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ABSTRACT. In this paper, we propose a mathematical model to predict the spread
of the coronavirus disease (COVID-19) in Mali. Official data on the number of con-
firmed cases over 30 days are used to calibrate the model to the Malian context.
The positivity, the boundness, the existence and the uniqueness of the solution of
the system of differential equations constituting the model have been proven. The
basic reproduction number R0 was calculated and its analysis against the param-
eters of the model was made. The numerical value of R0 allowed us to calculate
the final size of the epidemic in the absence of any intervention measures. The
results of the numerical simulations showed that on the one hand, the peak of the
epidemic can be reached on the 184th day with an average of 4 million infected
if the barrier measures are not rigorously applied. But on the other hand, they
support that the disease can be controlled by adherence to barrier measures, mass
screening or a combination of both.

1. INTRODUCTION

The COVID-19 disease appeared in China in late 2019. It is caused by SARS-
Cov-2, a virus which belongs to the coronavirus family. At the origin of deadly

1corresponding author
2020 Mathematics Subject Classification. 34A12, 37N25, 65L04, 92B05.
Key words and phrases. Epidemic model, COVID-19, Mathematical analysis, Basic reproduction
number, epidemic prediction, epidemic peak, numerical simulations.
Submitted: 12.08.2022; Accepted: 27.08.2022; Published: 12.09.2022.

741



742 M. Alassane, A. Samaké, A. Mahamane, and O. Diallo

epidemics, these viruses can cause a simple cold as well as a severe respiratory
infection such as pneumonia. It has been officially declared as a pandemic on
March 11, 2020 by the World Health Organization (WHO). On March 18, 2020,
the government of Mali announced several measures with immediate effect while
no cases have yet been recorded, namely the suspension until further notice of
commercial flights from affected countries, with the exception of cargo flights, the
closure of all public, private, and religious schools from kindergarten to higher ed-
ucation and the suspension until further notice of all public gatherings, including
workshops, conferences, seminars, and popular meetings.

These measures were reinforced on March 25 by the establishment of a state
of health emergency and a curfew from 9 p.m. to 5 a.m., effective from March
26, 2020. In Mali, the first cases (two in number) were reported on March 25,
2020, at which time the incidence, i.e. the daily number of new confirmed cases
is strictly positive. The incidence data plotted in Figure 1 are not estimated but
were obtained from the Malian Ministry of Health and Social Affairs.

FIGURE 1. Number of new confirmed cases of COVID-19 in Mali
from March 25 to April 24, 2020.

In epidemiology, mathematical modeling plays an important role in understand-
ing the dynamics of infectious diseases in a population and is widely used to suc-
cessfully predict the outcome of an epidemic. The most commonly used epidemic
models are the SIS, SIR and SEIR models [3]. The SIR model is a very well es-
tablished and widely used model for various epidemics [9]. Several mathematical
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models have been proposed to study the dynamics of epidemic diseases. Math-
ematical models that analyze the spread of COVID-19 have begun to appear in
published articles and online resources [2,9,10].

Several compartmental models have already been proposed and analyzed for
the COVID-19 epidemic in different countries [5, 11]. For example, the compart-
ments corresponding to suspected cases, which consisted of individuals with simi-
lar symptoms but were not confirmed cases, and directly infected individuals were
incorporated in [5]. The modified SEIR model that included asymptomatic and
treatment compartments for occurrences in Wuhan (in China), the city where the
epidemic began, and outside Wuhan was used in [5]. An alternative approach
that consists in separating the compartment for quarantined individuals in the SIR
model to account for the containment measures applied by the public was intro-
duced in [6]. The stability of epidemic models has been widely studied in the
literature [4, 12]. In this paper, we consider the SLIHR model which is an exten-
sion of the SEIR model describing the spread of COVID-19 disease in the Malian
population.

2. MATHEMATICAL MODEL

The spread of infectious agents such as COVID-19 is a dynamic phenomenon
where the number of susceptible, latent, infectious and removed individuals evolves
over time and contacts between susceptible and infected individuals. This phe-
nomenon can be described by mathematical models. These models, which are an
approximation of reality, have proven to be effective in predicting epidemics such
as influenza, Ebola and many others. They are generally used as decision-making
tools. In this work, we will use this practical tool for understanding the evolution
of people tested positive for COVID-19 in Mali. One of the basic models commonly
used in the literature to predict the spread of an epidemic in a given population
is the SIR model. It was introduced by KERMACK and McKENDRICK in [7] for
studying the dynamics of the plague epidemic occurred in Bombay in 1905-1906.
In order to improve and adapt this original approach of the SIR model to our study
so that it best fits the reality, we modified it by adding two new compartments.

In our model, the total population is divided into five disjoint compartments.
Susceptible individuals S are those who are not infected with the disease but are
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at risk of becoming infected. Latent individuals L are individuals who are in the
incubation period after being infected with the disease, and who have no visible
clinical signs, i.e. they are infected but not yet infectious. After the incubation
period, latent individuals move into the compartment of infectious individuals I
representing infected individuals who have developed the symptom of the disease.
We assume that infectious individuals will be immediately sent to designated hos-
pitals for isolation and treatment, so they move into the inpatient compartment H.
Finally, recovered individuals R are those individuals who have recovered from the
disease, died, or been transferred. We denote by β the transmission rate at which
susceptible individuals acquired the Covid-19 infection through contact with infec-
tious individuals. The latent individuals become infectious and join the infectious
compartment with the proportion γ1. The parameter γ2 is the average rate at
which infectious individuals become hospitalized and γ3 is the recovery rate of
hospitalized individuals. We assume that all these parameters are positive. The
total constant population over time t denoted by N(t) is given by:

N(t) = (t)+ L(t) + I(t) + H(t) +R(t).

This life cycle of the virus can be represented using the flow diagram shown in
Figure 2, in which, the boxes represent the different compartments and the arrows
illustrate the transition between compartments.

S I

L

H

R

β
γ1

γ2
γ3

FIGURE 2. Flow diagram of the SLIHR model of COVID-19 in Mali.

Using the above representation, we formulate the corresponding dynamical
model as follows:
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dS
dt

= −β I
N

S(2.1a)

dL
dt

= β
I

N
S− γ1L(2.1b)

dI
dt

= γ1L− γ2I(2.1c)

dH
dt

= γ2I− γ3H(2.1d)

dR
dt

= γ3H(2.1e)

The system (2.1a)-(2.1e) is completed with the following initial conditions:

S(0) = S0 > 0, L(0) = L0 ≥ 0, I(0) = I0 > 0,

H(0) = H0 = 0, R(0) = R0 = 0.
(2.2)

All the parameters of the model are reported in Table 1.

TABLE 1. Description of model parameters.

Parameters Description
β Transmission rate
γ1 Proportion of latent individuals leaving the compartment
γ2 Proposition of infected individuals become hospitalized
γ3 Recovery rate of hospitalized patients

3. MATHEMATICAL ANALYSIS OF THE MODEL

3.1. Positivity and boundedness. An important feature of a relevant epidemi-
ological model is the positivity and boundedness of its solutions. Therefore, it is
important to prove that all variables are nonnegative for all time t> 0. This implies
that any solution that has positive initial values will remain positive for all time
t> 0. We begin by determining the biologically feasible set for the system (2.1).

Theorem 3.1. The closed region Ω =
{
X =

(
S, L, I, H, R

)
∈ R5

+ : 0 < N =

S + L + I + H + R = K (K ∈ N)
}

is positively invariant set for the system (2.1).
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Proof.
(1) Positivity of X(t)=

(
S(t), L(t), I(t), H(t), R(t)

)
for all t ≥ 0: we

show by absurd that for all t ≥ 0, X(t) ≥ 0. Suppose that for a time
t′ > 0, we have X(t’) < 0. The function X(t) being continuous, from
the intermediate value theorem, there exists a time t1 ∈ ]0, t’[ such that
X(t1) = 0. Consider the equations of the system (2.1) and let:

f1(t) = exp

(∫ t

0

βI(s)
N(s)

ds
)
, f2(t) = exp (γ1t) , f3(t) = exp (γ2t) ,

f4(t) = exp (γ3t) and f5(t) = 1.

By differentiating each of the expressions S(t)f1(t), L(t)f2(t), I(t)f3(t), H(t) f4(t)
and
R(t)f5(t) with respect to time t, we obtain:

(3.1)
dSf1
dt

= 0,
dLf2
dt

=
β

N
f2SI,

dIf3
dt

= γ1f3L,
dHf4

dt
= γ2f4I,

dR f5
dt

= γ3H.

By integrating each equation of (3.1) between 0 and t1, it holds:

S(t1) =
1

f1(t1)
> 0(3.2)

L(t1) =
1

f2(t1)

(
L(0) +

∫ t1

0

f2(t)β
I(t)
N(t)

S(t) dt
)
> 0(3.3)

I(t1) =
1

f3(t1)

(
I(0) +

∫ t1

0

f3(t)γ1L(t) dt
)
> 0(3.4)

H(t1) =
1

f4(t1)

(
H(0) +

∫ t1

0

f4(t)γ2I(t) dt
)
> 0(3.5)

R(t1) = R(0) +

∫ t1

0

γ3H(t) dt > 0(3.6)

From (3.2)-(3.6), it follows that X(t1) > 0. It is a contraction according
to the starting hypothesis. Then, ∀t ≥ 0, X(t) ≥ 0. Therefore, all solutions
initiated in R5

+ are positive.

(2) Boundedness of X(t)=
(

S(t), L(t), I(t), H(t), R(t)
)

for all t ≥ 0:
the total population in the model is

N(t) = S(t)+ L(t) + I(t) +H(t) + R(t).

Then, by differentiating N with respect to time t, we obtain:
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(3.7)
dN
dt

=
dS
dt

+
dL
dt

+
dI
dt

+
dH
dt

+
dR
dt

= 0

Integrating (3.7) using the initial condition, we obtain N(t) = N(0) = K.
This achieves the proof.

�

3.2. Existence and uniqueness. Let us start by recalling the Cauchy-Lipschitz
theorem as presented in [8].
Cauchy-Lipschitz theorem: Let F : R+ × Rn −→ Rn be a piecewise continuous
function with respect to t and satisfying:

‖F(t,X1)− F(t,X2)‖ ≤ C‖X1 − X2‖.

Then the equation Ẋ = F
(
t, X
)

with X(t0) = X0 admits a unique solution for t ∈
[t0, t1].

Theorem 3.2. The SLIHR model described by the system (2.1) admits a unique solu-
tion for all time t ∈ R+.

Proof. Let us associate the function F : R+ × R5
+ −→ R5

+ defined by

F(t,X) =

(
−βSI

N
, β

SI
N
− γ1L, γ1L− γ2I, γ2I− γ3H, γ3H

)
to the SLIHR model described by the system (2.1). According to the fact that all
norms are equivalent in Rn, and in particular for n = 5, let us prove that the
function F is Lipschitz with respect to X for the norm 1.

‖F(t, X1)− F(t, X2)‖1 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



β

N
(S2I2 − S1I1)

β

N
(S1I1 − S2I2)− γ1(L1 − L2)

γ1(L1 − L2)− γ2(I1 − I2)

γ2(I1 − I2)− γ3(H1 − H2)

γ3(H1 − H2)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1
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=
β

N

∣∣∣S2I2 − S1I1
∣∣∣+
∣∣∣β
N
(
S1I1 − S2I2

)
− γ1(L1 − L2)

∣∣∣
+
∣∣∣γ1(L1 − L2)− γ2(I1 − I2)

∣∣∣+
∣∣∣γ2(I1 − I2)− γ3(H1 − H2)

∣∣∣
+
∣∣∣γ3(H1 − H2)

∣∣∣
≤ β

N

∣∣∣S1I3 − S2I2
∣∣∣+

β

N

∣∣∣S1I1 − S2I2
∣∣∣+ γ1

∣∣∣L1 − L2

∣∣∣+ γ1

∣∣∣L2 − L2

∣∣∣
+γ2

∣∣∣I1 − L2

∣∣∣+ γ2

∣∣∣I1 − I2
∣∣∣+ γ3

∣∣∣H1 − H2

∣∣∣+ γ3

∣∣∣H1 − H2

∣∣∣
≤ 2

β

N

∣∣∣S1I1 − S2I2
∣∣∣+ 2γ1

∣∣∣L1 − L2

∣∣∣+ 2γ2

∣∣∣I1 − I2
∣∣∣+ 2γ3

∣∣∣H1 − H2

∣∣∣
≤ 2β

|I1|
N

∣∣∣S1 − S2

∣∣∣+ 2β
|S2|
N

∣∣∣I1 − I2
∣∣∣+ 2γ1

∣∣∣L1 − L2

∣∣∣+ 2γ2

∣∣∣I1 − I2
∣∣∣

+2γ3

∣∣∣H1 − H2

∣∣∣
or

‖F(t, X1)− F(t, X2)‖1
≤ 2

(
β
∣∣∣S1 − S2

∣∣∣+ γ1

∣∣∣L1 − L2

∣∣∣+
(
β + γ2

)∣∣∣I1 − I2
∣∣∣+ γ3

∣∣∣H1 − H2

∣∣∣)
≤ 2 max

[
β, γ1,

(
β + γ2

)
, γ3

](∣∣∣S1 − S2

∣∣∣+
∣∣∣L1 − L2

∣∣∣+
∣∣∣I1 − I2

∣∣∣+
∣∣∣H1 − H2

∣∣∣)
≤ C‖X1 − X2‖1

with C = 2 max
[
β, γ1,

(
β + γ2

)
, γ3

]
.

Furthermore, the function F is piecewise continuous over R+. So, according
to the Cauchy Lipschitz theorem, the SLIHR model defined by the system (2.1)
admits a unique solution for all time t ∈ R+. �

4. ESTIMATION OF EPIDEMIOLOGICAL PARAMETERS

4.1. Estimation of model parameters by adjustment. We conducted our study
on the population of Mali, estimated to N=20243609 in 2020, see [13]. In or-
der to simulate the evolution of COVID-19 infection in this population, a good
knowledge of the biological parameters involved in the SLIHR model is necessary.
Thus, to calibrate the model to the dynamics of COVID-19 in Mali, we will use
an approach based on the adjustment of the model parameters by optimization.
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It consists in comparing the real data with theoretical models in order to define
one that fits better the observation. To do this, we define a distance between two
curves and we try to minimize this distance by varying the parameters of the the-
oretical model. This operation is facilitated by Excel which allows to minimize a
function thanks to its solver. We will use it to minimize the sum of the square
of the difference between each point of the theoretical and experimental models.
As experimental model, we use the data of the first 30 days of infection in Mali,
namely from March 25, 2020 to April 23, 2020. These data are summarized in
Table 2.

TABLE 2. Source: Ministry of Health and Social Affairs of Mali.

Day Confirmed Recovered Positive Day Confirmed Recovered Positive
1 2 0 2 16 74 23 51
2 4 1 3 17 87 29 58
3 11 1 10 18 105 29 76
4 18 1 17 19 116 31 85
5 20 2 18 20 123 36 87
6 25 2 23 21 144 47 97
7 28 3 25 22 148 47 101
8 31 3 28 23 171 47 124
9 36 3 33 24 190 47 143

10 39 3 36 25 218 54 164
11 41 3 38 26 224 59 219
12 45 3 42 27 246 78 168
13 47 6 41 28 258 79 179
14 56 14 42 29 293 98 195
15 59 18 41 30 309 98 211

The results obtained from this adjustment of the parameters by optimization
are plotted in Figure 3. On one side, the representative curves of the model (in
red) and the real data (in black) of the infectious inpatients are shown. On the
other side, we can see the representative curves of the model (in green) and the
real data (in black) of the recovered individuals. The estimated values of the
biological parameters of our model are summarized in Table 3.1.

4.2. Basic reproduction number. The basic reproduction number is an impor-
tant threshold condition in the analysis of an infectious disease. It determines
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FIGURE 3. Adjustment of biological parameters.

TABLE 3. Estimated values of biological parameters from adjustment.

Parameters Description Value
β Transmission rate 0.3965
γ1 Proportion of latent individuals leaving the com-

partment
0.522871

γ2 Proposition of infected individuals become hospi-
talized

0.2729

γ3 Recovery rate of hospitalized patients 0.05

whether the disease will die out or persist in the population over time. We calcu-
late the basic reproduction number R0 of the system by applying the next genera-
tion matrix method used in [5, 6]. The first step in obtaining R0 is to rewrite the
model equations starting with the newly infected compartments:

dL
dt

= β
I

N
S− γ1L(4.1)

dI
dt

= γ1L− γ2I(4.2)

dH
dt

= γ2I− γ3H.(4.3)

Using the principle of next-generation matrix, the Jacobian matrices at DFE =
(Se, Le, Ie, He, Re) = (N, 0,0,0,0) of the SLIHR model described by the system (2.1)
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is given by

J =

−γ1 β 0

γ1 −γ2 0

0 γ2 −γ3

 = F− V

where

F =

0 β 0

0 0 0

0 0 0

 and V =

 γ1 0 0

−γ1 γ2 0

0 −γ2 γ3

 .

The next-generation matrix is defined by:

F V−1 =


β

γ2

β

γ2
0

0 0 0

0 0 0

 .

The basic reproduction number is computed as

R0 = ρ(F V−1) =
β

γ2
.

This number R0 is a threshold parameter that represents the average number of
infections caused by an infectious individual when introduced into the susceptible
population [11]. According to the biological parameters of our model it holds:

R0 =
β

γ2
=

0.3965

0.2729
= 1.45.

4.3. Sensitivity analysis of R0. Based on each parameter of R0, a sensitivity anal-
ysis is performed to check the sensitivity of the basic reproduction number. As re-
ported by Arriola and Hyman [1], we calculate the normalized sensitivity index as
a function of each parameter of R0. The normalized sensitivity index of a variable
R0 with respect to a given parameter m is defined as follows:

AR0
m =

∂R0

∂m
× m

R0

.

The sensitivity indices of R0 with respect to the parameters β and γ2 are then
computed as:

AR0
β =

∂R0

∂β
× β

R0

=
1

γ2
× β

R0

=
β

γ2
× 1

R0

=
R0

R0

= 1 > 0.
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AR0
γ2

=
∂R0

∂γ2
× γ2

R0

= − β

γ22
× γ2

R0

= − β
γ2
× 1

R0

= −R0

R0

= −1 < 0.

From the above calculations, it is obvious that the reproduction number R0 is
sensitive to changes in β and γ2. An increase in β will cause an increase in R0 by
the same amount, and a decrease in β will cause a decrease in R0 by the same
amount. The parameter γ2 has an inversely proportional relationship with R0, i.e.
an increase in gamma will cause a decrease in R0.

4.4. Total size of epidemic. Let us consider the SLIHR model described by the
system (2.1) and determine what the final size of the epidemic will be in the
complete absence of intervention. From equation (2.1a), it follows that:

dS
S

= −β
N

I(t)dt.

Integrating this equation from t = 0 to t = +∞, we obtain:

(4.4) S(∞) = S0 exp

(
−β

N

∫ ∞
0

I(t)dt
)
,

where S(∞) denotes the limit when t −→ +∞ of the function S(t).

From equation (2.1d), it follows that:

dH
dt

= γ2I(t)− γ3H(t).

Integrating this equation from t = 0 to t = +∞:

(4.5) H(∞) = γ2

∫ ∞
0

I(t)dt− γ3
∫ ∞
0

H(t)dt,

where H(∞) denotes the limit when t −→ +∞ of the function H(t).

From equation (2.1e), it follows that:

dR
dt

= γ3H(t).

Integrating this equation from t = 0 to t = +∞, we obtain:

(4.6) R(∞) = γ3

∫ ∞
0

H(t)dt,

where R(∞) denotes the limit when t −→ +∞ of the function R(t).
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Using (4.5) in (4.6), we get

(4.7) R(∞) = γ2

∫ ∞
0

I(t)dt− H(∞).

Moreover, we have at any time t ≥ 0, S(t)+L(t)+I(t)+H(t)+R(t)=N. When
t −→ +∞, the epidemic ends up stopping so that L(t), I(t) and H(t) tend towards
0. At the limit, there are only those individuals who escaped the epidemic and
those who were recovered after being infected.

(4.8) S(∞) + R(∞) = N

By combining (4.4), (4.7) and (4.8), it holds:

N-R(∞) = S0 exp
(
− β

γ2

R(∞)

N

)
.

At the start of the epidemic, there are only a few infected individuals in the popu-
lation, so S0 ≈ N. The equation can be written as

1− R(∞)

N
≈ exp

(
− R0

R(∞)

N

)
.

We find numerically R(∞)
N ≈ 55% of the N population, or approximately 11 million

individuals infected at the end of the epidemic.

5. NUMERICAL SIMULATIONS AND DISCUSSION

In this section, we examine the model and studied the effects of the combined
strategies for controlling disease transmission. In all the numerical simulations,
the curves were first fitted to the official data to set the correct rate of spread
of the epidemic. This rate of spread is fixed here from the first 30 days of the
epidemic, and then we evolve these curves over time.

5.1. Prediction and epidemic peak and curves. In Figure 4(a) are represented
the curves of susceptible individuals (in blue), of all infected individuals, including
latent, infectious and hospitalized infectious, (in red) and recovered individuals
(in green). We can see that the epidemic peak (red curve) is expected around
the 184th day with an average of 4 million infected. This is due to the fact that
the basic reproduction number R0 is assumed to be constant, i.e. there is no
intervention and the barrier measures are not strictly enforced. Finally, as shown
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(a) Dynamics of the population (b) Dynamics of the infected popula-
tion

FIGURE 4. Prediction and epidemic peak and curves.

in section 4, the epidemic stops once the 55% of the population (materialized by
the black dotted line) is reached.

In Figure 4(b), where infected individuals are plotted, we see that the epidemic
grows exponentially. It can also be observed that the majority of the hosts are in
the compartment H, which is where they stay the longest according to the model.
Finally, we can see that the proportion of infected individuals detected (in yellow)
rapidly exceeds the capacity of our hospitals, estimated here to 1000 beds and
represented by the black dotted line.

5.2. Epidemic curve with control scenarios. Here we modeled the implementa-
tion of a public health policy with different scenarios for controlling the epidemic.
It aims to reduce the basic reproduction rate R0 from its value β/γ2 to another
value β′/γ′2 = (1 − p)β/(1 + q)γ2, where p is the proportion of the transmission
rate β reduced by the effects of the public health policies and q is the proportion
of the hospitalization rate γ2 increased by the effects of the public health policies.

One goes from β to β′ by increasing p through measures such as social distanc-
ing, containment, wearing masks or closing certain places. We go from γ2 to γ′2 by
increasing q through mass screening.

In Figure 5(a), the epidemic curve is represented in the different scenarios: the
black curve illustrates the scenario 0, the yellow curve the scenario 1, the red curve
the scenario 2 and the purple curve the scenario 3. As can be seen, this strategy
does not prevent the spread of the epidemic. But unlike in scenario 0, the peak of
the curve is lower and occurs much later for the scenarios 1, 2 and 3. These are
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(a) Medium control (b) Strong control

FIGURE 5. Epidemic curves with persistent scenarios.

therefore scenarios for which the curve is more spread out over time. Similarly,
the total proportion of the infected population becomes lower compared to the
case of scenario 0.

This public health policy makes it possible to flatten the epidemic curve in order
to allow the health system to absorb the influx of infected people over a slightly
longer period. Comparing the effectiveness of the different scenarios of this strat-
egy, it can be seen that in scenario 1, the curve is much flatter (14% of the total
infected population) compared to scenario 3 (20% of the total infected popula-
tion). The scenario 2 is the one in which the peak of the curve is the highest (25%

of the total infected population) apart from scenario 0. In conclusion, the scenario
1 seems to be the most efficient.

It is shown in Figure 5(b) the epidemic curves for the scenarios 1, 2 and 3. This
policy consists in stopping the epidemic, i.e. to lower R0 below 1.

(a) (b)

FIGURE 6. Curves with strong control but of limited duration.
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It is shown in Figure 6(a) the epidemic curves of the population when scenario
1 is applied from the 45th of the epidemic for a limited period of 45 days. We see
that the epidemic is well suppressed during the strategy period. Unfortunately,
once the measures taken are lifted, the epidemic resumes very strongly. In the end,
this strategy shifted the epidemic peak from scenario 0, as illustrated in Figure
6(b). However, the total number of confirmed cases remains the same.

6. CONCLUSIONS AND PERSPECTIVES

In this paper, we formulated and studied a five-compartment mathematical
model of the COVID-19 disease that is transmitted from human to human. Official
data from Mali on COVID-19 were used to estimate the different parameters of the
model. In order to study the dynamics of our model, we calculated the basic re-
production number R0, analyzed its sensitivity with respect to the parameters and
established a relationship between R0 and the final size. The numerical simula-
tions showed that if the barrier measures are not rigorously applied, the epidemic
peak will be reached around the 184th day with an average of 4 million infected.
Thus, until the end of the epidemic, the total number of infected individuals will
be around 11 million and the number of hospitalized infectious patients will very
quickly exceed the capacity of our public health facilities. On the other hand, the
rigorous application of barrier measures and the persistence of mass screening will
make it possible to stop the epidemic, which will eventually disappear in a short
time. However, it can be seen from numerical simulations that if the barrier mea-
sures are rigorously applied for some time and lifted before the disease disappears
completely from the population, the epidemic will start again very quickly. The
epidemic peak will be shifted, but the total proportion of the population infected
will be the same as when the measures are not strictly enforced.

As perspectives, we can note that this model, despite the fact that it allowed us
to study the impact of barrier measures on the evolution of the coronavirus disease
(COVID-19) in Mali, is very simple in its structure. We plan for future work to
modify it for taking into account certain specificities of the epidemic such as the
flanking transmission which plays an important role in its propagation. Some
additional parameters such as the age of the individuals (mortality by COVID-
19 infection increases with age), comorbidity (aggravating factor for COVID-19
patients), and the demographic patterns will be added to the model.



MATHEMATICAL MODELING OF EARLIER STAGES OF THE COVID-19 EPIDEMIC IN MALI 757

REFERENCES

[1] L. ARRIOLA, J. HYMAN: Lecture notes, Forward and adjoint sensitivity analysis: with applica-
tions in Dynamical Systems, Linear Algebra and Optimization, Mathematical and Theoretical
Biology Institute, Summer, 2005.

[2] S. BASU, J. ANDREWS.: Complexity in mathematical models of public health policies: a guide
for consumers of models, PLoS medicine, 10(10) (2013), e1001540.

[3] J. CHAN, ET AL.: A familial cluster of pneumonia associated with the 2019 novel coronavirus
indicating person-to-person transmission: a study of a family cluster, The Lancet, 395(10223)
(2020), 514–523.

[4] T. CHEN, J. RUI, Q. WANG, Z. ZHAO, J. A. CUI, L. YIN: A mathematical model for
simulating the transmission of Wuhan novel Coronavirus, bioRxiv, (2020).

[5] O. DIEKMANN, J. HEESTERBEEK: Mathematical epidemiology of infectious diseases: model
building, analysis and interpretation, Vol. 5, John Wiley & Sons, 2000.

[6] P. DRIESSCHE, J. WATMOUGH: Reproduction numbers and sub-threshold endemic equilibria
for compartmental models of disease transmission, Mathematical Biosciences, 180(1) (2002),
29–48.

[7] W.O. KERMACK, A.G. MCKENDRICK: A contribution to the mathematical theory of epi-
demics, Proceedings of the Royal Society of London. Series A, 115 (1927), 700–721.

[8] H.K. KHALIL: Nonlinear Systems, Pearson Education, Prentice Hall, 2002.
[9] M.Y. LI: An introduction to mathematical modeling of infectious diseases, Vol. 2, Springer,

2018.
[10] C.S. LUTZ, ET AL.: Applying infectious disease forecasting to public health: a path forward

using influenza forecasting examples, BMC Public Health, 19(1) (2019), 1–12.
[11] J. PAN, ET AL.: Effectiveness of control strategies for Coronavirus Disease 2019: a SEIR dynamic

modeling study, medRxiv, (2020).
[12] W. YANG, D. ZHANG, L. PENG, C. ZHUGE, L. HONG.: Rational evaluation of various

epidemic models based on the covid-19 data of china, Epidemics, 37 (2021), 100501.
[13] INSTAT-ML: Annuaire Statistique du Mali, Institut National de la Statistique, (2020).

1,2,3,4 DÉPARTEMENT D’ENSEIGNEMENT ET DE RECHERCHE EN MATHÉMATIQUE ET INFORMATIQUE,
FACULTÉ DES SCIENCES ET TECHNIQUES, UNIVERSITÉ DES SCIENCES, DES TECHNIQUES ET DES TECH-
NOLOGIES DE BAMAKO, BPE 423, BAMAKO, MALI.

Email address: alassanemaiga@yahoo.fr

Email address: abdoulaye.samake@usttb.edu.ml

Email address: moulaye.ahmad@gmail.com

Email address: ouateni@yahoo.fr


	1. Introduction
	2. Mathematical model
	3. Mathematical analysis of the model
	3.1. Positivity and boundedness
	3.2. Existence and uniqueness

	4. Estimation of epidemiological parameters
	4.1. Estimation of model parameters by adjustment
	4.2. Basic reproduction number
	4.3. Sensitivity analysis of R0
	4.4. Total size of epidemic

	5. Numerical simulations and discussion
	5.1. Prediction and epidemic peak and curves
	5.2. Epidemic curve with control scenarios

	6. Conclusions and perspectives
	References

