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ANALYSIS OF VISCOPLASTIC CONTACT PROBLEM

Dalila Kendri

ABSTRACT. In this paper, we analyze a quasistatic problem modeling frictional
contact between a viscoplastic body and an obstacle, the so called foundation.
The material constitutive relation is assumed to be non-linear. The boundary con-
ditions of contact and friction are modeled respectively by the Signorini conditions
and the generalized Coulomb’s non-local law. We derive a variational formulation
for the problem and prove the existence of its unique weak solution. The proof
use, essentially, classical arguments of compactness, variational inequalities and
Banach’s fixed point theorem.

1. INTRODUCTION

The problems of contact are the results of a vast field in the world of industry.
For this reason, in the last decades, there is considerable interest in studying this
type of problem. The literature on this subject includes books like [1,2,5,6], also,
there exists a large number of papers where the authors are essentially interested
on existence and uniqueness results. However, there are works that have dealt
with the numerical simulation of contact processes and others in optimal control
[9,10].

The mathematical models differ according to the mechanical properties of the
considered body and the boundary conditions. For elastic or viscoplastic materials,
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we distinguish unilateral or bilateral contact problems with or without friction, an
analysis for a general model in the quasistatic case has been established in [11].

Our aim in this work is to study a problem that models the quasistatic contact
between a viscoplastic body and a rigid base. The contact is unilateral with fric-
tion. A similar problem has been studied in [3] considering unilateral frictionless
contact in the case of nonlinear elasticity and in [4] for elastic-viscoelastic materi-
als with intern state variable considering Signiorini boundary conditions.

The version of Coulomb’s law of friction which we consider (see [1]) in this
paper, depends on the normal stress which presents a major difficulty for the study.
Indeed, the variational problem obtained is not of the usual type.

The rest of the paper is structured as follows. In Section 2, we start with the
description of the mechanical model, then we list functional preliminaries needed
and some assumptions on the data. In Section 3, variational formulation is es-
tablished by using the Green type formula, the constitutive law and boundary
conditions. Finally, in section 4, we give the existence and uniqueness results of
the weak problem. The proof is based in the first time on a temporal discretization
technique with the goal to eliminate the derivative term, so, we obtain an interme-
diate problem in which the unknown is the displacement field. Subsequently, we
complete the proof using a fixed point method and the theory of elliptic variational
inequalities.

2. PROBLEM STATEMENT AND HYPOTHESES

We consider a viscoplastic body occupies bounded a domain in Rd, (d = 1, 2, 3)

denoted Ω. The boundary Γ is Lipschitz continuous boundary divided into three
disjoint measurable sets: Γ1, Γ2 and Γ3. Let T > 0, we suppose that measΓ1 > 0

and that the field of displacements vanished on Γ1× [0, T ]. We also assume that
tractions g act on Γ2×[0, T ] and that volume forces f act in Ω×[0, T ].

We study the case where the law of behaviour is viscoplastic of the form:

(2.1) σ̇ = ξ(ε(u̇)) +G(σ, ε(u)),

where u is a displacement field, σ = (σij) is the stress tensor, ε = (εij) is the
linearized deformation operator, ξ and G are constitutive functions.
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The displacements and stresses verify the following Signorini conditions:

(2.2) uν ≤ 0, σν ≤ 0, σνuν = 0,

where, uν and σν are the normal components of u and σ respectively.
The law of friction considered is the following:

(2.3)


|στ | ≤ µp(|Rσν |)

|στ | < µp(|Rσν |)⇒ u̇τ = 0, on Γ3 × [0, T ]

|στ | = µp(|Rσν |)⇒ ∃λ ≥ 0 such that στ = −λu̇τ

.

In (2.3), the operator R is a normal regularizer, i.e. a linear continuous operator.
The function p is positive and called: friction function, uτ and στ are the tangential
displacements and stresses respectively; µ ≥ 0 is the friction coefficient.

We use here Coulomb friction law, which consists to taking the function p such
as:

p(r) = r(1− αr)+,

where α is a fairly small positive coefficient related to the hardness of the contact
surface and r+ = max {0, r}. This law of friction means that when the regularized
normal stress is very large, exceeding 1

α
, the surface disintegrates and no longer

offers resistance to movement.
Our problem is formulated as follows:

Problem P: Find a displacement field u = (ui) : Ω× [0, T ] → Rd and a stress field
σ = (σij)Ω× [0, T ]→ Sd such that:

σ̇ = ξ(ε(u̇)) +G(σ, ε(u)) on Ω× [0, T ] ,

(2.4) Div σ + f = 0 in Ω× [0, T ] ,

(2.5) u = 0 on Γ1 × [0, T ] ,

(2.6) σν = g on Γ2 × [0, T ] ,

uν ≤ 0, σν ≤ 0, σνuν = 0,
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|στ | ≤ µp(|Rσν |)

|στ | < µp(|Rσν |)⇒ u̇τ = 0 on Γ3×[0, T ]

|στ | = µp(|Rσν |)⇒ ∃λ ≥ 0 such that στ = −λu̇τ

,

(2.7) u(0) = u0 et σ(0) = σ0 on Ω.

Note that Sd is the the space of second order symmetric tensors on Rd, (2.4) is the
equation of equilibrium in which Div denotes the divergence operator and (2.7)
is the initial condition.

We consider the standard Lebesgue and Sobolev spaces associated to Ω and Γ,
moreover we will use the following spaces:

H ={u = (uij) : uij ∈ L2(Ω)}, H1 = {u = (ui) : uij ∈ H1(Ω)},

H ={σ = (σij) : σij ∈ L2(Ω)}, H1 = {σ = (uij) : σij,j ∈ H}.

These are real Hilbert spaces endowed with the canonical inner products given by

〈u, v〉H =

∫
Ω

ui.vjdx, 〈σ, τ〉H =

∫
Ω

σij.τijdx,

〈u, v〉H = 〈u, v〉H + 〈ε(u), ε(v)〉H,

〈σ, τ〉H = 〈σ, τ〉H + 〈Div(σ), Div(τ)〉H

and the associated norms |.|H , |.|H1, |.|H, and |.|H1, respectively. Here, the defor-
mation operator ε : H1 → H is linear, continuous and defined by

εij(v) =
1

2
(vi,j + vj,i)).

In addition, we consider HΓ = H1/2(Γ)d and γ : H1 → HΓ is the trace operator.
For the study of problem P, we consider the following hypotheses:

(2.8)


The tensor ξ : Ω× Sd → Sd is positivly defined, a.e:

a) ξijκl ∈ L∞(Ω) for all i, j, κ, l = 1, d;

b) ξσ.τ = σ.ξτ for all σ, τ ∈ Sd;

c) ther exists m > 0 such that ξσ.σ ≥ m|σ2| for all σ ∈ Sd.
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(2.9)



the operator G : Ω× Sd × Sd → Sd fulfills:

a) there is L > 0 such that:

|G(., σ1, ε(u1))−G(., σ2, ε(u2))| ≤ L(|σ1 − σ2|+ |u1 − u2|)

for all σ1, ε1, σ2, ε2 ∈ Sd, a.e in Ω.

b) G(., σ, ε) is a Lebesgue function measurable on Ω

for all σ, ε ∈ Sd.

c) G(., 0, 0) ∈ H.

(2.10)



The friction function p : Γ3 × R+ → R+ obeys:

(a) there exist M > 0 such that: |p(x, r1)− p(x, r2)| ≤M |r1 − r2|

for all r1, r2 ∈ R+ x ∈ Γ3.

(b) x 7→ p(x, r)is measurable on Γ3 for all r ∈ R+.

(c) p(x, 0) = 0 a.e on Γ3.

We also assume that:

(2.11) f ∈ W 1,∞(0, T,H),

and

(2.12) g ∈ W 1,∞(0, T, L2(Γ2)d),

while µ satisfies

(2.13) µ ∈ L∞(Γ3), µ(x) ≥ 0 on Γ3.

We consider the closed subspace V of H1 defined by:

(2.14) V = {u ∈ H1 such that γµ = 0 on Γ1} .

We endow V with the following scalar product:

(2.15) 〈v, w〉 = 〈ε(v), ε(w)〉H ,

since measΓ1 > 0, Korn’s inequality holds on V :

∃C > 0, |ε(v)|H ≥ C|v|H , ∀v ∈ V.



764 D. Kendri

By means of Korn’s inequality, we can verify that the norm on V denoted by |.|V
and the standard |.|H1 are equivalent. Then V endowed with the scalar product
defined by (2.15) is a real Hilbert space.

We denote by l : [0, T ]→ V the element of V defined by:

(2.16) 〈l(t), v〉V = 〈f(t), v〉H + 〈g, γv〉L2(Γ2)d ∀v ∈ V.

From (2.11), (2.12) and (2.16) we deduce that:

(2.17) l ∈ W 1,∞(0, T, V ).

Let j : H× V → R be the functional defined by:

(2.18) j(σ, v) =

∫
Γ3

µp(|Rσν |)|vτ |da.

We have Rσν is an element of L2(Γ2)d, then from (2.12) and (2.13) we deduce
that the integral (2.18) is well defined. According to (2.12) and the continuity of
R we obtain:

(2.19) |j(σ, v)| ≤ C |µ|L∞(Γ3)| σ |H1| v|V ∀σ ∈ H1, v ∈ V.

We also assume that the functional j satisfies the condition

∃α
[
0,
mc

2

]
where c is the constant of Korn such that:∫ t

0

(j(σ1(s), u̇(s))− j(σ1(s), v̇(s)) + j(σ2(s), u̇(s))(2.20)

−j(σ2(s), v̇(s)))ds ≤ α|(σ1 − σ2)(t)||(u− v)(t)|.

Finally, we denote by Uad the set of admissible displacements defined by:

(2.21) Uad = {v ∈ V/vν ≤ 0 on Γ3} .

3. VARIATIONAL FORMULATION

In this section, we are going to establish variational formulation of the mechan-
ical problem P. Let us first give an equivalent form of the boundary conditions
(2.3):
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Lemma 3.1. The condition (2.3) is equivalent to:

(3.1)


uν ≤ 0, σν ≤ 0, σνuν = 0

|στ | ≤ µp(|Rσν |) on Γ3 × [0, T ] ,

u̇τ .στ + µp(|Rσν |)|u̇τ | = 0

Proof. We assume that u̇τ = 0 then στ = −λu̇τ . Then we have: u̇τ .στ +

µ|u̇τ |p(|Rσν |)|u̇τ | = 0, now suppose that (3.1) holds.

- If: |στ | = νp(|Rσν |) then:

u̇τ .στ = |u̇τ ||στ | =⇒ ∃λ > 0, such that: u̇τ = −λστ .

- If:
|στ | < νp(|Rσν |) on Γ3 × [0, T ] ,

so:

0 = u̇τ .στ + |u̇τµ|p(|Rσν |) ≥ −|u̇τ ||στ |+ |u̇τµ|p(|Rσν |),

but |µp(|Rσν ||)− |στ | > 0. It results that u̇τ = 0 on Γ3 × [0, T ].

�

To establish the variational formulation we need the following result:

Lemma 3.2. If the pair of functions (u, σ) is a fairly regular solution of the mechan-
ical problem P then:

(3.2)



u ∈ Uad
〈σ(t), ε(v)− ε(u̇(t))〉H + j(σ(t).v)− j(σ(t), u̇(t)) ≥ 〈l(t),

ν − u̇(t)〉V +
∫

Γ3
σν(vν − u̇ν(t)), ∀v ∈ V, t ∈ [0, T ]∫

Γ3
σν(z − uν(t)) ≥ 0, ∀z ∈ Uad,

u(0) = u0.

Proof. Let v ∈ V, we have by Green’s formula:

〈σ(t), ε(v)− ε(u̇(t))〉H = −〈Divσ, ε(v)− ε(u̇(t))〉+

∫
Γ

σν .(v − u̇(t)).

From (2.4), we get:

〈σ(t).ε(v)− ε(u̇(t))〉H = 〈f(t).ε(v)− ε(u̇(t))〉+

∫
Γ

σν .(v − u̇(t)),
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and with (2.17), (2.5) and (2.7) it follows

(3.3) 〈σ(t), ε(v)− ε(u̇(t))〉H = 〈l(t), ε(v)− ε(u̇(t))〉+

∫
Γ

σν .(v − u̇(t)).

Using the decomposition σν .v = σννν + στvτ in (3.3), we get

〈σ(t), ε(v)− ε(u̇(t))〉H = 〈l.v − u̇(t)〉H +

∫
Γ3

(σν(vν − u̇(t)ν) + στ (vτ − u̇(t)T ))da.

By adding
∫

Γ3
µp(|Rσν |)(|vτ | − |u̇τ |)da in each member of the last equality we ob-

tain:〈σ(t), ε(v)− ε(u̇(t))〉H +
∫

Γ3
µp(|Rσν |)(|vτ | − |u̇τ |)da− 〈l.v − u̇(t)〉H

=
∫

Γ3
(σν(vν − u̇(t))) + (vτ .στ + µ|vτ |p(|Rσν |))− (u̇τ .στ + µ|u̇τ |p(|Rσν |))da,

since: vτ .στ ≥ |vτ ||στ | ≥ −µ|vτ |p(|Rσν |), which implies

στ .vτ + µ|vτ |p(|Rσν |) ≥ 0.

Since then u ∈ Uad, from (2.18), (2.7) and (2.2), we deduce:

(3.4) 〈σ(t), εv〉H+j(σ, ε)−j(σ, u̇(t)) ≥ 〈l(t), v − u̇(t)〉V +

∫
Γ3

σν(vν−u̇ν(t));∀v ∈ V,

(3.5)
∫

Γ3

σν(z − uν(t)) ≥ 0 ∀(z ∈ Uad).

�

We can now give the variational formulation of the mechanical problem P:

Problem Pv: find the displacement field u : Ω × [0, T ] → Rd and the stress field
σ : Ω× [0, T ]→ H such that:

σ̇ = ξ(ε(u̇)) +G(σ, ε(u)),

(3.6)



u ∈ Uad,

〈σ(t), ε(v)− ε(u̇(t))〉H + j(σ(t), v)− j(σ(t), u̇(t)),

≥ 〈l(t), v − u̇(t)〉V +
∫

Γ3
σν(vν − u̇ν(t)) ∀v ∈ V t ∈ [0, T ] ,∫

Γ3
σν(vν − uν(t)) ≥ 0 ∀v ∈ Uad,

u(0) = u0.
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Remark 3.1. The variational problem obtained above is formally equivalent to the
mechanic problem. Indeed, if we suppose that (u, σ) is a regular solution of the
problem P , we take v = (u̇± ϕ) ∈ Uad, ∀ϕ ∈ D(Ω)d in (3.6), we get:

〈σ, ε(ϕ)〉H = 〈l, ϕ〉V ,

and from the inner product properties in H1 (see the formula (2.5) and (2.6) in [3])

Div σ + f = 0 in H.

Now using (2.16), (2.17), (3.6) and (2.5) in [3], we get:

(3.7)

〈σν, γ(v − u̇)〉H′Γ×HV +
∫

Γ3
µp(|Rσν |)(|vτ | − |u̇τ |)da ≥

〈g, γ(v − u̇)〉+
∫

Γ3
σν(vν − u̇ν(t)), ∀v ∈ V,

for v = 2u̇ then v = 0, we find

〈σν, γ(ν − u̇)〉H′ΓxHV +

∫
Γ3

µp(|Rσν |)(|u̇τ |)da = 〈g, γu̇〉+

∫
Γ3

σν(u̇ν(t)).

Now taking v = (±w) ∈ Uad, for all w ∈ H1 such that w = 0 on Γ1 ∪ Γ3 in (3.7) we
deduce that σν = g on Γ2. For v = w, ∀w ∈ H1 such that: w = 0 on Γ1 ∪ Γ2 and
wτ = 0, wν ≤ 0 on Γ3, given (3.7), it follows that σν ≤ 0 on Γ3.

From
∫

Γ3
σν(νν−uν(t)) ≥ 0, for v ∈ Uad such that: vν = 2uν then v = uν , it results

that: σνuν = 0 on Γ3, because σν = g on Γ2, σν ≤ 0 on Γ3 and u ∈ Uad. We now set
vν = u̇ν on Γ3, given (3.7) and the equality σνuν = 0 on Γ3, we deduce∫

Γ3

(vτ .στ + µ|vτ |p|Rσν |)da−
∫

Γ3

(u̇τ .στ + µ|u̇τ |p|Rσν |)da ≥ 0,

then we put vτ = 2u̇τ and vτ = 0 in the last inequality, we get∫
Γ3

(u̇τστ + µ|u̇τ |p(|Rσν |))da = 0,

so ∫
Γ3

(vτστ + µ|u̇τ |p(|Rσν |))da ≥ 0,

if we choose vτ = −στ we end up with:

−|στ |2 + µ |στ | p(|Rσν |)da ≥ 0 sur Γ3,
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in other words |στ | ≤ p(|Rσν |)da and −u̇τστ ≤ |u̇τ ||στ , so

−u̇τστ + µ |u̇τ | p(|Rσν |) ≥ 0 on Γ3,

we conclude
−u̇τστ + µ |u̇τ | p(|Rσν |) = 0 on Γ3.

Thus we have found the boundary condition (2.21) of the lemma 3.1 which is equiv-
alent to that of the mechanical problem.

Conversely, if ν, u ∈ Uad are such that∫
Γ3

σν(νν − uν(t)) ≥, ∀ν ∈ Uad,

then, using the definition of u̇, ∀t ∈ [0, T ] ∀t ∈ [0, T ] and ∀∆t > 0, we obtain∫
Γ3

σν u̇ν(t) = lim
∆t→0

∫
Γ3

σν
uν(t+ ∆t)− uν(t)

∆t
= lim

∆t→0

1

∆t

∫
Γ3

σνuν(t+ ∆t)− uν(t),

we have uν(t + ∆t) ∈ Uad, so, from (3.4), it results
∫

Γ3
σν u̇ν ≥ 0. Similarly for

lim
∆t→0

∫
Γ3

uν(t−∆t)− uν(t)
−∆t

, we find
∫

Γ3
σννν ≥ 0, (3.4) becomes

u ∈ Uad, 〈σ, εν − εu̇〉H + j(σ, ν)− j(σ, u̇) ≥ 〈f, ν − u̇〉V ν ∈ Uad.

4. EXISTENCE AND UNIQUENESS RESULT

In this section, we give the existence and uniqueness results for the variational
problem Pv.

Theorem 4.1. Assumptions that (2.9)-(2.14) hold Then, there exists a constant α0 >

0 depending on Ω,Γ, G, ξ and p such that: if α < α0 then Pv; has a unique solution
having the regularity u ∈ W 1,∞(0, T, V ) and σ ∈ W 1,∞(0, T,H1).

The demonstration is carried out in several steps:
It is clear that Pv, is not a problem of the usual type, so we cannot directly apply

the theorems of existence and uniqueness of elliptic variational inequalities, be-
cause the functional j depends on the term p(|Rσν , |). For this reason, we assume
that the regularity of the stress on the boundary Γ3 is given, we denote it by g.
For all η ∈ L∞(0, T,H), we assume that the inelastic part of the stress is given and
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denoted by zη:

(4.1) zη(t) =

∫ t

0

η(s)ds+ z0 ∀t ∈ [0, T ] ,

with

(4.2) z0 = σ0 − ξε(u(0)).

Thus we obtain an intermediate problem P gη
v . Once we prove the existence and

uniqueness of P gη
v , we use the fixed point method for the application defined ofH1

in H1 by g → σgη, then for application defined from: L∞(0, T,H) → L∞(0, T,H)

by:
η(t)→ G(ε(u(t)), σ(t)).

Remark 4.1. For the problem P gη
v , we have the same equations verified by ugη, as

well as the boundary conditions except on Γ3, where we will have:
ugην ≤ 0 , σgην u

gη
ν = 0, σgην ≤ 0 |σgητ | ≤ µp(|Rgν |)

|σgητ | = µp(|Rgν |) =⇒ ∃λ > 0, such that σgητ = −λugητ on Γ3

|σgητ | < µp(|Rgν |) =⇒ ugητ = 0 .

.

Let the intermediate problem:

Problem P gη
v : Finding the field of displacements ugη : Ω × [0, T ] → Rn and the

stress field σgη : Ω× [0, T ]→ H such that:

(4.3) σgη(t) = ξε(ugη(t)) + zη(t),

(4.4)



ugη ∈ Uad,

〈ξε(ugη) + zη, ε(v)− ε(u̇gη(t))〉H + j(g, v)− j(g, u̇gη(t)) ≥

〈l(t), v − u̇gη(t)〉V +
∫

Γ3
σgην (vν − u̇gην (t)), ∀v ∈ V,∫

Γ3
σgην (vν − u̇gην (t)) ≥ 0, ∀v ∈ Uad, ∀t ∈ [0, T ]

ugη(0) = ugη0 .

Lemma 4.1. For all g ∈ H1, the problem P gη
v has a unique solution (ugη, σgη) such

that: ugη ∈ W 1,∞(0, T, V ) and σgη ∈ W 1,∞(0, T,H1).
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The proof of this lemma is obtained by using a technique of temporal discretiza-
tion because of the appearance of the term u̇(t). This allows us to consider only a
system equation which will be written only in displacement “ type ”.

Proof. Let N ∈ N∗, h = T/N , tn = nh and fn = f(tn), ∀n = 0, N. Consider the
following problem P gη

v,n:

(4.5)


u ∈ Uad,〈
ξε(ugηn+1(t)) + zn, ε(v)− ε((ugηn+1 − ugηn )/h)

〉
H + j(g, v)

j(g, ((ugηn+1 − ugηn )/h)) ≥
〈
l(t), v − ((ugηn+1 − ugηn )/h)

〉
V
, ∀v ∈ Uad.

We denote by ugN the function defined by, ugN : [0, T ]→ V such that:

(4.6) ugN =
(t− tn)

h
(ugηn+1 − ugηn ) + ugηn .

It follows from the theory of variational inequalities that (ugN) is a bounded se-
quence in the space W 1,∞(0, T, V ), whence, by classical compactness arguments
there exists (ugk)k∈N subsequence of (ugN) convergent in W 1,∞(0, T, V ) i.e.:

(4.7) ugηk → ugη in L∞(0, T, V ) weak,

(4.8) ugηk → u̇gη in L∞(0, T, V ) weak.

Using (4.5), (4.6) and (4.7) it follows that ugη satisfies (4.4). So, for every t ∈
[0, T ], there is a unique pair (ugη(t), σgη(t)) ∈ V × H solution of (4.3) and (4.4).
Putting now r = u̇g ± ϕ in (4.4), it comes that

〈σgη(t), ε(ϕ)〉H = 〈l, ϕ〉H ∀ϕ ∈ D(Ω)d,

and from (2.17) we deduce that

Div σgη + f = 0 in Ω× [0, T ] .

So from (2.12) and the equality above it follows that

(4.9) σgη(t) ∈ H1.

Let now t1, t2 ∈ [0, T ] (for the sake of simplicity), we note σgη(ti) = σigη, ugη(ti) =

uigη and z(ti) = zi, then from (4.3) and (2.9), we obtain

(4.10) |σ1
gη − σ2

gη|H ≤ C(|u1
gη − u2

gη|V + |z1 − z2|H).
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Finally from (4.10), (4.8),(4.7) and (4.1) we deduce that σgη ∈ W 1,∞(0, T,H1).

�

Remark 4.2. The expression of the sequence (ugN) is inspired by the scheme of divided
differences to approach the derivative.

From the lemma above and (4.9), we conclude that, we can consider the oper-
ator

Λη : L∞(0, T,H1)→ L∞(0, T,H1),

defined by

(4.11) Ληg = σgη ∀g ∈ L∞(0, T,H1).

Now, we will prove that Λη has a fixed point.

Lemma 4.2. There exists a constant α1 > 0 depending on Ω,Γ, ξ and p such that: if
α < α1 then the operator Λη has a single fixed point g∗.

Proof. Let g1, g2 ∈ L∞(0, T,H1), (uηi , σ
eta
i ) the solution of the problem P gη

v , i = 1, 2..
In (4.4), taking v = u̇η1 in P g2η

v then v = u̇η2 in P g2η
v , we get

〈ξε(uη1)− ξε(uη2), ε(u̇η1(t))− ε(u̇η2(t))〉H ≤ j(g1, u̇
η
2(t))−

j(g1, u̇
η
1(t)) + j(g2, u̇

η
1(t))− j(g2, u̇

η
2(t)).

(4.12)

Also, we have:

d

dt
〈ξε(uη1 − u

η
2), ε(uη1 − u

η
2)〉 = 〈ξε(uη1 − u

η
2), ε(u̇η1 − u̇

η
2)〉+ 〈ξε(u̇η1 − u̇

η
2), ε(uη1 − u

η
2)〉 ,

from (2.9) it results:

〈ξε(uη1 − u
η
2), ε(u̇η1 − u̇

η
2)〉 =

1

2

d

dt
〈ξε(uη1 − u

η
2), ε(uη1 − u

η
2)〉 .

So, (4.12) becomes:

1

2

d

dt
〈ξε(uη1 − u

η
2)(t), ε(uη1 − u

η
2)(t)〉

≤ j(g1, u̇
η
2(t))− j(g1, u̇

η
1(t)) + j(g2, u̇

η
1(t))− j(g2, u̇

η
2(t)),

and by integrating the last inequality with respect from 0 to t, we obtain:〈ξε(u
η
1 − u

η
2)(t), ε(uη1 − u

η
2)(t)〉 − 〈ξε(uη1 − u

η
2)(0), ε(uη1 − u

η
2)(0)〉 ≤∫ t

0
j(g1, u̇

η
2(s))− j(g1, u̇

η
1(s)) + j(g2, u̇

η
1(s))− j(g2, u̇

η
2(s))ds.
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Now from (2.9), (2.20), Korn’s inequality and the continuity of the tensor ε, we
get:

mc

2
|(uη1 − u

η
2)(t)|2W 1,∞(0,T,V ) ≤ α|g1 − g2|W 1,∞(0,T,H)|(uη1 − u

η
2)(t)|W 1,∞(0,T,V )

+ C |(uη1 − u
η
2)(0)|2W 1,∞(0,T,V ),

(4.13)

knowing that

(4.14) ab ≤ a2

2b

δb2

2
δ 6= 0,

then (4.13) becomes

mc

2
|(uη1−u

η
2)(t)|2W 1,∞(0,T,V ) ≤

α

2b
|g1−g2|W 1,∞(0,T,H)+(

αδ

2
+C)|(uη1−u

η
2)(t)|W 1,∞(0,T,V ),

so, for δ ∈ [0, (mc− 2C)/α] and C < mc/2, from (4.10), (4.11) and from Banach’s
fixed point theorem, it follows that Λη has a unique point g∗. �

In the following, we assume that α < α1. For η ∈ L∞(0, T,H) we denote by g∗

the fixed point of the operator Λη given by lemma 4.2 and let uη ∈ W 1,∞(0, T, V ),

ση ∈ W 1,∞(0, T,H1) the functions defined by

(4.15) uη = uηg∗ , ση = σηg∗ .

For all t ∈ [0, T ], we define the operator Λ : L∞(0, T,H)→ L∞(0, T,H) by

(4.16) Λη(t) = G(σ(t), ε(u(t))).

Let us show that Λ has a unique fixed point:

Lemma 4.3. there exists a constant α0 > 0 depending on Ω,Γ and p such that: if
α < α0, then the operator Λ admits a unique fixed point η∗ ∈ L∞(0, T,H).

Proof. Let η1, η2 ∈ L∞(0, T,H), ui = uηi, σi = σηi, gi = gηi, for i = 1.2. Using the
lemma 4.2 we have gi = σi, from (4.4) and (4.3), we have:

(4.17) σi = ξε(ui) + ηi.

(4.18)

ui ∈ Uad 〈σi, ε(v)− ε(u̇i(t))〉H + j(σi, v)+

j(σi, u̇i(t)) ≥ 〈l(t), v − u̇i(t)〉V , ∀v ∈ Uad.

For t ∈ [0, T ] and i = 1, 2. Using (4.17), (4.18) and similar estimates to those
used in the proof of the previous lemma (see (4.10),(4.13), and (4.12)) we end
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up with:

(4.19) |σ1 − σ2|2W 1,∞(0,T,H) ≤ C1(|u1 − u2|2W 1,∞(0,T,V ) + |z1 − z2|2W 1,∞(0,T,H)),

and

(4.20) |u1 − u2|2W 1,∞(0,T,H) ≤ C2(|σ1 − σ2|2W 1,∞(0,T,V ) + |z1 − z2|2W 1,∞(0,T,H)),

from (4.19) and (4.20). It results that

(4.21) (1− C1C2)|u1 − u2|2W 1,∞(0,T,H) ≤ C1C2|z1 − z2|2W 1,∞(0,T,H),

using (4.16), (4.1) and (2.10) we get

(4.22) |Λη1 − Λη2|W 1,∞(0,T,H) ≤ C

∫ t

0

|η1(s)− η2(s)|W 1,∞(0,T,H)ds,

an iteration of order n will give

|Λnη1 − Λnη2|W 1,∞(0,T,H) ≤
CnT n

n!
|η1 − η2|W 1,∞(0,T,H),

which implies that, for n large enough. Λn is a contraction. Thus, there is a unique
η∗ ∈ L∞(0, T,H) fixed point for the operator Λ. �

Proof. Proof of Theorem 4.1.
Existence.
Let’s η∗ be the fixed point of the operator Λ and (uη∗ , ση∗) is a solution of the
problem Pv.

Choosing η = η∗ and g = g∗ in (4.4), (4.3) and using (4.15), we get:

(4.23) ση∗ = ξε(uη∗(t)) + zη∗ ,

〈ση∗(t), ε(v)− ε(u̇η∗(t))〉H + j(g∗η∗ , v)

− j(g∗η∗ , u̇η∗) ≥ 〈l(t), v − u̇η∗(t)〉V , ∀v ∈ V, a.e t ∈ [0, T ] .
(4.24)

Then, using (4.23), (4.16) and since G(ση∗ , ε(uη∗)) = η∗ = Λη∗ we obtain

σ̇η∗ = ξ(ε(u̇η∗)) +G(ση∗ , ε(uη∗)),

while the inequality (3.6) follows from (4.24), (4.11), (4.15) and from the fact
that:

g∗η∗ = Λη∗g
∗
η∗ = ση∗ .
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Finally the initial conditions result from (4.2) and the regularity uη∗ ∈
W 1,∞(0, T,H1), ση∗ ∈ W 1,∞(0, T,H1), is a consequence of lemma 4.1.

Uniqueness:
To prove the uniqueness of the solution, we assume that (uη∗ , ση∗), obtained in
the existence part is a solution of the variational problem Pv and (u, σ) is another
solution of Pv, such that u ∈ W 1,∞(0, T,H1) and σ ∈ W 1,∞(0, T,H1).

We denote by η ∈ L∞(0, T,H× Y ) the function defined by:

(4.25) η(t) = G(σ(t), ε(u(t))),

and let

(4.26) ż = G(σ(t), ε(u(t))) and g = σ.

Then from (4.3) and (4.4) we deduce that (u, σ) is a solution of the problem P v
ηg,

and since this problem has a unique solution, we conclude that:

(4.27) u = uηg, σ = σηg.

Thus, g = g∗η, from (4.27), it comes that:

(4.28) u = uηg∗η , σ = σηg∗η ,

so (4.15) and (4.28) imply that

(4.29) u = uη, σ = ση.

Now using (4.16), (4.25) and (4.29), we obtain Λη = η, but Λ admits a unique
fixed point, hence:

(4.30) η = η∗,

so the uniqueness of the solution follows from (4.29)-(4.30), which ends the proof.
�
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