

Advances in Mathematics: Scientific Journal **11** (2022), no.9, 803–816 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.11.9.5

DECODING BINARY REED-MULLER CODES VIA GROEBNER BASES

Irrish Parker Ramahazosoa¹, Harinaivo Andriatahiny, and J.J. Ferdinand Randriamiarampanahy

ABSTRACT. The binary Reed-Muller codes can be characterized as the radical powers of a modular group algebra. In this paper, we deal with the Groebner bases to decode these codes.

INTRODUCTION

Several authors have studied the Reed-Muller codes (see e.g. [4], [5], [7], [8]). S.D. Berman [3] showed that the binary Reed-Muller codes can be described as the radical powers of the group algebra $\mathbb{F}_2[G]$ where \mathbb{F}_2 is the field of two elements and G is the additive group of the field \mathbb{F}_{2^m} of 2^m elements with $m \ge 1$ an integer. $\mathbb{F}_2[G]$ is isomorphic to the quotient ring $\mathcal{A} = \mathbb{F}_2[X_1, \ldots, X_m]/\langle X_1^2 - 1, \ldots, X_m^2 - 1 \rangle$. If M is the radical of \mathcal{A} , then the Jennings basis of M^{ℓ} is a linear basis of M^{ℓ} over \mathbb{F}_2 . Moreover, it is well-known that the Groebner basis is an efficient algebraic tool to solve a large range of problems (see e.g. [1], [6], [9]). In this paper, using the fact that from the Jennings basis of M^{ℓ} , one can construct a basis for the ideal M^{ℓ} and dealing with Groebner bases properties, we give an algorithm for decoding the binary Reed-Muller codes.

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 94B05, 12E05, 13P10, 94B35.

Key words and phrases. Reed-Muller code, Polynomial Ideal, Groebner Basis.

Submitted: 29.08.2022; Accepted: 15.09.2022; Published: 30.09.2022.

1. GROEBNER BASIS

In this section, we introduce some background about Groebner bases (see [1], [6]) and Reed-Muller codes which are useful to our results.

Definition 1.1. Let k be a field and \mathbb{N} the set of non negative integers. A monomial in the polynomial ring $k[X_1, \ldots, X_m]$ is a product of the form $X^{\alpha} = X_1^{\alpha_1} \ldots X_m^{\alpha_m}$ with $\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{N}^m$. Let $|\alpha| = \alpha_1 + \cdots + \alpha_m$ be the total degree of the monomial X^{α} .

A monomial order in $k[X_1, \ldots, X_m]$ is a relation denoted > on \mathbb{N}^m satisfying for $\alpha, \beta \in \mathbb{N}^m$:

- (i) > is a linear order on \mathbb{N}^m ,
- (ii) if $\alpha > \beta$ and $\gamma \in \mathbb{N}^m$, then $\alpha + \gamma > \beta + \gamma$,
- (iii) > is a well-ordering on \mathbb{N}^m .

We will write $\alpha > \beta$ in \mathbb{N}^m if and only if $X^{\alpha} > X^{\beta}$ in $k[X_1, \ldots, X_m]$.

Example 1.

- Lexicographic order $>_{lex}$:

 $\alpha >_{lex} \beta$ if, and only if, the left-most non zero entry of $\alpha - \beta$ is positive.

- Graded lexicographic order >_{grlex}:

 $\alpha >_{grlex} \beta$ if, and only if, $|\alpha| > |\beta|$ or $|\alpha| = |\beta|$ and $\alpha >_{lex} \beta$.

Definition 1.2. A polynomial $f \in k[X_1, ..., X_m]$ is a linear combination of monomials with coefficients in $k : f = \sum_{\alpha} a_{\alpha} X^{\alpha}$.

Let > be a monomial order on $k[X_1, \ldots, X_m]$.

The multidegree of f is defined as $multideg(f) = max_{>}(\alpha | a_{\alpha} \neq 0)$. We call

- leading coefficient of $f: lc(f) = a_{multideg(f)}$
- leading monomial of $f: lm(f) = X^{\alpha}$ where $\alpha = multideg(f)$.
- initial term of f: in $(f) = a_{\alpha} X^{\alpha}$ where $\alpha =$ multideg(f).

Theorem 1.1. Let > be a monomial order and $F = (f_1, \ldots, f_s)$ be an ordered s-tuple of polynomials in $k[X_1, \ldots, X_m]$. Then, every polynomial $f \in k[X_1, \ldots, X_m]$ can be written as $f = a_1f_1 + \cdots + a_sf_s + r$ with $a_i, r \in k[X_1, \ldots, X_m]$ where r = 0 or r is a linear combination of monomials with coefficients in k none of which is divisible by any of $in(f_1), \ldots, in(f_s)$. The polynomial r is called the remainder on division of f by F. Furthermore, if $a_if_i \neq 0$ then $multideg(f) \ge multideg(a_if_i)$.

Remark 1.1. The operation of computing the remainders on division by $F = (f_1, \ldots, f_s)$ is linear over k. In fact, if r_i (i = 1, 2) is the remainder on division of g_i by F, then for any $c_1, c_2 \in k$, the remainder on division of $c_1g_1 + c_2g_2$ by F is $c_1r_1 + c_2r_2$.

Definition 1.3. Fix a monomial order and let $I \subseteq k[X_1, ..., X_m]$ be an ideal, $I \neq \{0\}$. We call initial ideal of I the ideal of $k[X_1, ..., X_m]$ generated by all initial terms $in(f), f \in I$, i.e. $in(I) = \langle in(f) | f \in I \rangle$.

A finite set $G = \{g_1, \ldots, g_s\}$ is a Groebner basis for I if the initial terms $in(g_1), \ldots, in(g_s)$ generate in(I), i.e. $in(I) = \langle in(g_1), \ldots, in(g_s) \rangle$.

Theorem 1.2. Fix a monomial order. Every ideal I in $k[X_1, ..., X_m]$, $I \neq \{0\}$ has a Groebner basis. Furthermore, any Groebner basis for an ideal I is a basis for I.

Proposition 1.1. Let $G = \{g_1, \ldots, g_s\}$ be a Groebner basis for an ideal $I \subseteq k[X_1, \ldots, X_m]$. For $f \in k[X_1, \ldots, X_m]$ there is a unique remainder r on division of f by G with the following properties:

(1) no term of r is divisible by any of $in(g_1), \ldots, in(g_s)$,

(2) there is $g \in I$ such that f = g + r.

The remainder r is unique up to how the elements of G are listed in the division by G. We will write $r = \operatorname{rem}_G(f)$ or simply $\operatorname{rem}(f)$ if confusion does not happen.

Corollary 1.1. Let $G = \{g_1, \ldots, g_s\}$ be a Groebner basis for an ideal $I \subseteq k[X_1, \ldots, X_m]$ and let $f \in k[X_1, \ldots, X_m]$. Then, $f \in I \iff \operatorname{rem}_G(f) = 0$.

Definition 1.4. Let X^{α}, X^{β} be two monomials with $\alpha = (\alpha_1, \ldots, \alpha_m)$ and $\beta = (\beta_1, \ldots, \beta_m)$. The least common multiple of X^{α} and X^{β} is the monomial $X^{\gamma} = \operatorname{lcm}(X^{\alpha}, X^{\beta})$ where $\gamma = (\gamma_1, \ldots, \gamma_m)$ with $\gamma_i = \max(\alpha_i, \beta_i)$ for $i = 1, \ldots, m$.

For $f, g \in k[X_1, \ldots, X_m]$, we call the S-polynomial of f and g the polynomial

$$S(f,g) = \frac{X^{\gamma}}{\operatorname{in}(f)} \cdot f - \frac{X^{\gamma}}{\operatorname{in}(g)} \cdot g$$

where $\gamma = \text{lcm}(\text{multideg}(f), \text{multideg}(g))$.

Theorem 1.3. Let I be a polynomial ideal and $G = \{g_1, \dots, g_s\}$ a basis for I. Then, G is a Groebner basis for I if and only if for all pairs $i \neq j$, the remainder on division of $S(g_i, g_j)$ by G is zero (G listed in some order).

Definition 1.5. A Groebner basis G for a polynomial ideal I is said reduced if

- (1) lc(g) = 1 for all $g \in G$.
- (2) For all $g \in G$ no monomial of g lies in $(in(f) | f \in G \setminus \{g\})$.

Proposition 1.2. Fix a monomial order. Every polynomial ideal of the ring $k[X_1, \ldots, X_m]$ has a unique reduced Groebner basis.

2. Reed-Muller codes

In this section, we recall some properties of the Reed-Muller codes of length 2^m over \mathbb{F}_2 . Let us consider the set in the polynomial ring $\mathbb{F}_2[X_1, \ldots, X_m]$

$$H = \{X_1^2 - 1, \dots, X_m^2 - 1\}$$

and the quotient ring $\mathcal{A} = \mathbb{F}_2[X_1, \ldots, X_m]/\langle H \rangle$ where $\langle H \rangle$ is the ideal generated by H. We will denote respectively by x_1, \ldots, x_m the equivalence classes $\mod \langle H \rangle$ of the variables X_1, \ldots, X_m i.e.

$$x_i = X_i + \langle H \rangle$$
 for $i = 1, \dots, m$,

Then, every element of A can be written as

$$a(x) = \sum_{i \in \{0,1\}^m} a_i x^i = \sum_{i_1=0}^1 \cdots \sum_{i_m=0}^1 a_{i_1,\dots,i_m} x_1^{i_1} \cdots x_m^{i_m}$$

with $i = (i_1, \ldots, i_m) \in \{0, 1\}^m$, $x^i = x_1^{i_1} \cdots x_m^{i_m}$ and $a_i = a_{i_1, \ldots, i_m} \in \mathbb{F}_2$.

We always consider the corresponding standard representative

$$a(X) = \sum_{i \in \{0,1\}^m} a_i X^i = \sum_{i_1=0}^1 \cdots \sum_{i_m=0}^1 a_{i_1,\dots,i_m} X_1^{i_1} \cdots X_m^{i_m} \in \mathbb{F}_2[X_1,\dots,X_m]$$

with $X^i = X_1^{i_1} \cdots X_m^{i_m}$. It is clear that $a(x) = a(X) + \langle H \rangle$.

Let us fix an order on the set of monomials $\{x^i \mid i \in \{0, 1\}^m\}$. Then we have the following isomorphism:

(2.1)
$$\phi : \mathcal{A} \longrightarrow (\mathbb{F}_2)^{2^m}$$
$$a(x) = \sum_{i=(i_1,\dots,i_m)\in\{0,1\}^m} a_i x^i \longmapsto a = (a_i)_{i=(i_1,\dots,i_m)\in\{0,1\}^m}$$

A linear code of length 2^m over \mathbb{F}_2 is a linear subspace of $(\mathbb{F}_2)^{2^m}$. By the isomorphism ϕ , \mathcal{A} can be considered as the ambient space for the codes and the codeword $a = (a_i)_{i=(i_1,\ldots,i_m)\in\{0,1\}^m}$ can be identified with the polynomial $a(x) = \sum_{i=(i_1,\ldots,i_m)\in\{0,1\}^m} a_i x^i$.

We have the following well-known result.

Theorem 2.1. The ring A is a local ring and its maximal ideal is the radical of A denoted $\mathcal{M} = rad(A)$. Moreover, for each integer $0 \le \ell \le m$, the set

(2.2)
$$\mathcal{J}_{\ell} = \left\{ (x_1 - 1)^{i_1} \cdots (x_m - 1)^{i_m} \in \mathcal{A} \mid 0 \le i_1, \dots, i_m \le 1, \ \sum_{k=1}^m i_k \ge \ell \right\}$$

is a linear basis for the radical power \mathcal{M}^{ℓ} over \mathbb{F}_2 . It is known as the Jennings basis of \mathcal{M}^{ℓ} , and we have the following ascending chain of ideals

 $\{0\} \subset \mathcal{M}^m \subset \mathcal{M}^{m-1} \subset \cdots \subset \mathcal{M} \subset \mathcal{A}.$

Corollary 2.1. For all integer ℓ with $0 \leq \ell \leq m$, we have

$$\dim_{\mathbb{F}_2}(\mathcal{M}^{\ell}) = \binom{m}{\ell} + \binom{m}{\ell+1} + \dots + \binom{m}{m}$$

From now on, let denote P(m, 2) the set of all polynomials in reduced form in m variables Y_1, \ldots, Y_m over \mathbb{F}_2 i.e.

$$P(m,2) = \left\{ P(Y_1,\ldots,Y_m) = \sum_{i_1=0}^1 \cdots \sum_{i_m=0}^1 u_{i_1\ldots i_m} Y_1^{i_1} \ldots Y_m^{i_m} \mid u_{i_1\ldots i_m} \in \mathbb{F}_2 \right\}.$$

Let *r* be an integer such that $0 \le r \le m$ and denote $P_r(m, 2)$ the vector subspace of P(m, 2) generated by the monomials of total degree at most equal to *r*:

$$P_r(m,2) = \{P(Y_1,\ldots,Y_m) \in P(m,2) \mid \deg(P) \le r\}.$$

Definition 2.1. The *r*-th order Reed-Muller code of length 2^m over \mathbb{F}_2 is defined as

$$C_r(m,2) = \{ (P(i_1,\ldots,i_m))_{0 \le i_1,\ldots,i_m \le 1} \in (\mathbb{F}_2)^{2^m} | P \in P_r(m,2) \}.$$

 $C_r(m,2)$ are subspaces of $(\mathbb{F}_2)^{2^m}$ and we have the following ascending sequence :

$$\{0\} \subset C_0(m,2) \subset C_1(m,2) \subset \cdots \subset C_m(m,2) = (\mathbb{F}_2)^{2^m}$$

Theorem 2.2 (Berman). For every integer $0 \le \ell \le m$, we have $\mathcal{M}^{\ell} = C_{m-\ell}(m, 2)$.

The weight of the vector $v = (v_1, \ldots, v_{2^m}) \in (\mathbb{F}_2)^{2^m}$ is $\omega t(v) = \operatorname{card}(\{i \mid v_i \neq 0\})$, where card denotes the number of elements in the set.

Theorem 2.3. The Reed-Muller code \mathcal{M}^{ℓ} has minimum weight $d_{min}(\mathcal{M}^{\ell}) = 2^{\ell}$ where $0 \leq \ell \leq m$.

Remark 2.1. \mathcal{M}^{ℓ} is a *t*-error correcting code where *t* is the greatest integer such that $2t + 1 \leq 2^{\ell}$.

3. MAIN RESULTS

In this section will be presented the main results and a decoding algorithm. Let us fix an integer ℓ such that $0 \le \ell \le m$ and by taking account of (2.2), consider

$$\mathcal{G}_{\ell} = \left\{ (x_1 - 1)^{i_1} \cdots (x_m - 1)^{i_m} \in \mathcal{A} \mid 0 \le i_1, \dots, i_m \le 1, \sum_{k=1}^m i_k = \ell \right\}.$$

Proposition 3.1. \mathcal{G}_{ℓ} is a basis for the ideal \mathcal{M}^{ℓ} .

808

Proof. Since \mathcal{M}^{ℓ} is an ideal and $\mathcal{G}_{\ell} \subset \mathcal{M}^{\ell}$, then for all $g \in \mathcal{G}_{\ell}$, we get $\mathcal{A}g \subseteq \mathcal{M}^{\ell}$. Therefore, $\sum_{g \in \mathcal{G}_{\ell}} \mathcal{A}g \subseteq \mathcal{M}^{\ell}$. Conversely, since \mathcal{J}_{ℓ} is a linear basis for \mathcal{M}^{ℓ} over \mathbb{F}_2 , then every element of \mathcal{M}^{ℓ} is a linear combination of elements in \mathcal{J}_{ℓ} . Moreover, every element of \mathcal{J}_{ℓ} can be written as a product ag with $a \in \mathcal{A}$ and $g \in \mathcal{G}_{\ell}$. Thus, we have $\mathcal{M}^{\ell} \subseteq \sum_{g \in \mathcal{G}_{\ell}} \mathcal{A}g$.

Definition 3.1. For each integer ℓ such that $0 \leq \ell \leq m$, we denote G_{ℓ} the subset of $\mathbb{F}_2[X_1, \ldots, X_m]$ defined by

$$G_{\ell} = \left\{ (X_1 - 1)^{i_1} \cdots (X_m - 1)^{i_m} \mid 0 \le i_1, \dots, i_m \le 1, \sum_{k=1}^m i_k = \ell \right\}$$

and $\langle G_{\ell} \rangle$ the ideal of $\mathbb{F}_2[X_1, \ldots, X_m]$ generated by G_{ℓ} .

We denote $E = \{1, ..., m\}$ and for every subset $I \subseteq E$, we set

$$egin{array}{rcl} X_I &=& \displaystyle\prod_{i\in I} X_i, & \textit{with} & X_{\emptyset} = 1, \ g_I &=& \displaystyle\prod_{i\in I} (X_i-1) & \textit{with} & g_{\emptyset} = 1. \end{array}$$

In the same manner, we define in A,

$$x_I = \prod_{i \in I} x_i$$
 with $x_{\emptyset} = 1$ and $x_i = X_i + \langle H \rangle$.

Remark 3.1. We can write

$$G_{\ell} = \{g_I \mid I \in \mathcal{P}(E), \text{ card}(I) = \ell\} \text{ where } \mathcal{P}(E) = \{I \mid I \subseteq E\}$$

It follows that $\operatorname{card}(G_{\ell}) = \binom{m}{\ell}$. Moreover, by expanding all factors in g_I , we get

(3.1)
$$g_I = \sum_{L \in \mathcal{P}(I)} X_L = X_I + \sum_{L \in \mathcal{P}(I) \setminus \{I\}} X_L$$

Furthermore, with respect to grlex order $>_{grlex}$, we have $in(g_I) = X_I$. So, the initial ideal of G_ℓ is given by $in(G_\ell) = \langle in(g) | g \in G_\ell \rangle = \langle X_I | I \in \mathcal{P}(E), card(I) = \ell \rangle$.

We recall that $\langle G_{\ell} \rangle + \langle H \rangle$ is the ideal of $\mathbb{F}_2[X_1, \ldots, X_m]$ generated by $G_{\ell} \cup H$, i.e. $\langle G_{\ell} \rangle + \langle H \rangle = \langle G_{\ell} \cup H \rangle$.

We give a new proof for the following proposition.

Proposition 3.2. We consider grlex order. For each integer ℓ such that $0 \le \ell \le m$,

- (1) G_{ℓ} is a reduced Groebner basis for the ideal $\langle G_{\ell} \rangle$,
- (2) $H = \{X_1^2 1, \dots, X_m^2 1\}$ is a reduced Groebner basis for $\langle H \rangle$,
- (3) $G_{\ell} \cup H$ is a reduced Groebner basis for the ideal $\langle G_{\ell} \rangle + \langle H \rangle$.

Proof. (1) Let $I, J \subseteq E$ be subsets with $card(I) = card(J) = \ell$. So

$$S(g_I, g_J) = \frac{X^{\gamma}}{\operatorname{in}(g_I)} g_I - \frac{X^{\gamma}}{\operatorname{in}(g_J)} g_J$$

$$= \frac{X^{\gamma}}{X_I} g_I - \frac{X^{\gamma}}{X_J} g_J$$

$$= (X_{(I\cup J)\setminus I}) g_I - (X_{(I\cup J)\setminus J}) g_J$$

$$= (X_{J\setminus I}) g_I - (X_{I\setminus J}) g_J$$

$$= (\prod_{i\in J\setminus I} [(X_i - 1) + 1]) g_I - (\prod_{i\in I\setminus J} [(X_i - 1) + 1]) g_J$$

$$= (\sum_{K\in \mathcal{P}(J\setminus I)} g_K) g_I - (\sum_{K\in \mathcal{P}(I\setminus J)} g_K) g_J$$

$$= \sum_{K\in \mathcal{P}(J\setminus I)} g_K g_I - \sum_{K\in \mathcal{P}(I\setminus J)} g_K g_J,$$

where $X^{\gamma} = \operatorname{lcm}(\operatorname{lm}(g_I), \operatorname{lm}(g_J)) = \operatorname{lcm}(X_I, X_J) = X_{I \cup J}$. It is obvious that $\operatorname{rem}_{G_{\ell}}(g_K g_I) = 0$ for all $K \in \mathcal{P}(J \setminus I)$ and similarly $\operatorname{rem}_{G_{\ell}}(g_K g_J) = 0$ for all $K \in \mathcal{P}(I \setminus J)$. Furthermore, by the Remark 1.1, it follows that $\operatorname{rem}_{G_{\ell}}(S(g_I, g_J)) = 0$. Then, by the Theorem 1.3, we conclude the expected result.

Using similar way as in (1), one can prove (2) and (3).

Proposition 3.3. For every integer ℓ such that $0 \leq \ell \leq m$, we have

$$\mathcal{M}^{\ell} = (\langle G_{\ell} \rangle + \langle H \rangle) / \langle H \rangle$$

Proof. The morphism

$$\psi : \langle G_{\ell} \rangle + \langle H \rangle \longrightarrow \mathcal{M}^{\ell}$$
$$g + h \longmapsto g + \langle H \rangle$$

is surjective by Proposition 3.1 and the fact that $\mathcal{G}_{\ell} = \{g_I + \langle H \rangle, g_I \in G_{\ell}\}$. Moreover, it is clear that $\ker(\psi) = \langle H \rangle$.

Corollary 3.1. For every integer ℓ such that $0 \leq \ell \leq m$, we have

$$\mathcal{M}^{\ell} \simeq < G_{\ell} > / (< G_{\ell} > \cap < H >)$$

Proof. From [2] p.491 we have $(\langle G_{\ell} \rangle + \langle H \rangle)/\langle H \rangle \simeq \langle G_{\ell} \rangle/(\langle G_{\ell} \rangle \cap \langle H \rangle)$ and the expected result follows from Proposition 3.3.

Remark 3.2. Generally, for $0 \le \ell \le m$, $\langle G_{\ell} \rangle \cap \langle H \rangle \ne \{0\}$.

In the particular case where $\ell = 1$, we have $G_1 = \{X_1 - 1, \dots, X_m - 1\}$ and $H = \{X_1^2 - 1, \dots, X_m^2 - 1\} = \{(X_1 - 1)^2, \dots, (X_m - 1)^2\}$. Thus, $\langle H \rangle \subseteq \langle G_1 \rangle$ and $\mathcal{M} \simeq \langle G_1 \rangle / \langle H \rangle$.

For $\ell > 1$, as example consider the case m = 3 and $\ell = 2$. In the polynomial ring $\mathbb{F}_2[X, Y, Z]$, we have

$$G_2 = \{ (X-1)^i (Y-1)^j (Z-1)^k \mid 0 \le i, j, k \le 1, i+j+k=2 \}$$

= $\{ (X-1)(Y-1), (X-1)(Z-1), (Y-1)(Z-1) \}$

and $H = \{X^2 - 1, Y^2 - 1, Z^2 - 1\}$. The polynomial of the ideal $\langle H \rangle$, $f(X, Y, Z) = (Y + 1)(X^2 - 1) + (X - 1)(Y^2 - 1)$ can be written as f(X, Y, Z) = (Y + 1)(X - 1)(X + 1) + (X - 1)(Y - 1)(Y + 1) = (X + Y)(X - 1)(Y - 1) which belongs to the ideal $\langle G_2 \rangle$. Then $\langle G_2 \rangle \cap \langle H \rangle \neq \{0\}$.

From now on, if $c(x) \in \mathcal{M}^{\ell}$, by Proposition 3.1, we can write

$$c(x) = \sum_{\substack{i=(i_1,\dots,i_m)\in\{0,1\}^m\\|i|=\ell}} c_{i_1,\dots,i_m} (x_1-1)^{i_1} \dots (x_m-1)^{i_m},$$

and we always consider the corresponding standard representative

$$c(X) = \sum_{\substack{i = (i_1, \dots, i_m) \in \{0, 1\}^m \\ |i| = \ell}} c_{i_1, \dots, i_m} (X_1 - 1)^{i_1} \dots (X_m - 1)^{i_m} \in \langle G_\ell \rangle .$$

It is clear that $c(x) = c(X) + \langle H \rangle$.

For the remainder of the section, we always consider the graded lexicographic order $>_{grlex}$ such that $X_1 >_{grlex} X_2 >_{grlex} \cdots >_{grlex} X_m$.

Remark 3.3. If a(x) = b(x) in \mathcal{A} , then $a(X) - b(X) \in \langle H \rangle$. Therefore $\operatorname{rem}_H(a(X) - b(X)) = 0$. So $\operatorname{rem}_H(a(X)) = \operatorname{rem}_H(b(X))$. Since a(X) and b(X) are standard representatives of a(x) and b(x), then $\operatorname{rem}_H(a(X)) = a(X)$ and $\operatorname{rem}_H(b(X)) = b(X)$. It follows that a(X) = b(X) in $\mathbb{F}_2[X_1, \ldots, X_m]$.

Definition 3.2. Let $\ell \in \mathbb{N}$ with $1 \leq \ell \leq m$. For every subset $I \subseteq E = \{1, \ldots, m\}$, we denote by $\sigma(I)$ the subset of $\mathcal{P}(I) = \{L \mid L \subseteq I\}$ such that

$$\operatorname{rem}_{G_{\ell}}(X_I) = \sum_{L \in \sigma(I)} X_L$$

Definition 3.3. We define the operator Δ as $A \Delta B = (A \setminus B) \cup (B \setminus A)$, where $A, B \subseteq E$. Generally, we have $A \Delta B \Delta C = (A \Delta B) \Delta C$.

Proposition 3.4. Let $m, \ell \in \mathbb{N}$ with $1 \leq \ell \leq m$. For every subsets $I, J \subseteq E, I \neq J$, we have $\operatorname{rem}_{G_{\ell}}(X_I + X_J) = \sum_{L \in \sigma(I) \Delta \sigma(J)} X_L$.

Proof. By the Remark 1.1, we get

$$\operatorname{rem}_{G_{\ell}}(X_{I} + X_{J}) = \operatorname{rem}_{G_{\ell}}(X_{I}) + \operatorname{rem}_{G_{\ell}}(X_{J}) = \sum_{L \in \sigma(I)} X_{L} + \sum_{L \in \sigma(J)} X_{L}$$
$$= \sum_{L \in \sigma(I) \setminus \sigma(J)} X_{L} + \sum_{L \in \sigma(J) \setminus \sigma(I)} X_{L} + 2 \sum_{L \in \sigma(I) \cap \sigma(J)} X_{L}$$
$$= \sum_{L \in \sigma(I) \land \sigma(J)} X_{L}.$$

Proposition 3.5. Let $I \subseteq E = \{1, ..., m\}$, $\ell \in \mathbb{N}$ with $1 \leq \ell \leq m$, and t the greatest integer such that $2t + 1 \leq 2^{l}$. Then,

- (1) if $\operatorname{card}(I) < \ell$ then $\sigma(I) = \{I\}$;
- (2) if $\operatorname{card}(I) = \ell$ then $\sigma(I) = \mathcal{P}(I) \setminus \{I\}$.

Proof. (1)- Suppose that $\operatorname{card}(I) < \ell$, then X_I contains less than ℓ factors X_i , and no initial term $\operatorname{in}(g_J)$ of every $g_J \in G_\ell$ divides X_I . Therefore, $\operatorname{rem}_{G_\ell}(X_I) = X_I$ and hence $\sigma(I) = \{I\}$.

(2)- Now assume that $\operatorname{card}(I) = \ell$. Then, $g_I \in G_\ell$ and we can write $X_I = g_I + \sum_{L \in \mathcal{P}(I) \setminus \{I\}} X_L$ by equality (3.1), where $\operatorname{card}(L) < \ell$ for every $L \in \mathcal{P}(I) \setminus \{I\}$. It follows that, $\operatorname{rem}_{G_\ell}(X_I) = \sum_{L \in \mathcal{P}(I) \setminus \{I\}} X_L$ and so $\sigma(I) = \mathcal{P}(I) \setminus \{I\}$. \Box

Corollary 3.2. For each $I \subseteq E$ such that $card(I) = \ell \ge 1$, we have $\omega t(rem_{G_{\ell}}(X_I)) > t$ where t is the greatest integer such that $2t + 1 < 2^{\ell}$.

Proof. Let I be a subset of $E = \{1, \ldots, m\}$. By Proposition 3.5 (2), if $\operatorname{card}(I) = \ell$, then $\omega t(\operatorname{rem}_{G_{\ell}}(X_I)) = \operatorname{card}(\sigma(I)) = \operatorname{card}(\mathcal{P}(I) \setminus \{I\}) = 2^{\operatorname{card}(I)} - 1 = 2^{\ell} - 1$. As t is the greatest integer such that $2t + 1 \leq 2^{\ell}$, we have $2t \leq 2^{\ell} - 1$. Thus, $\omega t(\operatorname{rem}_{G_{\ell}}(X_I)) > t$.

Theorem 3.1. Let $m, \ell \in \mathbb{N}$ with $2 \leq \ell \leq m$. Let $c(x) \in \mathcal{M}^{\ell}$ be a transmitted codeword and $v(x) \in \mathcal{A}$ the received word, i.e. v(x) = c(x) + e(x) with $\omega t(e(x)) \leq t$ where t is the greatest integer such that $2t + 1 \leq 2^{\ell}$. Then, $\operatorname{rem}_{G_{\ell}}(v(X)) = \operatorname{rem}_{G_{\ell}}(e(X))$ and

(1)- if $\operatorname{rem}_{G_{\ell}}(v(X)) = 0$ then c(x) = v(x); (2)- if $\operatorname{rem}_{G_{\ell}}(v(X)) = \sum_{L \in \sigma(I_1) \Delta \cdots \Delta \sigma(I_k)} X_L$ for some $k \leq t$ and pairwise distinct subsets $I_1, \ldots, I_k \subseteq E$, then $e(x) = x_{I_1} + \cdots + x_{I_k}$ which means that v(x) contains k errors located at x_{I_1}, \ldots, x_{I_k} .

Proof. Let $c(x) \in \mathcal{M}^{\ell}$ and $c(X) \in \langle G_{\ell} \rangle$ be its standard representative. Since G_{ℓ} is a Groebner basis for $\langle G_{\ell} \rangle$, then $\operatorname{rem}_{G_{\ell}}(c(X)) = 0$ and therefore $\operatorname{rem}_{G_{\ell}}(v(X)) = \operatorname{rem}_{G_{\ell}}(e(X))$. Moreover,

(1)- if $\operatorname{rem}_{G_{\ell}}(v(X)) = 0$, then $\operatorname{rem}_{G_{\ell}}(e(X)) = 0$ i.e. $e(x) \in \mathcal{M}^{\ell}$. In addition, by assumption, $\omega t(e(x)) \leq t < 2^{\ell} = d_{\min}(\mathcal{M}^{\ell})$, then e(x) = 0 and v(x) = c(x).

(2)- if $\operatorname{rem}_{G_{\ell}}(v(X)) \neq 0$ with $\operatorname{rem}_{G_{\ell}}(v(X)) = \sum_{L \in \sigma(I_1) \Delta \cdots \Delta \sigma(I_k)} X_L$ for some integer $k \leq t$ and pairwise distinct subsets $I_1, \ldots, I_k \subseteq E$, then by Proposition 3.4, we have

 $\operatorname{rem}_{G_{\ell}}(v(X)) = \operatorname{rem}_{G_{\ell}}(X_{I_{1}} + \dots + X_{I_{k}}). \text{ Setting } c'(X) = v(X) - (X_{I_{1}} + \dots + X_{I_{k}})$ implies that $\operatorname{rem}_{G_{\ell}}(c'(X)) = 0.$ Then, $c'(X) \in \langle G_{\ell} \rangle$ and hence $c'(x) \in \mathcal{M}^{\ell}.$ As a result, we can write v(x) = c'(x) + e'(x) with $e'(x) = x_{I_{1}} + \dots + x_{I_{k}}.$ However, by assupption v(x) = c(x) + e(x) then, $e'(x) - e(x) = c(x) - c'(x) \in \mathcal{M}^{\ell}.$ Furthermore, $\omega t(e'(x) - e(x)) \leq \omega t(e'(x)) + \omega t(e(x)) \leq k + t \leq 2t < 2^{\ell} = d_{\min}(\mathcal{M}^{\ell}).$ It follows that, e'(x) = e(x) and c'(x) = c(x). Thus, v(x) = c(x) + e(x) with $e(x) = x_{I_{1}} + \dots + x_{I_{k}}.$

Theorem 3.2. Let $m, \ell \in \mathbb{N}$ with $2 \leq \ell \leq m$. Let $c(x) \in \mathcal{M}^{\ell}$ be a transmitted codeword and $v(x) \in \mathcal{A}$ the received word, i.e. v(x) = c(x) + e(x) with $\omega t(e(x)) \leq t$ where t is the greatest integer such that $2t + 1 \leq 2^{\ell}$. Then, $\omega t(\operatorname{rem}_{G_{\ell}}(v(X))) \leq t$ if, and only if, $\operatorname{rem}_{G_{\ell}}(v(X)) = e(X)$ and e(x) = 0 or $e(x) = x_{I_1} + \cdots + x_{I_k}$ for some $k \leq t$ and pairwise distinct subsets $I_1, \ldots, I_k \subseteq E$ such that $\operatorname{card}(I_i) < \ell$ for all $i = 1, \ldots, k$.

Proof. Assume that $\omega t(\operatorname{rem}_{G_{\ell}}(v(X))) \leq t$. Denote $r(X) = \operatorname{rem}_{G_{\ell}}(v(X))$ the remainder on the division of v(X) by G_{ℓ} . Then, we can write v(X) as v(X) = c'(X) + r(X) with $c'(X) \in \langle G_{\ell} \rangle$ and r(X) = 0 or every term in r(X) is divisible by none of $\operatorname{in}(g), g \in G_{\ell}$ and $\omega t(r(X)) \leq t$. Then, v(x) = c(x) + e(x) = c'(x) + r(x), so $r(x) - e(x) = c(x) - c'(x) \in \mathcal{M}^{\ell}$. In addition, $\omega t(r(x) - e(x)) \leq \omega t(r(x)) + \omega t(e(x)) \leq 2t < 2^{\ell} = d_{\min}(\mathcal{M}^{\ell})$. It follows that, r(x) = e(x) and c'(x) = c(x). Thus, v(x) = c(x) + e(x) with e(x) = r(x). In other terms, $\operatorname{rem}_{G_{\ell}}(v(X)) = r(X) = e(X)$. And if r(X) = 0 then e(X) = 0. If $r(X) \neq 0$, there are $k \in \mathbb{N}$ and pairwise distinct subsets $I_1, \ldots, I_k \subseteq E$ such that $r(X) = X_{I_1} + \cdots + X_{I_k}$. The assumption $\omega t(r(X)) \leq t$ implies that $k \leq t$. Moreover, since no term in r(X) is divisible by any of $\operatorname{in}(g), g \in G_{\ell}$, it follows that $\operatorname{card}(I_i) < \ell$ for all $i = 1, \ldots, k$.

Conversely, suppose that $\operatorname{rem}_{G_{\ell}}(v(X)) = e(X)$. Hence, if e(x) = 0 then we have $\operatorname{rem}_{G_{\ell}}(v(X)) = 0$ and so, $\omega t(\operatorname{rem}_{G_{\ell}}(v(X))) = 0 \leq t$. On the other hand, if $e(X) = X_{I_1} + \cdots + X_{I_k}$ for some $k \leq t$ and pairwise distinct subsets $I_1, \ldots, I_k \subseteq E$, then $\omega t(\operatorname{rem}_{G_{\ell}}(v(X))) = k \leq t$. \Box

By taking into account the above discussion, we have the following result

Theorem 3.3. Let $m, \ell \in \mathbb{N}$ with $2 \leq \ell \leq m$. Let $v(x) \in \mathcal{A}$ be a received word containing at most t errors, where t is the greatest integer such that $2t + 1 \leq 2^{\ell}$.

Then, v(x) can be decoded by the following algorithm: Input:

-
$$v$$

- G_{ℓ} a Groebner basis for $\langle G_{\ell} \rangle$
- $\Omega = \{ S \subseteq \mathcal{P}(\{1, \dots, m\}) \mid \operatorname{card}(I) \ge \ell \text{ for all } I \in S \}$

 $\textit{Output: a codeword } c(x) \in M^\ell$

Begin

- Compute $\operatorname{rem}_{G_{\ell}}(v(X))$.
- If $\omega t(\operatorname{rem}_{G_{\ell}}(v(X))) \leq t$, then $c(X) = v(X) \operatorname{rem}_{G_{\ell}}(v(X))$. Else find the element $S \in \Omega$ such that

$$\omega t(\operatorname{rem}_{G_{\ell}}(v(X) - \sum_{I \in S} X_I)) \le t - \operatorname{card}(S)$$

and we obtain

$$c(X) = v(X) - \sum_{I \in S} X_I - \operatorname{rem}_{G_\ell}(v(X) - \sum_{I \in S} X_I).$$

End

Corollary 3.3. Consider the Reed-Muller code \mathcal{M}^2 . Let $v \in (\mathbb{F}_2)^{2^m}$ be a received vector containing at most one error. We denote v(x) the polynomial in \mathcal{A} corresponding to v. We have v(x) = c(x) + e(x) with $c(x) \in \mathcal{M}^2$ and $\omega t(e) \leq 1$.

- If $rem_{G_2}(v(X)) = 0$ then c(x) = v(x).
- If $\operatorname{rem}_{G_2}(v(X)) = \sum_{i \in I} X_i$ or $\operatorname{rem}_{G_2}(v(X)) = \sum_{i \in I} X_i + 1$ with $I \subseteq E$, then $e(x) = \prod_{i \in I} x_i$.

In the practice, by using standard representatives, we can indifferently use the variable x for X.

Example 2. Decoding Reed-Muller Code $C_1(3,2) = \mathcal{M}^2$, a 1-error correcting code. Consider $g_1 = xy + x + y + 1$, $g_2 = xz + x + z + 1$, $g_3 = yz + y + z + 1 \in \mathbb{F}_2[x, y, z]$ and set $G_2 = \{g_1, g_2, g_3\}$. Then, G_2 is a Groebner basis for the ideal $\langle G_2 \rangle$. Let v = (1, 0, 0, 0, 0, 1, 0, 1) be a received word, so v(x) = xyz + y + 1 by correspondance (2.1). Using the grlex order we have $\operatorname{rem}_{G_2}(v(x)) = x + z + 1$. Then, e(x) = xz and we get the codeword $c = (1, 0, 0, 0, 0, 1, 0, 1) + (0, 0, 1, 0, 0, 0, 0, 0) = (1, 0, 1, 0, 0, 1, 0, 1) \in \mathcal{M}^2 = C_1(3, 2)$.

Example 3. Decoding Reed-Muller Code $C_1(4, 2) = \mathcal{M}^3$, which is a 3-error correcting code. In $\mathbb{F}_2[x_1, x_2, x_3, x_4]$ consider $G_3 = \{g_1, g_2, g_3, g_4\}$ with

- $g_1 = x_1 x_2 x_3 + x_1 x_2 + x_1 x_3 + x_1 + x_2 x_3 + x_2 + x_3 + 1$ $g_2 = x_1 x_2 x_4 + x_1 x_2 + x_1 x_4 + x_1 + x_2 x_4 + x_2 + x_4 + 1$
- $g_3 = x_1 x_3 x_4 + x_1 x_3 + x_1 x_4 + x_1 + x_3 x_4 + x_3 + x_4 + 1$
- $g_4 = x_2 x_3 x_4 + x_2 x_3 + x_2 x_4 + x_2 + x_3 x_4 + x_3 + x_4 + 1.$

Then, G_3 is a Groebner basis for the ideal $\langle G_3 \rangle$. Let v_0 be a received word, $v_0 = (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0) \in (\mathbb{F}_2)^{2^4}$. The code $C_1(4, 2) = \mathcal{M}^3$ has as minimum distance $d = 2^3 = 8$, it is a 3-error correcting code. By correspondance (2.1), we can write $v_0(x) = x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_1 + x_2x_3x_4 + x_2 + x_3 + x_4 \in \mathcal{A}$. Then, $v_0(x) = g_1(x) + g_2(x) + g_3(x) + g_4(x)$. Consequently, $\operatorname{rem}_{G_3}(v_0(x)) = 0$ and hence $c = v_0 \in C_1(4, 2)$. Let us reconsider now another the received word $v_1 =$ (0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0) obtained from v_0 by adding errors on its sixth, eigth and twelth entries. It means that $v_1(x) = x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_1x_3 + x_2x_3x_4 + x_3 + x_4$, then we have $v_1(x) = g_1(x) + g_2(x) + g_3(x) + g_4(x) + x_1x_3 + x_1 + x_2$. As a result $\operatorname{rem}_{G_3}(v_1(x)) = x_1x_3 + x_1 + x_2$. As $\omega t(\operatorname{rem}_{G_3}(v_1(x))) = 3 \leq t = 3$ then $c(x) = v_1(x) + \operatorname{rem}_{G_3}(v_1(x)) = x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_1 + x_2x_3x_4 + x_2 + x_3 + x_4$. In other terms, after decoding of the received word v_1 , we get the word $c = (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0) = v_0$. All of three errors have been corrected.

Finally, let introduce this time only one error into v_0 on its second entry and denote v_2 the corresponding received word,

$$v_2 = (0, \mathbf{0}, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0).$$

Equivalently, $v_2(x) = x_1x_2x_4 + x_1x_3x_4 + x_1 + x_2x_3x_4 + x_2 + x_3 + x_4$. We can write, $v_2(x) = g_2(x) + g_3(x) + g_4(x) + x_1x_2 + x_1x_3 + x_1 + x_2x_3 + x_2 + x_3 + 1$. As a result $\operatorname{rem}_{G_3}(v_2(x)) = x_1x_2 + x_1x_3 + x_1 + x_2x_3 + x_2 + x_3 + 1$. Since $\omega t(\operatorname{rem}_{G_3}(v_2(x))) = 7 > 3 = t$, then it suffices to choose a set $S \in \Omega$ which satisfies the conditions of the algorithm. For $S = \{I\}$ with $I = \{1, 2, 3\}$, we have $x_I = x_1x_2x_3$. We can write $x_I = g_1(x) + x_1x_2 + x_1x_3 + x_1 + x_2x_3 + x_2 + x_3 + 1$ and so $v_2(x) = g_2(x) + g_3(x) + g_4(x) + g_1(x) + x_I$. Hence, $v_2(x) - x_I \in \langle G_3 \rangle$ and $\operatorname{rem}_{G_3}(v_2(x) - x_I) = 0$. As a result $\omega t(\operatorname{rem}_{G_3}(v_2(x) - x_I)) = 0 \le t - \operatorname{card}(s) = 2$. Thus, the decoding of $v_2(x)$ gives $c(x) = (v_2(x) - x_I) + \operatorname{rem}_{G_3}(v_2(x) - x_I) = x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_1 + x_2x_3x_4 + x_2 + x_3 + x_4$. Hence, we have found the initial codeword $c = (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0) = v_0$.

ACKNOWLEDGMENT

The authors would like to thank the referee for careful reading.

REFERENCES

- [1] W. ADAMS, P. LOUSTAUNAU: An introduction to Groebner Bases, Amer. Math. Society, 3 (1994).
- [2] AVIVA SZPIRGLAS ET AL: *Mathématiques L3 Algèbre*, Pearson Education France (2009).
- [3] S.D. BERMAN: On the theory of group codes, kibernetika 3(1) (1967), 31–39.
- [4] I.F. BLAKE AND R.C. MULLIN: The mathematical theory of coding, Academic Press, 1975.
- [5] P. CHARPIN: Une généralisation de la construction de Berman des codes de Reed et Muller *p*-aires, Comm. algebra, **16** (1988), 2231–2246.
- [6] D. COX, J. LITTLE, D. O'SHEA: Ideals, Varieties and Algorithms, Springer, 1996.
- [7] T. KASAMI, S. LIN, W.W. PETERSON: New generalizations of the Reed-Muller codes, IEEE Trans. Inform. Theory, **14**(2) (1968), 189–205.
- [8] P. LANDROCK, O. MANZ: Classical codes as ideals in group algebras, Des. Codes Cryptogr., 2 (1992), 273–285.
- [9] M. SALEEMI: Coding Theory via Groebner Bases, Thesis, 2012.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE UNIVERSITY OF ANTANANARIVO ANTANANARIVO II, MADAGASCAR. Email address: ramahazos@yahoo.fr

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE UNIVERSITY OF ANTANANARIVO ANTANANARIVO II, MADAGASCAR. Email address: hariandriatahiny@gmail.com

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE UNIVERSITY OF ANTANANARIVO ANTANANARIVO II, MADAGASCAR. Email address: randriamiferdinand@gmail.com