we get the system of linear equations (3.6).
The solving of this system reduces to the successive solving of the linear Dio-
phantine equations of the form (3.7). The matrix equation (2.3) has a unique

particular solution X, = Higg)ﬂ’f, Y, = ||y~§?)\|’f such that :’él(;)) € Ry, i, =1,...,n
if, and only if, each linear Diophantine equations of the form (3.7) has a unique
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particular solution il(»?),gji(?), such that ff;)) € Ry,,i,7 = 1,...,n. It follows that
(detDA, detT?) = 1. O
Theorem 3.3. X, = &7, Yo = ||7||7, where 7)) € Ry,,i,j = 1,...,n be a

unique particular solution of matrix equation (3.3). Then the general solution of
matrix equation (3.3) is

(3.28) X =X, + VK, Y =Y, + OK,

where ® = D4 and ¥ = D?® are canonical diagonal forms of A and B from matrix
equation (1.3), respectively, K = Hl%i(f)ﬂ’f, k;; are arbitrary elements of R, i,j =
1,...,n

The general solution of matrix equation (1.3) is the pair of matrices

(3.29) X =VyX, Y =VgY.

Proof The particular solution of the form (3.30) of (3.3) is unique if, and only
if, (det DA, det TP) = 1, that is, (detA, detB) = 1. Then by corollary the pair of
matrices (A, B) is diagonalizable and (1.3) gives us the equation of the form (3.9)

Thus by a Theorem we get the formula (3.31) of the general solution of (3.3)
and the formula (3.32) for computation of general solution of (1.3) in the case
where (3.3) has unique particular solution of the form (3.30). O

4. THE MATRIX LINEAR BILATERAL EQUATIONS AX +YB =C

Consider the matrix linear bilateral equation (1.2), where A, B, and C' are ma-
trices over a commutative Bezout domain R, and

UAAVA = DA =¢= dia’g<¢17 ce 7¢n)7¢i|¢i+17

4.1) UpBVp = DP =¥ = diag(%, SR 7wn)7wi|wi+lai =1...,n—-1

are the canonical diagonal forms of matrices A and B, respectively, and Uy, V4,
Ug, Vg € GL(n, R). Then (1.2) is equivalent to

(4.2) X +Y =C,
where X = V' XV, Y = U,YU;' and C = U,COV3.



706 G. Eswari and A. Rameshkumar

Such an approach to solving (1.2) where A, B and C' are the matrices over a
polynomial ring F'(\), where F' is a field, was applied in [3]. The equation (3.2)
is equivalent to the system of linear Diophantine equations.

(4.3) GiTij + Vili; = Cij, t,j=1,...,n.

Theorem 4.1. Let

(4.4) Xo=IXD1 Yo= v,

be a particular solution of matrix equation (4.2) that is, )N(Z-(Q), Y/igo)’ i,j=1,...,n,
are particular solutions of linear Diophantine equation of system (3.3).

The general solution of matrix equation (4.2) is
(4.5) X=Xg+Wy+kY =Yy +Wp +k®,

where Wy, = ||(¥;/dij)wi; |7, We = ||(¢/dij)wi;|l, where w;; are arbitrary element of
Ry, and K = ||k;;||7, where k;; are arbitrary element of R,i,j = 1,...,n.
The general solution of matrix equation (1.2) is

(4.6) X =VuaXV;Y =U'YUs.

Similarly as for (3.3) we prove that particular solution of (4.2) is unique if, and only
if, (deto,det)) = 1. Then by the same way as for (1.3) we write down the general
solution of matrix equation (1.2).

Theorem 4.2. Suppose that
% (0)11m Y ~(0) |1
Xo=IXDME, Yo=Y,

)

where Xi(f) € Ry,,i=1,...,nis unique particular solution of matrix equation (4.2)
and
(4.7) D4 = & = diag(¢1,. .., ¢n), DP =V = diag(¢y, ..., ¥n),

are canonical diagonal forms of matrices A, B from matrix equation (1.2), respec-
tively. Then the general solution of matrix equation (4.2) is

(4.8) X=X+ KU, Y =Y, + K®,

where K = ||k;;||1, ki; are arbitrary elements of R,i,j =1,...,n.
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The general solution of matrix equation (1.2) is

(4.9) X =V XV5;', Y=U;'YUs.
Example 3. Consider the equation
(4.10) AX+YB=C
for the matrices

|18 —6 s ~ |10 11

B | IS | F: S | N N DR
for the matrices over Z and
4.11) X — T11 T2 Y = Y11 Y2

T21 T22 Y21 Y22

707

are unknown matrices. The matrix equation (4.10) is solvable. The Pair of matrices
(A, B) from matrix equation (4.10) by a theorem is diagonalizable.

Let A,B € M(n,R) and A be a nonsingular matrix. Then the pair of matrices
(A, B) is generalized equivalent to the pair of diagonal matrices (D D?) if, and only
if, the matrices (adjA)B and (adjD*)D? are equivalent, where adjA is an adjoint

matrix.
Since the matrices

9 ¢lll7 s 4
(4.12) (adj4) ||—4 slllls 1l ~ ||-4
s ollle o 8

4.13 diD*)D? = =
(4.13) (adj D) 0 6lllo —s| o

From (4.12) and (4.13) are equivalent. Therefore, UAV, = D* = ® = diag(6,8),

—4

—12

0

—8ll

¢ =

67 ¢2 - 87
(4.14) UBVg = D? =W = diag(6, —8), 1 = 6.9 = —8,
where
-1 0 0 1
U — 9 U ==
AT T 2
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1 -2 2 1
4.15 Vi = , Up= )
( ) A 1 3 B L1
Then (4.10) is equivalent to the equation
(4.16) O + Uy =2,
where
X _ VA_IXVB _ ZEEl l’:lg 2 1 _ 2%:11 + ZL':lg ZL‘:H + IL‘EQ
To1 x|l (|1 1 2791 + T2 T2 + T2
- 11 U1 -1 0 —y11 +vyi2 0—u1
Yya1 Yoofl || 1 —1 —Y21 + Y22 0 — yao
~ -1 0 10 11|12 1 —-31 -21
C=U'CVp = _
1 =112 9 1 1 —2 0

From matrix equation (4.16), we get the system of linear Diophantine equa-

tions:
611 + 6y = —31,
6212 + 6y12 = —21,
(4.17) B i
891 — 8Ya1 = —2,
81’52 — 8y52 =0.
The particular solution of each linear equation of system (4.18) has the following
form
#9 =30, gV =-35
w5 =18, gy =-22
(4.18) ~(0) ~(0)
Ty = —4, Yo = =3,
=0, @ =0

The partricular solution of matrix equation (4.19) is

—-35 =22
-3 0

30 18
-4 0

(4.19) X, = . Yy =
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Then by (3.14) the general solution of matrix equation (3.22) is

5 30 18 Wi Wi, 6k 6k
-4 0 —War —Woe —8ky1  —8ka
(4 20) Y/ _ —-35 22 B Wi Wis B 6ki1 6k
. -3 0 War Was 8ka1  8kao
[130 + Wy + 6kiy 18+ Wiy + 6l
—4 — Woy — 8kar 0 — Wy — 8Ky
(4 21) _ —35 — WH — 6k11 —22 — W12 — 6]€12
' —3—Way —8ky1 0 — Wiy —8kyy ||

where r; is from Z; = {0}, r, is arbitrary element of Z5 = {0, 1,2} and k;;,¢,j = 1,2
is arbitrary element of Z. Finally, the general solution of matrix equation (3.16) is

(4.22) X = VaXVy!

110 4+ 3Wo; + 18kyy — 5Wig + 40ko
—148 — AWy — 24kyy — TWy — 56ko

Y = U;lfoB =

3+ 3Wa + 8k

—72 — 4Wyg — 24kq9 — TWag — 56k9s

54 + 3Wio + 18k19 + 5Wag + 40kss

Wag + 8k

5. CONCLUSION

Hence we conclude that the method of solving matrix linear equations are over
a commutative bezout domain. This method is based on the use of standard form
of a pair of matrices with respect to generalized equivalence introduced and on
congruences. Now the notion of particular solution of such matrix equations. We
establish the criterions of uniqueness of particular solutions and write down the
formulas of general solutions of such equations.
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