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ON THE M/G/1 FEEDBACK RETRIAL QUEUEING WITH ORBITAL SEARCH
OF CUSTOMERS

Zina Boussaha, Nadia Oukid, Halim Zeghdoudi1, Sarah Soualhi, and Natalia Djellab

ABSTRACT. We consider a single server feedback retrial queueing system with or-
bital search. An arriving customer finding the server idle enters into service im-
mediately; otherwise, the customer enters into an orbit. The service times are
supposed to be arbitrarily distributed. An orbiting customer competes for service,
the inter-retrial times are exponentially distributed. Upon completion of a service,
the server stays idle for a while, waiting for either a new job or a job from the
buffer. After the idle period, the server starts searching for blocked customers,
according to the exponential distribution. During the searching time, the server
cannot serve a customer. After the searching time the server gets a customer from
the orbit if any, otherwise it stays idle again. After completing, the customer has
an option to join the orbit as a feedback , customer or to leave the system forever.
Various performance measures are derived, and numerical results are given.

1. INTRODUCTION

In many real service situations the customers whose service cannot start upon
arrival must leave the service area. They do not give up their request but join a
virtual waiting room, called orbit and retry to get service again after a random
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time interval. This queueing phenomenon is known as models with retrials. Re-
trial queues arise from various real life situations as well as telecommunication,
computer networks and data communication systems. A review of the main results
on this topic can be found in [1–4, 9,20]. Among the most recent and interesting
applications, we can mention a new queuing theory approach for cost reduction in
product-service design [16]. For applications of queueing theory in health care, we
refer the reader to [14], and readers with motivation in communication systems
should consult [21].

One additional feature that has been widely discussed in retrial queueing sys-
tems is the Bernoulli feedback of customers. Many queueing situations have the
feature that the customers may be served repeatedly for a certain reason. When
the service of a customer is unsatisfied, it may be retried again and again until
a successful service completion. These queueing models arise in the stochastic
modeling of many real-life situations.The feedback is common property of com-
munication networks in which data (packets, frames, etc.) are re-transmitted if
errors occurred during their initial transmission. It also often appear in produc-
tion systems where issues that are not fully machined are re-processed. Choi and
Kulkarni [7] have studied an M/G/1 retrial queue with feedback of customers.
Some of the authors like [8,18,19] have discussed the concept of feedback.

In some scenarios, idle servers are able to inform orbiting customers of their
status. This allows servers to fetch customers directly from the orbit with some
probability if there are no other customers waiting in the queue at service comple-
tion instant. This behavior is called orbital search and introduced in the case of
classical queue by Neuts and Ramalhoto [15]. In the case of M/G/1 queues with
retrials, search for orbital customers was introduced by Artalejo et al. in [5] as
follows. Upon completion of a service, with probability p, 0 ≤ p ≤ 1, the server
takes a customer, if any, from the orbit for service. The search time for the cus-
tomer is assumed to be insignificant. With probability 1− p the server will become
idle until an orbital customer or a new arrival captures the server. Chakravarthy
et al. analyzed multi server queues with search of customers from the orbit in [6].
More literature related to orbital search can be found in [10–13,17].

Although results have been reported seperately on retrial queueing systems, re-
trial queues with orbital search of customers after idle time and Bernoulli feedback
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no work has been found in the literature which studies retrial queues taking into
account all the above mentioned features. In the present paper a more realistic
feedback retrial queueing system with orbital search of customers is studied.

This work considers a single server feedback retrial queueing model with orbit
search of customers. Search for customers in orbit is introduced to reduce their
waiting time. The condition for system stability is established. Steady state analy-
sis of the model has been done and some important measures of performance has
been evaluated.

The model is motivated by the following:

- The M/G/1 Feedback Retrial Queueing With Orbital Search Of Customers
use several parameters, but it is easy to apply.

- The explicit expressions for the average queue length of orbit and system
of M/G/1 Feedback Retrial Queueing With Orbital Search Of Customers
can be determined in an explicit form.

- This new model has advantages including many parameters which we can
modeled engineering and actuarial science problems.

- The objectives of insurance companies to modernize and improve recep-
tion performance are underpinned by a quality approach based on strictly
quantitative indicators. For this, the call of M/G/1 Feedback Retrial Queue-
ing With Orbital Search Of Customers are more than necessary.

The rest of the paper is organized as follows. Section 2 describes the queueing
model in details while Section 3 is devoted to the analysis of the model. In section
4, several numerical results are presented and some comments are made. Finally,
the paper ends with a conclusion and directions for future work.

2. THE MODEL

In this paper, we consider a single server feedback retrial queueing system with
orbital search of customers from the orbit. The detailed description of model is
given as follows:

The arrival process: The primary customers arrive at the system according to
a Poisson process of rate λ.

The service process: Service times are independent with distribution function
B (x) , (B (0) = 0). Let B̃ (s) =

∫∞
0
e−sxdB (x) be the Laplace-Stieltjes transform
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of the B (x) , βk = (−1)k B̃(k) (0) be the kth moment of the service time about the

origin, γ = 1
β1
> 0, be the service rate, b (x) = B

′
(x)

1−B(x)
be the instantaneaus service

intensity given that the elapsed service time is equal to x.
The retrial rule: We assume that there is no waiting space and therefore if an

arriving customer finds that the server is free, the customer occupies it immedi-
ately. Otherwise, the server is busy (serving a customer or searching); the arrivals
join the pool of blocked customers called an orbit in accordance with FCFS disci-
pline. That is, only one customer at the head of the orbit queue is allowed access to
the server. We assume that inter-retrial times follow an exponentially distributed
time with mean 1

θ
.

The idle time: After the completion of a service the server stay idle for an
exponentially distributed time with mean 1

α
.During this idle time, an arriving

customer (eiter a new customer or a repeaded one) is immmediately served.
The search rule: After the idle time, the server starts searching for a customer

in the orbit.The searching time follows the exponential distribution with mean 1
µ
.

The feedback rule: After the customer is served completly, he may decide either
to, leave the system with probability c = 1− c or to join the retrial orbit again for
another service with complementary probability c.

The flow of primary arrivals, the service times, the intervals between repeated
attempts, the idle times of service, and searching times of customers are assumed
to be mutually independent.

3. STABILITY CONDITION

In this section, we find the steady state queue size distribution at departure
epochs. Let ξn be the time when the server enters the idle state for the n th time.
The sequence of random variables {qn = No (ξn) , n ≥ 1} forms a Markov chain
which is the embedded Markov chain for our model. Its state space is S = Z+ and
its fundamental equation is defined as

(1) qn+1 = qn − δqn + vn+1 + u.

Here, the random variable vn+1 represents the number of primary customers ar-
riving at the system during the (n + 1)thservice time interval. It does not depend
on events which have occurred before the beginning of the (n + 1)th service, and
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its distribution is given by

P (vn = i) = ki =

∫ ∞
0

(λx)i

i!
e−λxdB (x) ,

with generating function K (z) =
∑∞

n=0 knz
n = B̃ (λ− λz) .The random variable

δqnis defined as:

δqn =

{
1 if the (n+ 1)th served customer is the orbiting one,
0 if the (n+ 1)th served customer is the primary one arriving.

Its conditional distribution is given by

P (δqn = 1/qn = i) =
iθ

λ+ iθ
, i 6= 0.

P (δqn = 0/qn = i) =
λ

λ+ iθ
.

the random variable u is defined as

u =

{
1 the served customer decid to joind the orbit,
0 the served customeer decid to lived the system.

thus P [u = 0] = c and P [u = 1] = c.

We have the following one-step transition probabilities

rij = kj−i
λ

λ+ iθ
c + kj−i+1

iθ

λ+ iθ
c + kj−i−1

λ

λ+ iθ
c+ kj−i

iθ

λ+ iθ
c.

Note that rij 6= 0 for i = 0, 1, 2, ..., j + 1.

Theorem 3.1. The embedded Markov chain {qn, n ≥ 1} is ergodic if and only if the
inequality ρ = λβ1 + c < 1 holds.

Proof. From (\ref{1}), we can see that {qn, n ≥ 1}is an irreducible and aperiodic
Markov chain. To find a sufficient condition, we use Foster’s criterion. According
to the latter, we show the existence of a non negative function f(k), k ∈ S,( in our
case f (qn) = qn ) and ε > 0 such that the mean drift χk = E[f (qn+1)−f (qn) /qn =

k] is finite for all k ∈ S and χk ≤ −ε for all k ∈ S except perhaps a finite number,
that is χk = E [qn+1 − qn/qn = k] = λβ1 − kθ

λ+kθ
+ c.Let χ = lim

k→∞
χk.Then χ =

λβ1 − 1 + c < 0. Therefore the sufficient condition is λβ1 + c < 1. To prove
that there is also a necessary condition for our embedded Markov chain, we apply
Kaplan’s condition: an irreducible and aperiodic Markov chain is not ergodic if
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χk < ∞ for all k ≥ 0 and k0 ∈ N exists such that χk ≥ 0 for k ≥ k0 in our
case, this condition is verified because rij = 0 for j < i − 1 and i > 0. Therefore,
λβ1 + c ≥ 1 gives the non ergodicity of the embedded Markov chain {qn, n ≥ 1}.
Finally, {qn, n ≥ 1} is ergodic if and only if ρ = λβ1 + c < 1. �

4. STEADY STATE DISTRIBUTION

Let C (t) denote the state of the server at time t ≥ 0.

C (t) =


0, the server is idle,
1, the server is serving a customer,
2, the server is searching for a customer.

Let N (t) denote the number of customers in the orbit at time t ≥ 0. Note that the
state space of the the process X (t) = {C (t) , N (t) ; t ≥ 0} is S = {0, 1, 2}×N. The
transitions among states are shown in Fig. 1.

If the system is in the steady state ρ < 1, then the joint distribution of the server
state and queue (orbit) length.

p0,n = P {C (t) = 0, N (t) = n} ,

p1,n (x) = P {C (t) = 1, ξ (t) < x,N (t) = n} ,

p2,n = P {C (t) = 2, N (t) = n} .

The PGFs technique is used here to obtain the steady state solution of the retrial
queueing model. To solve the above equations, we define the generating functions
for |z| ≤ 1, as follows:
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P0 (z) =
∞∑
n=0

znp0,n, P1 (z) =
∞∑
n=0

znp1,n, P1 (z, x)

=
∞∑
n=0

znp1,n (x) , P2 (z) =
∞∑
n=0

znp2,n.

The set of statistical equilibrium equations are obtained as:

(λ+ α) p0,0 = c

∫ ∞
0

p1,0 (x) b (x) dx+ µp2,0,

and

(λ+ α + nθ) p0,n = (1− (1− δn,0) c)
∫ ∞
0

p1,n (x) b (x) dx

+c

∫ ∞
0

p1,n−1 (x) b (x) dx, n ≥ 1,

Where

p
′

1,n (x) = − (λ+ b (x)) p1,n (x) + λp1,n−1 (x) , n ≥ 0,(2)

p1,n (0) = λp0,n + (n+ 1) θp0,n+1 + µp2,n+1, n ≥ 0,(3)

(λ+ µ) p2,n = λp2,n−1 + αp0,n, n ≥ 0.(4)

and pi,−1 = 0 (i = 1, 2). Transforming the above balance equations to generating
functions we obtain,

(λ+ α)P0 (z) + θzP
′

0 (z) = (1− c (1− z))

∫ ∞
0

P1 (z, x) b (x) dx+ µp2,0,(5)

∂P1 (z, x)

∂x
= − (λ− λz + b (x))P1 (z, x) ,(6)

P1 (z, 0) = λP0 (z) + θ
dP0 (z)

dz
+
µ

z
(P2 (z)− p2,0) ,(7)

So
(λ− λz + µ)P2 (z) = αP0 (z) .

Solving (7) yields,

(8) P1 (z, x) = P1 (z, 0) (1−B (x)) e−λ(1−z)x.
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Combining (10), (8), (9) and (6) and after some algebra we get:

θz
[
(c+ cz) B̃ (λ− λz)− z

]
P
′

0 (z)

= z

[
λ
(

1− (c+ cz) B̃ (λ− λz)
)

+ α

(
1− µ (c+ cz) B̃ (λ− λz)

z (λ− λz + µ)

)]
P0 (z)

+µp2,0

(
(c+ cz) B̃ (λ− λz)− z

)
.(9)

Coefficient of P ′0 (z) has two zeros z1 = 0 and z2 = 1. We chosse an arbitrary point
a ∈ (0, 1) and solving (11) for z ∈ (0, a] then for z ∈ [a, 1) .

We consider the function f (z) = (c+ cz) B̃ (λ− λz)− z. We have:

f (1) = B̃ (0)− 1 = 1− 1 = 0,

f ′ (z) = −λ (c+ cz) B̃′ (λ− λz) + cB̃ (λ− λz)− 1,

f ′ (1) = −λB̃′ (0) + cB̃ (0)− 1 = ρ− 1 < 0,

f ′′ (z) = λ2 (c+ cz) B̃
′′

(λ− λz)− 2λcB̃′ (λ− λz) ,

f ′′ (1) = λ2β2 + 2λcβ1 ≥ 0.

Therefore the function f (z) is decreasing on the interval [0, 1], z2 = 1 is the only
zero there and for z ∈ [a, 1) we have: z < (c+ cz) B̃ (λ− λz) ≤ 1.

Beside

(10)
1− (c+ cz) B̃ (λ− λz)

(c+ cz) B̃ (λ− λz)− z
=

ρ

1− ρ
<∞.

That is, the function 1−(c+cz)B̃(λ−λz)
(c+cz)B̃(λ−λz)−z

can be defined at the point z2 = 1 as ρ
1−ρ .This

means that for z ∈ (0, a] and for z ∈ [a, 1) we can rewrite equation (11) as:

(11) P
′

0 (z) =

 λ
θ

(
1−(c+cz)B̃(λ−λz)
(c+cz)B̃(λ−λz)−z

)
+α
θ

(
1−µ(c+cz)B̃(λ−λz)

z(λ−λz+µ)

(c+cz)B̃(λ−λz)−z

) P0 (z) + µp2,0
1

z
.
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First we find the general solution of the homogeneous equation, which is trans-
formed to

P
′
0 (z)

P0 (z)
=
λ

θ

(
1− (c+ cz) B̃ (λ− λz)

(c+ cz) B̃ (λ− λz)− z

)
(12)

+
α

θ

(
λ2

λ+µ

λ+ µ− λz
−

µ
λ+µ

z
+

1− (c+ cz) B̃ (λ− λz)

(c+ cz) B̃ (λ− λz)− z
λ

λ+ µ− λz

)
.(13)

we pose

(14) s (t1, t2) = exp

{
λ

θ

∫ t2

t1

1− (c+ cu) B̃ (λ− λu)

(c+ cu) B̃ (λ− λu)− u
du

}
.

Solving (14) for z ∈ (0, a] we get:

P0 (z) = c(z)s (a, z)(1+
α

λ+µ−λz )

[(a
z

)µ(λ+ µ− λa
λ+ µ− λz

)λ] α
θ(λ+µ)

(15)

× exp

{
−αλ

∫ z

a

ln s (a, u)

(λ+ µ− λu)2
du

}
.(16)

By substituting this solution into the nonhomogeneous differential equation
(13), we can determine the function c(z) as:

c (z) =
µp2,0[

aµ (λ+ µ− λa)λ
] α
θ(λ+µ)

∫ z

a

s (a, t)−(1+ α
λ+µ−λt) t(

αµ
θ(λ+µ)

−1)

· (λ+ µ− λt)
λα

θ(µ+λ) exp

{
αλ

∫ t

a

ln s (a, u)

(λ+ µ− λu)2
du

}
dt+ P0 (a) .

As z → 0+, P0 (0) <∞ and
(
a
z

) µα
θ(λ+µ) diverge. Thus,

P0 (a) =
µp2,0[

aµ (λ+ µ− λa)λ
] α
θ(λ+µ)

∫ a

0

s (a, t)−(1+ α
λ+µ−λz ) t(

αµ
θ(λ+µ)

−1)

· (λ+ µ− λt)
λα

θ(µ+λ) exp

{
αλ

∫ t

a

ln s (a, u)

(λ+ µ− λu)2
du

}
dt.(17)
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On the other hand, solving (14) for z ∈ [a, 1), and taking limit as z → 1−, with
(13) we get:

P0 (a) =
[
aµ (λ+ µ− λa)λ

]− α
θ(λ+µ)


P0 (1) s (a, 1)−(1+α

µ) µ
λα

θ(µ+λ) exp
{
αλ
∫ 1

a
ln s(a,u)

(λ+µ−λu)2du
}

−µp2,0
∫ 1

a
s (a, t)−(1+ α

λ+µ−λt) t(
αµ

θ(λ+µ)
−1) (λ+ µ− λt)

λα
θ(µ+λ)

× exp
{
αλ
∫ t
a

ln s(a,u)

(λ+µ−λu)2du
}
dt

 .(18)

Equating (17) and (18) we get:

P0 (1) = p2,0µ
1− λα

θ(µ+λ)

∫ 1

0

s (1, t)−(1+ α
λ+µ−λt) t(

αµ
θ(λ+µ)

−1) (λ+ µ− λt)
λα

θ(µ+λ)

exp

{
αλ

∫ t

1

ln s (1, u)

(λ+ µ− λu)2
du

}
dt,(19)

then we can rewrite the solution of (13) as:

P0 (z) = µp2,0

(
1

zµ (λ+ µ− λz)λ

) α
θ(λ+µ) ∫ z

0

s (z, t)−(1+ α
λ+µ−λt) t(

αµ
θ(λ+µ)

−1)

· (λ+ µ− λt)
λα

θ(µ+λ) exp

{
αλ

∫ t

z

ln s (1, u)

(λ+ µ− λu)2
du

}
dt.(20)

Combining(9), (8) and (10), we get

P1 (z, x) =
[
λ
(

1 + α
λ+µ−λz

)(
1 + 1−(c+cz)B̃(λ−λz)

(c+cz)B̃(λ−λz)−z

)
P0 (z) +

µp2,0
z

(θ − 1)
]

· (1−B (x)) e−λ(1−z)x.

Since P1 (z) =
∫∞
0
P1 (z, x) dx, we obtain

P1 (z) = 1−B̃(λ−λz)
1−z

[(
1 + α

λ+µ−λz

)(
1 + 1−(c+cz)B̃(λ−λz)

(c+cz)B̃(λ−λz)−z

)
P0 (z)

+
µp2,0
λz

(θ − 1)
]
.

(21)

Now applying the normalizing condition P0 (1) + P1 (1) + P2 (1) = 1, and we
taken (21) with lim

z→1

1−B̃(λ−λz)
1−z = λβ1 we get:

(22) P0 (1) =
1− β1 (θ − 1)µp2,0(

1 + α
µ

)(
1 + λβ1

1−ρ

) .
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Using (22) and (19), we obtain the expression for p2,0 as:

p2,0 =

[(
1 +

α

µ

)(
1 +

λβ1
1− ρ

)
µ1− λα

θ(µ+λ)

∫ 1

0

s (1, t)−(1+ α
λ+µ−λt) t(

αµ
θ(λ+µ)

−1)

· (λ+ µ− λt)
λα

θ(µ+λ) exp

{
αλ

∫ t

1

ln s (1, u)

(λ+ µ− λu)2
du

}
dt+ β1 (θ − 1)µ

]−1
.

(23)

Now we summarize the above results in following theorem.

Theorem 4.1. Under the stationary condition ρ = λβ1 + c < 1, the generating
functions of the stationary joint distribution of the orbit size and the server state are
given by:

P0 (z) = µp2,0

(
1

zµ (λ+ µ− λz)λ

) α
θ(λ+µ)

×Θ(t)

Here

Θ(t) =

∫ z

0

s (z, t)−(1+ α
λ+µ−λt) t(

αµ
θ(λ+µ)

−1) (λ+ µ− λt)
λα

θ(µ+λ)

× exp

{
αλ

∫ t

z

ln s (1, u)

(λ+ µ− λu)2
du

}
dt.

where p2,0 is given in equation (23).

Theorem 4.2.

P1 (z) = 1−B̃(λ−λz)
1−z

[ (
1 + α

λ+µ−λz

)(
1 + 1−(c+cz)B̃(λ−λz)

(c+cz)B̃(λ−λz)−z

)
P0 (z)

+µp2,0
λz

(θ − 1)

]
P2 (z) =

α

(λ− λz + µ)
P0 (z) .

Corollary 4.1. Under the stability condition ρ < 1,
(i) The generating function of the orbit size, P (z), is given by

P (z) = P0(z) + P1(z) + P2(z).

(ii) The generating function of the system size, φ (z) , is given by

φ (z) = P0(z) + zP1(z) + P2(z) = P (z) + (z − 1)P1(z).

From above results, we can get some performance measures of the system in
steady state.
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Corollary 4.2.
(1) The probability that the server is idle but the system is not empty, denote by P0,
is given by

P0 = P0(1) =
1− β1 (θ − 1)µp2,0(

1 + α
µ

)(
1 + λβ1

1−ρ

) .
(2) The probability that the server is busy, denote by P1, is given by

P1 = P1(1) = λβ1

[(
1 +

α

µ

)(
1 +

ρ

1− ρ

)
P0 +

µp2,0
λ

(θ − 1)

]
.

(3) The probability that the server is searching for a customer, denote by P2, is given
by

P2 = P2(1) =
α

µ
P0.

(4) The mean orbit size, Lq, is given by

Lq = P
′
(1).

(5) The mean system size, Ls, is given by

Ls = φ
′
(1) = Lq + P1(1).

(6) The average time a customer spends in the system (Ws) and the average time a
customer spends in the queue (Wq) are found by using the Little’s formula

Ws =
Ls
λ

and Wq =
Lq
λ
.

5. NUMERICAL RESULTS

Based on the results obtained in previous sections, in this section we shall
present some numerical examples using MATLAB in order to illustrate the effect
of various parameters in the system. The arbitrary values to the parameters are so
chosen such that they satisfy the stability condition. We assume that the service
time follow the exponential distribution.

A. Effect of c on the server state probabilities:

We assume that: λ = 0.06, θ = 1.25, α = 2.5, µ = 1.5, β1 = 1.
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TABLE 1.

c P0 P1 P2

0.5 0.2141 0.3120 0.3568
0.6 0.1846 0.3608 0.3077
0.7 0.1811 0.3666 0.3019
0.8 0.1796 0.3691 0.2994
0.9 0.1788 0.3704 0.2981

For Table 1 and Fig. 2, we can see that the probabilities that the server is idle
P0, in search of customers P2 decrease monotonously. The probability P1 that the
server is busy increase, which agree with our expectations.

B. Effect of µ on performance measures:
We assume that: λ = 6, θ = 1, α = 2, µ = 1.5, β1 = 1

30
, .c = 0.5.

From Table 2 and Fig. 3, we can observe that as the orbit search rate µ in-
creases, the probability that the server is idle increases monotonously, when the
probabilities that de server is busy and searching for a customer are decreases.

C. Effect of α on the server state probabilities
We assume that: λ = 5, θ = 2, µ = 2, c = 0.2, β1 = 1

7
.
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TABLE 2.

µ P0 P1 P2

0.1 0.0285 0.4179 0.5704
1.1 0.1838 0.4695 0.3342
2.1 0.2076 0.4247 0.1977
3.1 0.2086 0.3669 0.1346
4.1 0.2130 0.3263 0.1039
5.1 0.2154 0.2980 0.0845
6.1 0.2136 0.2755 0.0700
7.1 0.2078 0.2559 0.0585
8.1 0.1989 0.2377 0.0491
9.1 0.1874 0.2204 0.0412

According to Table 3 and Fig. 4, we can observe that, the probabilities that
the server is busy P1, in search of customers P2 increase monotonously with the
increase of α. Idle time after the completion of a service decrease (exponentially
distributed time with mean ( 1

α
)).
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TABLE 3.

α P0 P1 P2

1 0.0300 0.6651 0.0150
1.5 0.0295 0.6892 0.0221
2 0.0285 0.7087 0.0285
2.5 0.0272 0.7248 0.0341
3 0.0260 0.7383 0.0390
3.5 0.0248 0.7498 0.0434
4 0.0236 0.7597 0.0472
4.5 0.0225 0.7683 0.0507
5 0.0215 0.7759 0.0537
5.5 0.0206 0.7826 0.0565
6 0.0197 0.7885 0.0590

6. CONCLUSION

This paper studies a M/G/1 feedback retrial queueing system with search for
customers from the orbit. The necessary and sufficient condition for the system
to be stable is obtained.The probability generating functions of the number of
customers in the system when it is idle, busy, and searching for customers from
the orbit is found. The explicit expressions for the average queue length of or-
bit and system have been obtained. The analytical results are validated with the
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help of numerical illustrations. Moreover, our model can be considered as a gen-
eralized version of many existing queueing models equipped with many features
and associated with many practical situations. This model finds practical real life
application in health Insurance.

As further future study, we can include the features like priority, active break-
down, delaying repair, etc. We plan to extend this model for cost optimization.
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