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WEAK CONVERGENCE APPROACH TO THE MODERATE DEVIATIONS
PRINCIPLE FOR POSITIVE DIFFUSION

R.N.B Rakotoarisoa1 and T.J. Rabeherimanana

ABSTRACT. We consider the family of stochastic processes Xε = {Xε
t for 0 ≤ t ≤

1}, ε > 0 where Xε is a solution of the Ito’s differential equation.

(A) Xε
t = x+

√
ε

∫ t

0

σ(Xε
s )dWt +

∫ t

0

b(Xε
s )dt; x > 0.

In this paper, we deal with the weak convergence approach to prove a moderate
deviation principle for Xε solution of (A).

1. INTRODUCTION

In recent years, several authors have studied the large deviations theory [1,5,7,
8]. Like the large deviations, the moderate deviation problems arise in the theory
of statistical inference quite naturally. The estimates of moderate deviations can
provide us with the rate of convergence and a useful method for constructing
asymptotic confidence intervals.

We consider in this paper the following stochastic differential equation

(1.1)

{
dXε

t =
√
εσ(Xε

t )dWt + b(Xε
t )dt

Xε
0 = x

,
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where x > 0, W is a standard one-dimentionnal Brownian motion and σ, b satisfy
the following assumption.

(H): σ : R → R is Holder continuous with exponent γ ∈ [
1

2
; 1], and is locally

Lipschitz continuous on ]0,+∞[, vanishes at 0 and has a sublinear growth at∞.
The function b : R → R is C1−continiuos and has a sublinear growth at ∞ and
b(0) > 0. We asume that there exist an constant C1 > 0 such that, for all x, x′ ∈ R,
we have:

xb(x) ≤ C1(1 + ‖x‖),
‖b(x)− b(x′) ≤ C1(‖x− x′‖),

‖σ(x)‖ ≤ C1,

‖σ(x)− σ(x′)‖ ≤ C1(‖x− x′‖γ).
Under assumption (H), the equation (1.1) has a unique strong solution Xε

t and
furthermore Xε

t > 0 (see [2,11]).
The applications to finance have attracted the attention to the study of these

models that are based on diffusion processes whose state space is the positive half
line. Letting b(x) = α(β − x) and σ = ρxγ with some constants α > 0, β > 0 and

γ ∈ [
1

2
; 1]; (1.1) is a constant elasticity of variance (CEV) model and the special

case γ =
1

2
is the Cox-Ingersoll-Ross (CIR) model.

The type of moderate deviation of stochastic (partial) differential equation has
been studied by several authors such that: in [4] the authors have estabilished the
moderate deviations principle for small perturbation Wishart processes that is a
non-Lipschitzian coefficients. For the Lipschitzian coefficients, the moderate devi-
ations for martingale with bounded jumps have established by [6]; the moderate
deviations for Volterra equation can be found in [10] and the moderate deviations
for stochastic reaction-diffusion equation with multiplicative noise was presented
in [13].

Let us consider a process Y ε solution of the following equation

(1.2) Y ε
t :=

1√
εh(ε)

(Xε
t −X0

t ), t ∈ [0, 1],

where X0 is the solution of the ordinary differential equation{
dX0

t = b(X0
t )dt

X0(0) = x > 0
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and h(ε) is some deviation scale which strongly influences the asymptotic behavior
of Y ε.

(a) The case that h(ε) = 1/
√
ε provides some large deviations estimates.

(b) If h(ε) = 1, we are in the domain of the central limit theorem (CLT in
short).

(c) To fill in the gap between the CLT scale [h(ε) = 1] and the large deviations
scale [h(ε) = 1/

√
ε], we will study the moderate deviation principle (MDP

in short), that is, when the deviation scale satisfies

(1.3) h(ε)→∞ and
√
εh(ε)→ 0, when ε→ 0,

For the positive diffusion, Baldi and Caramellino [2] are established the gen-
eral Freidlin-Wentzell large deviations and li. Y and Zhang. S [9] are studied the
moderate deviation and central limit theorem. Their approch are used the expo-
nentially equivalent and some theorem in Dembo and Zeitouni [5] such as in R.
Wang and T. Zhang [13] wich is shown that the processes exponentially equiva-
lents satisfy the same large deviations principle (LDP in short). We purpose in this
paper to establish the LDP in C([0; 1];R) for the process Y ε(t) defined by (1.2), for
that we will use the weak convergence approch, our method consist to show only
the MDP but without the CLT.

This paper is organised as follow, the next section consistes to introduice some
general results for large deviations and contains the main result. We will establish
the proof in section 3 with additionnal hypothesis.

2. LARGE DEVIATION PRRINCIPLE

In this section, we recall a definition and some basic properties about LDP, see
[3,5,12]. Let ξ be a Polish space with the Borel σ−field B(ξ).

Definition 2.1. A family {Xε}ε>0 of E−valued random elements is said to satisfy the
large deviations principle on E, with the rate function I and with the speed function
λ(ε) which is a sequence of positive numbers tending to +∞ when ε → 0, if the
following conditions hold:

(a) for each M <∞ thr level set {x ∈ ξ; I(x) ≤M} is a compact subset of ξ,

(b) for each closed subset F of ξ, lim sup
ε→0

1

λ(ε)
log(P(Xε ∈ F )) ≤ − inf

x∈F
I(x);
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(c) for each closed subset F of ξ; lim inf
ε→0

1

λ(ε)
log(P(Xε ∈ G)) ≥ − inf

x∈G
I(x).

The Cameron–Martin space associated with the Brownian motion {Wt; t ∈
[0, T ]} is given by

H =

{
h : [0, T ]→ R;h is absolutly coninuous and

∫ T

0

|ḣs|2ds < +∞
}
.

The space H is an Hilbert space with winner product < h1, h2 >:=∫ T
0
< ḣ1(s), ḣ2(s) > ds. The Hilbert space H is endowed with the weak topol-

ogy, i.e., for any hn where h ∈ H, n ≥ 1, we say that hn converges to h in the weak
topology, if for any g ∈ H,

< hn − h, g >=

∫ T

0

< ḣns − ḣs, ġs > ds→ 0, as n→∞.

Theorem 2.1 (see [12]). The probability measures induced by
√
εW on C([0, 1];R),

satisfy a LDP with the good rate function I defined by

(2.1) I(h) =


1

2

∫ 1

0
|ḣs|2ds if h ∈ H

∞ otherwise
.

Let us A denote the class of real-valued {Ft}−predictable processes ϕ belonging
to H a.s. Let

SN :=

{
h ∈ H;

∫ T

0

‖ḣs‖2ds ≤ N

}
,

SN is endowed with the weak topology induced from H. Define the following

AN := {Φ ∈ A;Φ(ω) ∈ SN ,P− a.s}.

Theorem 2.2. (see [3]) For any ε > 0, let Γε be a measurable mapping from
C([0, 1];R) into ξ. Suppose that {Γε}ε>0 satisfies the following assumptions: there
exists a measurable map Γ0 : C([0, 1];R)→ ξ such that

(a) for every N < +∞ and any family {hε; ε > 0} ⊂ AN satisfying that hε
converge in distribution as SN−valued random elements to h as ε → 0,
Γε
(
W. +

∫ T
0
ḣε(s)ds

)
converge in distribution to Γ0

(∫ T
0
ḣ(s)ds

)
as ε→ 0;

(b) for every N < ∞, the set
{

Γ0
(∫ T

0
ḣ(s)ds

)
;h ∈ SN

}
is a compact subset of

ξ. Then, the family {Γε(W (.))}ε>0 satisfies a LDP in ξ with the rate function
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I given by

(2.2) I∗(g) = inf
{g=Γ0(

∫ .
o ḣ(s)ds)}

I(h); g ∈ ξ.

where I is given by (2.1).

We now present our main result.

Theorem 2.3. Under assumption (H); the process Y ε defined in (1.2), such that
the deviation scale h(ε) respects (1.3), satisfies an LDP in C([0, 1];R) with the rate
function I∗ given by (2.2).

3. PROOF OF THE MODERATE DEVIATION PRINCIPLE

3.1. Skeleton equation. For any h ∈ H, consider the deterministic integral equa-
tion

(3.1) Y h
t =

∫ t

0

σ(X0
s )ḣsds+

∫ t

0

b′x(X
0
s )Y h

s ds.

We suppose the following hypothesis

(L): The coefficient b′ derivate of b is locally lipschitzian, that is there exists a
positive constant Cb′ such that for all x1, x2 ∈ R

(3.2) ‖b′(x1)− b′(x2)‖ ≤ Cb′‖x1 − x2‖;

combined with the uniform Lipschitz continuity of b, we have

(3.3) ‖b′(x)‖ ≤ Cb′ , ∀x ∈ R.

We begin by introducing the map Γ0 that will be used to define the rate function
and to verify the conditions in Theorem 2.2.

Lemma 3.1. Under Hypotheses (H) and (L), for any h ∈ H, the equation (3.1)
admits a unique solution Y h in C([0, 1];R), denote by Y h = Γ0

(∫ .
0
ḣsds

)
. Moreover,

for any N > 0, there exists an constant c(Cb′ , C1, N, T ) wich depend in Cb′ , C1, N and
T such that

(3.4) sup
h∈SN

{
sup

0≤t≤T

∥∥Y h(t)
∥∥} ≤ c(Cb′ , C1, N, T ).
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Proof. The existence and uniqueness of the solution can be proved by hypothesis
(H) and (L). The inequality (3.4) follows from the linear growth conditions of the
coefficient functions and Gronwall’s inequality. �

Proposition 3.1. Under Hypotheses (H) and (L), for every positive number N <∞,
the family

KN :=

{
Γ0

(∫ .

0

ḣsds

)
;h ∈ SN

}
is compact in C([0, 1];R).

Proof. We first prove that the map Γ0 defined in Lemma 3.1 is continuous from
SN to C([0, 1];R). Then for any N <∞, the fact that KN is compact follows from
the compactness of SN and the continuity of the map Γ0 from SN to C([0, 1];R). It
remains to prove that Γ0 is a continuous map from SN to C([0, 1];R). Let hn → h

weakly in SN as n→∞. Then,

Y hn
t − Y h

t =

∫ t

0

σ(X0
s )(ḣn(s)− ḣ(s))ds+

∫ t

0

b′x(X
0
s )(Y hn

s − Y h
s )ds = In1 + In2 .

By the linear growth condition of σ and the boundness of X0, we know that for
any fixed t ∈ [0, T ], the function σ(X0

. ) : s ∈ [0, t] → R belongs to L2([0, t];R).
Since hn → h weakly in L2([0, T ];R), we know that

(3.5) In1 (t) =

∫ t

0

σ(X0
s )(ḣn(s)− ḣ(s))ds→ 0.

For any 0 ≤ t1 < t2 ≤ T ; by (H) and Cauchy-schwartz inequality, we have

(3.6)

‖In1 (t2)− In1 (t1)‖ =
∥∥∥∫ t2t1 σ(X0

s )(ḣn(s)− ḣ(s))ds
∥∥∥

≤ C1

∫ t2
t1
‖ḣn(s)− ḣ(s)‖ds

≤ C1(t2 − t1)1/2
(∫ t2

t1
‖ḣn(s)− ḣ(s)‖2ds

)1/2

≤
√

2NC1|t2 − t1|1/2

Hence the functions In2 are equi-continuous in C([0; 1];R).
By the linear growth condition of σ and Cauchy-Schwartz inequality, we have

(3.7)

supt∈[0,T ] ‖In1 (t)‖ ≤
∫ T

0
‖σ(X0

s )(ḣn(s)− ḣ(s)‖ds

≤
(∫ T

0
‖σ(X0

s )‖2
)1/2 (∫ T

0
‖ḣn(s)− ḣ(s)‖

)1/2

≤ c(C1, N, T ) <∞ and independant of n.



WEAK CONV TO MDP FOR POSITIVE DIFF 717

According to Arzéla-Ascoli Theorem, (3.6) and (3.7) imply that

(3.8) lim
n→∞

sup
0≤t≤T

‖In1 (t)‖ = 0.

By (3.3), we have

‖In2 (t)‖ ≤ Cb′

∫ t

0

‖Y hn
s − Y h

s ‖ds.

So by gronwall lemma apply to λn(t) = sup0≤s≤t ‖Y hn
s − Y h

s ‖ and (3.8), its follow
that

sup
t∈[0,T ]

‖Y hn − Y h‖ ≤ exp(Cb′T )× sup
t∈[0,T ]

‖In1 (t)‖ → 0, as n→∞.

And then, assertion follows. �

3.2. The moderate deviations principle. Let consider the process Y ε define by
(1.2) which is solution of the following equation:

Y ε
t =

1

h(ε)

∫ t

0

σ(X0
s +
√
εh(ε)Y ε

s )dWs

+
1

h(ε)
√
ε

∫ t

0

[b(X0
s +
√
εh(ε)Y ε

s )− b(X0
s )]ds.

(3.9)

This equation admits an unique solution Y ε = Γε(W.), where Γε stands for the
solution functionnal from C([0; 1];R) to C([0; 1];R).

The proof of the main theorem need the following lemma wich is a direct con-
sequence of Girsanov′s theorem and Ito′s formula.

Lemma 3.2. For every fixed N ∈ N, let Φε ∈ AN and Γε be given by 3.9. Then
Y Φε,ε := Γε

(
W.+ h(ε)

∫ .
0

Φ̇ε
sds
)

is the solution of the following equation

(3.10)

Y Φε,ε
t =

1

h(ε)
√
ε

∫ t
0

[
b(X0

s +
√
εh(ε)Y Φε,ε

s )− b(X0
s )
]
ds

+
∫ t

0
σ(X0

s +
√
εh(ε)Y Φε,ε

s )Φ̇ε
sds

+
1

h(ε)

∫ t
0
σ(X0

s +
√
εh(ε)Y Φε,ε

s )dWs

Furthermore, there exists an constant c(C1, N, T ) independent of ε such that

(3.11) E
∫ T

0

|Y Φε,ε
t |2dt < c(C1, N, T ).

Proposition 3.2. Assume that hypothesis (H) and (L) hold. For every fixed N ∈ N,
let Φε,Φ ∈ AN be such that Φε convergence in distribution to Φ as ε goes to 0. Then
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Γε
(
W (.) + h(ε)

∫ .
0

Φ̇ε(s)ds
)

converges in distribution to Γ0
(∫ .

0
Φ̇(s)ds

)
in the space

C([0, 1],Rd) as ε goes to 0.

Proof. By the Skorokhod representation theorem, there exist a probability (Ω̄, F̄ ,

(F̄t), P̄), and on this basis, a Brownian motion W̄ and also a family of F̄t−predictable
processes {Φ̄ε; ε > 0}, Φ̄ taking values on AN , P̄−a.s., such that the joint law of
(Φε,Φ,W ) under P coincides with that of (Φ̄ε, Φ̄, W̄ ) under P̄ and

lim
ε→0
〈Φ̄ε − Φ̄, g〉 = 0, ∀g ∈ H, P̄− a.s..

Let Ȳ Φ̄ε,ε
t be the solution to a similar equation as (3.10) replacing Φε by Φ̄ε and W

by W̄ , and let Ȳ be the solution to a similar equation as (3.1) replacing h by Φ̄.
Thus, to prove this proposition, it is sufficient to prove that

(3.12) lim
ε→0
‖Ȳ Φ̄ε,ε − Ȳ ‖ = 0 in probability.

From now on, we drop the bars in the notation for the sake of simplicity.
Notice that

(3.13)

Y Φε,ε
t − Y Φ

t

=
∫ t

0

{
1

h(ε)
√
ε

[
b
(
X0
s +
√
εh(ε)Y Φε,ε

s

)
− b(X0

s )
]
− b′x(X0

s )Y Φ
s

}
ds

+
∫ t

0

[
σ
(
X0
s +
√
εh(ε)Y Φε,ε

s

)
Φ̇ε
s − σ(X0

s )Φ̇s

]
ds

+
1

h(ε)

∫ t
0
σ
(
X0
s +
√
εh(ε)Y Φε,ε

s

)
dWs

=: J1 + J2 + J3.

By Taylor formula, there exists a random variable ηε(t) taking values in (0; 1)

such that ∥∥∥∥ 1

h(ε)
√
ε

[
b
(
X0
s +
√
εh(ε)Y Φε,ε

s

)
− b(X0

s )
]
− b′(X0

s )Y Φ
s

∥∥∥∥
=
∥∥b′(X0

s + η
√
εh(ε)Y Φε,ε

s

)
Y Φε,ε
s − b′(X0

s )Y Φ
s

∥∥
≤
∥∥b′(X0

s + η
√
εh(ε)Y Φε,ε

s

)∥∥ ∥∥Y Φε,ε
s − Y 0

s

∥∥
−
∥∥b′(X0

s + η
√
εh(ε)Y Φε,ε)− b′(X0

s )Y Φ
s

∥∥ ‖Y Φ
s ‖.

This inequality together with (3.2) and (3.3), we have

(3.14) sup
s∈[0;t]

‖J1(s)‖ ≤ Cb′

∫ t

0

‖Y Φε,ε
s − Y 0

s ‖ds+ Cb′
√
εh(ε)

∫ t

0

‖Y Φε,ε
s ‖.‖Y s

0 ‖ds.



WEAK CONV TO MDP FOR POSITIVE DIFF 719

By condition (H), we obtain

‖J2(t)‖ ≤
∥∥∥∫ t0 [σ(X0

s +
√
εh(ε)Y Φε,ε

s

)
(Φ̇ε

s − Φ̇s)
]
ds
∥∥∥

+
∫ t

0

[
σ
(
X0
s +
√
εh(ε)Y Φε,ε

s

)
− σ(X0

s )
]

Φ̇sds

≤
∥∥∥∫ t0 σ(X0

s )(Φ̇ε(s)− Φ̇(s))
∥∥∥

+
∫ t

0

∥∥σ(X0
s +
√
εh(ε)Y Φε,ε)− σ(X0

s )
∥∥∥∥∥Φ̇ε

s − φ̇s
∥∥∥ ds

+
∫ t

0

∥∥∥[σ(X0
s +
√
εh(ε)Y Φε,ε

s

)
− σ(X0

s )
]

Φ̇s

∥∥∥ ds
≤
∥∥∥∫ t0 σ(X0

s )(Φ̇ε(s)− Φ̇(s))
∥∥∥+ 2

√
εh(ε)C1

∫ t
0
‖Y Φε,ε‖(‖Φ̇ε(s)‖+ ‖Φ̇(s)‖ds.

Using the same argument as in the proof of (3.8); we obtain that

(3.15) sup
t∈[0;T ]

∥∥∥∥∫ t

0

σ(X0
s )(Φ̇ε(s)− Φ̇(s))ds

∥∥∥∥→ 0

in probability as ε → 0. By the Lemma 3.1 and Lemma 3.2 and using Cauchy
schwartz inequality, we know that there exists an constant c(C1, Cb′ , N, T ) such
that

E
{∫ T

0

∥∥Y Φε,ε
s

∥∥(‖Φ̇ε(s)‖+ ‖Φ̇(s)‖ds+

∫ T

0

∥∥Y Φε,ε
s

∥∥.∥∥Y Φ
s

∥∥ds}
≤c(C1, Cb′ , N, T ).

(3.16)

Hence, we obtain by Chebychev’s inequality and (3.16)

(3.17) sup
t∈[0;T ]

∥∥J2(t)
∥∥→ 0 in probability as ε→ 0.

For the third term, by the Burkholder-Gandy-Devis inequality and assumption (H),
there exists some constant K such that, for t ∈ [0;T ] we obtain

E‖J3(t)‖ = E
(∥∥∥∥ 1

h(ε)

∫ t
0
σ
(
X0
s +
√
εh(ε)Y Φε,ε

s

)
dWs

∥∥∥∥)
≤ K

h(ε)
E
(∫ t

0

∥∥σ (X0
s +
√
εh(ε)Y Φε,ε

s

) ∥∥2
ds
)1/2

≤ 1

h(ε)
c(K,C1, T ) <∞.

Combining this last inequality with the Chebychev’s inequality, we have that

(3.18) sup
t∈[0;T ]

∥∥J3(t)
∥∥→ 0 in probability as ε→ 0.
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Combining (3.13) and (3.14) we have

sups∈[0;t]

∥∥∥Y Φε,ε
s − Y Φ

s

∥∥∥
≤ Cb′

∫ t
0

supu∈[0;s]

∥∥Y Φε,ε
u − Y Φ

u

∥∥ds+ Cb′
√
εh(ε)

∫ t
0

∥∥Y Φε,ε
s

∥∥.∥∥Y Φ
s

∥∥ds
+ sups∈[0;T ] ‖J2(t)‖+ sups∈[0;T ] ‖J3(t)‖.

This inequality together with (3.14); (3.17),(3.18), Chebychev’s inequality and
Gronwall’s inequality imply that supt∈[0;T ]

∥∥Y Φε,ε
t −Y Φ

t

∥∥→ 0 in probability as ε→ 0.
The proof is complete. �

We finish this paper for the proof of MDP for positive diffusions.

Proof of Theorem 2.3. In the following part, we prove our main theorem. Ac-
cording to the Theorem 2.2, we need to prove that two conditions of this theorem
are fulfilled. For that, condition (b) has been established in Proposition 3.1 but the
verification of condition (a) is given by Proposition 3.2. �
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