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DECODING BINARY REED-MULLER CODES VIA GROEBNER BASES

Irrish Parker Ramahazosoa1, Harinaivo Andriatahiny, and J.J. Ferdinand Randriamiarampanahy

ABSTRACT. The binary Reed-Muller codes can be characterized as the radical pow-
ers of a modular group algebra. In this paper, we deal with the Groebner bases to
decode these codes.

INTRODUCTION

Several authors have studied the Reed-Muller codes (see e.g. [4], [5], [7], [8]).
S.D. Berman [3] showed that the binary Reed-Muller codes can be described as the
radical powers of the group algebra F2[G] where F2 is the field of two elements
and G is the additive group of the field F2m of 2m elements with m ≥ 1 an integer.
F2[G] is isomorphic to the quotient ring A = F2[X1, . . . , Xm]/〈X2

1 − 1, . . . , X2
m− 1〉.

If M is the radical of A, then the Jennings basis of M ` is a linear basis of M ` over
F2. Moreover, it is well-known that the Groebner basis is an efficient algebraic tool
to solve a large range of problems (see e.g. [1], [6], [9]). In this paper, using the
fact that from the Jennings basis of M `, one can construct a basis for the ideal M `

and dealing with Groebner bases properties, we give an algorithm for decoding
the binary Reed-Muller codes.
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1. GROEBNER BASIS

In this section, we introduce some background about Groebner bases (see [1], [6])
and Reed-Muller codes which are useful to our results.

Definition 1.1. Let k be a field and N the set of non negative integers. A monomial in
the polynomial ring k[X1, . . . , Xm] is a product of the form Xα = Xα1

1 . . . Xαm
m with

α = (α1, . . . , αm) ∈ Nm. Let | α |= α1 + · · ·+αm be the total degree of the monomial
Xα.

A monomial order in k[X1, . . . , Xm] is a relation denoted > on Nm satisfying for
α, β ∈ Nm:

(i) > is a linear order on Nm,
(ii) if α > β and γ ∈ Nm, then α + γ > β + γ,

(iii) > is a well-ordering on Nm.

We will write α > β in Nm if and only if Xα > Xβ in k[X1, . . . , Xm].

Example 1.

- Lexicographic order >lex:

α >lex β if, and only if, the left-most non zero entry of α− β is positive.

- Graded lexicographic order >grlex:

α >grlex β if, and only if, | α |>| β | or | α |=| β | and α >lex β.

Definition 1.2. A polynomial f ∈ k[X1, . . . , Xm] is a linear combination of mono-
mials with coefficients in k : f =

∑
α aαX

α.
Let > be a monomial order on k[X1, . . . , Xm].
The multidegree of f is defined as multideg(f) = max>(α|aα 6= 0). We call

- leading coefficient of f : lc(f) = amultideg(f)

- leading monomial of f : lm(f) = Xα where α = multideg(f).
- initial term of f : in(f) = aαX

α where α = multideg(f).

Theorem 1.1. Let > be a monomial order and F = (f1, . . . , fs) be an ordered s-tuple
of polynomials in k[X1, . . . , Xm]. Then, every polynomial f ∈ k[X1, . . . , Xm] can be
written as f = a1f1 + · · · + asfs + r with ai, r ∈ k[X1, . . . , Xm] where r = 0 or r is
a linear combination of monomials with coefficients in k none of which is divisible by
any of in(f1), . . . , in(fs). The polynomial r is called the remainder on division of f by
F . Furthermore, if aifi 6= 0 then multideg(f) ≥ multideg(aifi).
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Remark 1.1. The operation of computing the remainders on division by
F = (f1, . . . , fs) is linear over k. In fact, if ri (i = 1, 2) is the remainder on divi-
sion of gi by F , then for any c1, c2 ∈ k, the remainder on division of c1g1 + c2g2 by F
is c1r1 + c2r2 .

Definition 1.3. Fix a monomial order and let I ⊆ k[X1, . . . , Xm] be an ideal, I 6=
{0}. We call initial ideal of I the ideal of k[X1, . . . , Xm] generated by all initial terms
in(f), f ∈ I, i.e. in(I) = 〈in(f)|f ∈ I〉.

A finite set G = {g1, . . . , gs} is a Groebner basis for I if the initial terms in(g1), . . . ,

in(gs) generate in(I), i.e. in(I) = 〈in(g1), . . . , in(gs)〉.

Theorem 1.2. Fix a monomial order. Every ideal I in k[X1, . . . , Xm], I 6= {0} has a
Groebner basis. Furthermore, any Groebner basis for an ideal I is a basis for I.

Proof. cf [6] p.75 �

Proposition 1.1. LetG = {g1, . . . , gs} be a Groebner basis for an ideal I ⊆ k[X1, . . . ,

Xm]. For f ∈ k[X1, . . . , Xm] there is a unique remainder r on division of f by G with
the following properties:

(1) no term of r is divisible by any of in(g1), . . . , in(gs),
(2) there is g ∈ I such that f = g + r.

The remainder r is unique up to how the elements of G are listed in the division by
G. We will write r = remG(f) or simply rem(f) if confusion does not happen.

Corollary 1.1. Let G = {g1, . . . , gs} be a Groebner basis for an ideal I ⊆ k[X1, . . . ,

Xm] and let f ∈ k[X1, . . . , Xm]. Then, f ∈ I ⇐⇒ remG(f) = 0.

Definition 1.4. Let Xα, Xβ be two monomials with α = (α1, . . . , αm) and β =

(β1, . . . , βm). The least common multiple of Xα and Xβ is the monomial Xγ =

lcm(Xα, Xβ) where γ = (γ1, . . . , γm) with γi = max(αi, βi) for i = 1, . . . ,m .
For f, g ∈ k[X1, . . . , Xm], we call the S-polynomial of f and g the polynomial

S(f, g) =
Xγ

in(f)
· f − Xγ

in(g)
· g

where γ = lcm(multideg(f),multideg(g)).

Theorem 1.3. Let I be a polynomial ideal and G = {g1, · · · , gs} a basis for I. Then,
G is a Groebner basis for I if and only if for all pairs i 6= j, the remainder on division
of S(gi, gj) by G is zero (G listed in some order).
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Definition 1.5. A Groebner basis G for a polynomial ideal I is said reduced if

(1) lc(g) = 1 for all g ∈ G.
(2) For all g ∈ G no monomial of g lies in 〈in(f) | f ∈ G \ {g}〉.

Proposition 1.2. Fix a monomial order. Every polynomial ideal of the ring k[X1, . . . ,

Xm] has a unique reduced Groebner basis.

2. REED-MULLER CODES

In this section, we recall some properties of the Reed-Muller codes of length 2m

over F2. Let us consider the set in the polynomial ring F2[X1, . . . , Xm]

H = {X2
1 − 1, . . . , X2

m − 1}

and the quotient ring A = F2[X1, . . . , Xm]/〈H〉 where 〈H〉 is the ideal generated
by H. We will denote respectively by x1, . . . , xm the equivalence classes mod 〈H〉
of the variables X1, . . . , Xm i.e.

xi = Xi + 〈H〉 for i = 1, . . . ,m,

Then, every element of A can be written as

a(x) =
∑

i∈{0,1}m
aix

i =
1∑

i1=0

· · ·
1∑

im=0

ai1,...,imx
i1
1 · · ·ximm

with i = (i1, . . . , im) ∈ {0, 1}m, xi = xi11 · · ·ximm and ai = ai1,...,im ∈ F2.
We always consider the corresponding standard representative

a(X) =
∑

i∈{0,1}m
aiX

i =
1∑

i1=0

· · ·
1∑

im=0

ai1,...,imX
i1
1 · · ·X im

m ∈ F2[X1, . . . , Xm]

with X i = X i1
1 · · ·X im

m . It is clear that a(x) = a(X) + 〈H〉.
Let us fix an order on the set of monomials {xi | i ∈ {0, 1}m}. Then we have the

following isomorphism:

(2.1)

φ : A −→ (F2)
2m

a(x) =
∑

i=(i1,...,im)∈{0,1}m
aix

i 7−→ a = (ai)i=(i1,...,im)∈{0,1}m
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A linear code of length 2m over F2 is a linear subspace of (F2)
2m. By the iso-

morphism φ, A can be considered as the ambient space for the codes and the
codeword a = (ai)i=(i1,...,im)∈{0,1}m can be identified with the polynomial a(x) =∑

i=(i1,...,im)∈{0,1}m aix
i.

We have the following well-known result.

Theorem 2.1. The ring A is a local ring and its maximal ideal is the radical of A
denotedM = rad(A). Moreover, for each integer 0 ≤ ` ≤ m, the set

(2.2) J` =

{
(x1 − 1)i1 · · · (xm − 1)im ∈ A | 0 ≤ i1, . . . , im ≤ 1,

m∑
k=1

ik ≥ `

}
is a linear basis for the radical powerM` over F2. It is known as the Jennings basis
ofM`, and we have the following ascending chain of ideals

{0} ⊂ Mm ⊂Mm−1 ⊂ · · · ⊂ M ⊂ A.

Corollary 2.1. For all integer ` with 0 ≤ ` ≤ m, we have

dimF2(M`) =

(
m

`

)
+

(
m

`+ 1

)
+ · · ·+

(
m

m

)
.

From now on, let denote P (m, 2) the set of all polynomials in reduced form in m

variables Y1, . . . , Ym over F2 i.e.

P (m, 2) =

{
P (Y1, . . . , Ym) =

1∑
i1=0

· · ·
1∑

im=0

ui1...im Y i1
1 . . . Y im

m | ui1...im ∈ F2

}
.

Let r be an integer such that 0 ≤ r ≤ m and denote Pr(m, 2) the vector subspace
of P (m, 2) generated by the monomials of total degree at most equal to r:

Pr(m, 2) = {P (Y1, . . . , Ym) ∈ P (m, 2) | deg(P ) ≤ r}.

Definition 2.1. The r-th order Reed-Muller code of length 2m over F2 is defined as

Cr(m, 2) = {(P (i1, . . . , im))0≤i1,...,im≤1 ∈ (F2)
2m| P ∈ Pr(m, 2)}.

Cr(m, 2) are subspaces of (F2)
2m and we have the following ascending sequence :

{0} ⊂ C0(m, 2) ⊂ C1(m, 2) ⊂ · · · ⊂ Cm(m, 2) = (F2)
2m .

Theorem 2.2 (Berman). For every integer 0 ≤ ` ≤ m, we haveM` = Cm−`(m, 2).
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The weight of the vector v = (v1, . . . , v2m) ∈ (F2)
2m is ωt(v) = card({ i | vi 6= 0}),

where card denotes the number of elements in the set.

Theorem 2.3. The Reed-Muller code M` has minimum weight dmin(M`) = 2`

where 0 ≤ ` ≤ m.

Remark 2.1. M` is a t-error correcting code where t is the greatest integer such that
2t+ 1 ≤ 2`.

3. MAIN RESULTS

In this section will be presented the main results and a decoding algorithm. Let
us fix an integer ` such that 0 ≤ ` ≤ m and by taking account of (2.2), consider

G` =

{
(x1 − 1)i1 · · · (xm − 1)im ∈ A | 0 ≤ i1, . . . , im ≤ 1,

m∑
k=1

ik = `

}
.

Proposition 3.1. G` is a basis for the idealM`.

Proof. Since M` is an ideal and G` ⊂ M`, then for all g ∈ G`, we get Ag ⊆ M`.
Therefore,

∑
g∈G`
Ag ⊆ M`. Conversely, since J` is a linear basis forM` over F2,

then every element of M` is a linear combination of elements in J`. Moreover,
every element of J` can be written as a product ag with a ∈ A and g ∈ G`. Thus,
we haveM` ⊆

∑
g∈G`
Ag. �

Definition 3.1. For each integer ` such that 0 ≤ ` ≤ m, we denote G` the subset of
F2[X1, . . . , Xm] defined by

G` =

{
(X1 − 1)i1 · · · (Xm − 1)im | 0 ≤ i1, . . . , im ≤ 1,

m∑
k=1

ik = `

}
and 〈G`〉 the ideal of F2[X1, . . . , Xm] generated by G`.

We denote E = {1, . . . ,m} and for every subset I ⊆ E, we set

XI =
∏
i∈I

Xi, with X∅ = 1,

gI =
∏
i∈I

(Xi − 1) with g∅ = 1.

In the same manner, we define in A,
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xI =
∏
i∈I

xi with x∅ = 1 and xi = Xi+ < H > .

Remark 3.1. We can write

G` = {gI | I ∈ P(E), card(I) = `} where P(E) = {I | I ⊆ E}

It follows that card(G`) =

(
m

`

)
. Moreover, by expanding all factors in gI , we get

(3.1) gI =
∑
L∈P(I)

XL = XI +
∑

L∈P(I)\{I}

XL

Furthermore, with respect to grlex order >grlex, we have in(gI) = XI . So, the initial
ideal of G` is given by in(G`) = 〈in(g) | g ∈ G`〉 = 〈XI | I ∈ P(E), card(I) = `〉.

We recall that 〈G`〉 + 〈H〉 is the ideal of F2[X1, . . . , Xm] generated by G` ∪H, i.e.
〈G`〉+ 〈H〉 = 〈G` ∪H〉.

We give a new proof for the following proposition.

Proposition 3.2. We consider grlex order. For each integer ` such that 0 ≤ ` ≤ m,

(1) G` is a reduced Groebner basis for the ideal 〈G`〉,
(2) H = {X2

1 − 1, . . . , X2
m − 1} is a reduced Groebner basis for 〈H〉,

(3) G` ∪H is a reduced Groebner basis for the ideal 〈G`〉+ 〈H〉.

Proof. (1) Let I, J ⊆ E be subsets with card(I) = card(J) = `. So

S(gI , gJ) =
Xγ

in(gI)
gI −

Xγ

in(gJ)
gJ

=
Xγ

XI

gI −
Xγ

XJ

gJ

= (X(I∪J)\I)gI − (X(I∪J)\J)gJ

= (XJ\I)gI − (XI\J)gJ

= (
∏
i∈J\I

[(Xi − 1) + 1])gI − (
∏
i∈I\J

[(Xi − 1) + 1])gJ

= (
∑

K∈P(J\I)

gK)gI − (
∑

K∈P(I\J)

gK)gJ

=
∑

K∈P(J\I)

gKgI −
∑

K∈P(I\J)

gKgJ ,
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where Xγ = lcm(lm(gI), lm(gJ)) = lcm(XI , XJ) = XI∪J . It is obvious that
remG`(gKgI) = 0 for all K ∈ P(J \ I) and similarly remG`(gKgJ) = 0 for all
K ∈ P(I\J). Furthermore, by the Remark 1.1, it follows that remG`(S(gI , gJ)) = 0.
Then, by the Theorem 1.3, we conclude the expected result.

Using similar way as in (1), one can prove (2) and (3). �

Proposition 3.3. For every integer ` such that 0 ≤ ` ≤ m, we have

M` = (< G` > + < H >)/ < H >

Proof. The morphism

ψ : 〈G`〉+ 〈H〉 −→M`

g + h 7−→ g+ < H >

is surjective by Proposition 3.1 and the fact that G` = {gI+ < H >, gI ∈ G`}.
Moreover, it is clear that ker(ψ) = 〈H〉. �

Corollary 3.1. For every integer ` such that 0 ≤ ` ≤ m, we have

M` '< G` > /(< G` > ∩ < H >)

Proof. From [2] p.491 we have (〈G`〉 + 〈H〉)/〈H〉 ' 〈G`〉/(〈G`〉 ∩ 〈H〉) and the
expected result follows from Proposition 3.3. �

Remark 3.2. Generally, for 0 ≤ ` ≤ m, 〈G`〉 ∩ 〈H〉 6= {0}.

In the particular case where ` = 1, we have G1 = {X1 − 1, . . . , Xm − 1} and
H = {X2

1 − 1, . . . , X2
m − 1} = {(X1 − 1)2, . . . , (Xm − 1)2}. Thus, 〈H〉 ⊆ 〈G1〉 and

M' 〈G1〉/〈H〉.
For ` > 1, as example consider the case m = 3 and ` = 2. In the polynomial ring

F2[X, Y, Z], we have

G2 = {(X − 1)i(Y − 1)j(Z − 1)k | 0 ≤ i, j, k ≤ 1, i+ j + k = 2}

= {(X − 1)(Y − 1), (X − 1)(Z − 1), (Y − 1)(Z − 1)}

and H = {X2 − 1, Y 2 − 1, Z2 − 1}. The polynomial of the ideal 〈H〉, f(X, Y, Z) =

(Y + 1)(X2 − 1) + (X − 1)(Y 2 − 1) can be written as f(X, Y, Z) = (Y + 1)(X −
1)(X + 1) + (X − 1)(Y − 1)(Y + 1) = (X + Y )(X − 1)(Y − 1) which belongs to the
ideal 〈G2〉. Then 〈G2〉 ∩ 〈H〉 6= {0}.
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From now on, if c(x) ∈M`, by Proposition 3.1, we can write

c(x) =
∑

i=(i1,...,im)∈{0,1}m
|i|=`

ci1,...,im(x1 − 1)i1 . . . (xm − 1)im ,

and we always consider the corresponding standard representative

c(X) =
∑

i=(i1,...,im)∈{0,1}m
|i|=`

ci1,...,im(X1 − 1)i1 . . . (Xm − 1)im ∈< G` > .

It is clear that c(x) = c(X) + 〈H〉.
For the remainder of the section, we always consider the graded lexicographic

order >grlex such that X1 >grlex X2 >grlex · · · >grlex Xm.

Remark 3.3. If a(x) = b(x) in A, then a(X)− b(X) ∈ 〈H〉. Therefore remH(a(X)−
b(X)) = 0. So remH(a(X)) = remH(b(X)). Since a(X) and b(X) are standard
representatives of a(x) and b(x), then remH(a(X)) = a(X) and remH(b(X)) = b(X).
It follows that a(X) = b(X) in F2[X1, . . . , Xm].

Definition 3.2. Let ` ∈ N with 1 ≤ ` ≤ m. For every subset I ⊆ E = {1, . . . ,m}, we
denote by σ(I) the subset of P(I) = {L | L ⊆ I} such that

remG`(XI) =
∑
L∈σ(I)

XL

Definition 3.3. We define the operator ∆ as A∆B = (A \ B) ∪ (B \ A), where
A,B ⊆ E. Generally, we have A∆B∆C = (A∆B) ∆C.

Proposition 3.4. Let m, ` ∈ N with 1 ≤ ` ≤ m. For every subsets I, J ⊆ E, I 6= J ,
we have remG`(XI +XJ) =

∑
L∈σ(I) ∆ σ(J)

XL.

Proof. By the Remark 1.1, we get

remG`(XI +XJ) = remG`(XI) + remG`(XJ) =
∑
L∈σ(I)

XL +
∑
L∈σ(J)

XL

=
∑

L∈σ(I)\σ(J)

XL +
∑

L∈σ(J)\σ(I)

XL + 2
∑

L∈σ(I)∩σ(J)

XL

=
∑

L∈σ(I) ∆σ(J)

XL.

�
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Proposition 3.5. Let I ⊆ E = {1, . . . ,m}, ` ∈ N with 1 ≤ ` ≤ m, and t the greatest
integer such that 2t+ 1 ≤ 2l. Then,

(1) if card(I) < ` then σ(I) = {I};
(2) if card(I) = ` then σ(I) = P(I) \ {I}.

Proof. (1)- Suppose that card(I) < `, then XI contains less than ` factors Xi, and
no initial term in(gJ) of every gJ ∈ G` divides XI . Therefore, remG`(XI) = XI and
hence σ(I) = {I}.
(2)- Now assume that card(I) = `. Then, gI ∈ G` and we can write XI = gI +∑

L∈P(I)\{I}XL by equality (3.1), where card(L) < ` for every L ∈ P(I) \ {I}. It
follows that, remG`(XI) =

∑
L∈P(I)\{I}XL and so σ(I) = P(I) \ {I}. �

Corollary 3.2. For each I ⊆ E such that card(I) = ` ≥ 1, we have ωt(remG`(XI)) >

t where t is the greatest integer such that 2t+ 1 < 2`.

Proof. Let I be a subset of E = {1, . . . ,m}. By Proposition 3.5 (2), if card(I) = `,
then ωt(remG`(XI)) = card(σ(I)) = card(P(I) \ {I}) = 2card(I) − 1 = 2` − 1.
As t is the greatest integer such that 2t + 1 ≤ 2`, we have 2t ≤ 2` − 1. Thus,
ωt(remG`(XI)) > t. �

Theorem 3.1. Let m, ` ∈ N with 2 ≤ ` ≤ m. Let c(x) ∈ M` be a transmitted code-
word and v(x) ∈ A the received word, i.e. v(x) = c(x)+e(x) with ωt(e(x)) ≤ t where
t is the greatest integer such that 2t + 1 ≤ 2`. Then, remG`(v(X)) = remG`(e(X))

and

(1)- if remG`(v(X)) = 0 then c(x) = v(x);
(2)- if remG`(v(X)) =

∑
L∈σ(I1) ∆···∆σ(Ik)

XL for some k ≤ t and pairwise distinct

subsets I1, . . . , Ik ⊆ E, then e(x) = xI1 + · · · + xIk which means that v(x)

contains k errors located at xI1 , . . . , xIk .

Proof. Let c(x) ∈ M` and c(X) ∈ 〈G`〉 be its standard representative. Since G`

is a Groebner basis for 〈G`〉, then remG`(c(X)) = 0 and therefore remG`(v(X)) =

remG`(e(X)). Moreover,
(1)- if remG`(v(X)) = 0, then remG`(e(X)) = 0 i.e. e(x) ∈ M`. In addition, by
assumption, ωt(e(x)) ≤ t < 2` = dmin(M`), then e(x) = 0 and v(x) = c(x).
(2)- if remG`(v(X)) 6= 0 with remG`(v(X)) =

∑
L∈σ(I1)∆···∆σ(Ik)

XL for some integer
k ≤ t and pairwise distinct subsets I1, . . . , Ik ⊆ E, then by Proposition 3.4, we have
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remG`(v(X)) = remG`(XI1 + · · · + XIk). Setting c′(X) = v(X) − (XI1 + · · · + XIk)

implies that remG`(c
′(X)) = 0. Then, c′(X) ∈ 〈G`〉 and hence c′(x) ∈ M`. As a

result, we can write v(x) = c′(x) + e′(x) with e′(x) = xI1 + · · · + xIk . However, by
assupmtion v(x) = c(x)+e(x) then, e′(x)−e(x) = c(x)−c′(x) ∈M`. Furthermore,
ωt(e′(x) − e(x)) ≤ ωt(e′(x)) + ωt(e(x)) ≤ k + t ≤ 2t < 2` = dmin(M`). It follows
that, e′(x) = e(x) and c′(x) = c(x). Thus, v(x) = c(x) + e(x) with e(x) = xI1 + · · ·+
xIk . �

Theorem 3.2. Let m, ` ∈ N with 2 ≤ ` ≤ m. Let c(x) ∈ M` be a transmitted
codeword and v(x) ∈ A the received word, i.e. v(x) = c(x) + e(x) with ωt(e(x)) ≤ t

where t is the greatest integer such that 2t + 1 ≤ 2`. Then, ωt(remG`(v(X))) ≤ t if,
and only if, remG`(v(X)) = e(X) and e(x) = 0 or e(x) = xI1 + · · · + xIk for some
k ≤ t and pairwise distinct subsets I1, . . . , Ik ⊆ E such that card(Ii) < ` for all
i = 1, . . . , k.

Proof. Assume that ωt(remG`(v(X))) ≤ t. Denote r(X) = remG`(v(X)) the remain-
der on the division of v(X) by G`. Then, we can write v(X) as v(X) = c′(X)+r(X)

with c′(X) ∈ 〈G`〉 and r(X) = 0 or every term in r(X) is divisible by none of
in(g), g ∈ G` and ωt(r(X)) ≤ t. Then, v(x) = c(x) + e(x) = c′(x) + r(x), so
r(x)−e(x) = c(x)−c′(x) ∈M`. In addition, ωt(r(x)−e(x)) ≤ ωt(r(x))+ωt(e(x)) ≤
2t < 2` = dmin(M`). It follows that, r(x) = e(x) and c′(x) = c(x). Thus,
v(x) = c(x) + e(x) with e(x) = r(x). In other terms, remG`(v(X)) = r(X) = e(X).
And if r(X) = 0 then e(X) = 0. If r(X) 6= 0, there are k ∈ N and pairwise dis-
tinct subsets I1, . . . , Ik ⊆ E such that r(X) = XI1 + · · · + XIk . The assumption
ωt(r(X)) ≤ t implies that k ≤ t. Moreover, since no term in r(X) is divisible
by any of in(g), g ∈ G`, it follows that card(Ii) < ` for all i = 1, . . . , k. Hence,
e(x) = xI1 + · · ·+ xIk for some k ≤ t with card(Ii) < ` for all i = 1, . . . , k.

Conversely, suppose that remG`(v(X)) = e(X). Hence, if e(x) = 0 then we
have remG`(v(X)) = 0 and so, ωt(remG`(v(X))) = 0 ≤ t. On the other hand, if
e(X) = XI1 + · · ·+XIk for some k ≤ t and pairwise distinct subsets I1, . . . , Ik ⊆ E,
then ωt(remG`(v(X))) = k ≤ t. �

By taking into account the above discussion, we have the following result

Theorem 3.3. Let m, ` ∈ N with 2 ≤ ` ≤ m. Let v(x) ∈ A be a received word
containing at most t errors, where t is the greatest integer such that 2t + 1 ≤ 2`.



814 I.P. Ramahazosoa, H. Andriatahiny, and J.J.F. Randriamiarampanahy

Then, v(x) can be decoded by the following algorithm:
Input:

- v
- G` a Groebner basis for 〈G`〉
- Ω = {S ⊆ P({1, . . . ,m}) | card(I) ≥ ` for all I ∈ S}

Output: a codeword c(x) ∈M `

Begin

- Compute remG`(v(X)).
- If ωt(remG`(v(X))) ≤ t, then c(X) = v(X)− remG`(v(X)).

Else find the element S ∈ Ω such that

ωt(remG`(v(X)−
∑
I∈S

XI)) ≤ t− card(S)

and we obtain

c(X) = v(X)−
∑
I∈S

XI − remG`(v(X)−
∑
I∈S

XI).

End

Corollary 3.3. Consider the Reed-Muller codeM2. Let v ∈ (F2)
2m be a received vec-

tor containing at most one error. We denote v(x) the polynomial in A corresponding
to v. We have v(x) = c(x) + e(x) with c(x) ∈M2 and ωt(e) ≤ 1.

- If remG2(v(X)) = 0 then c(x) = v(x).
- If remG2(v(X)) =

∑
i∈I Xi or remG2(v(X)) =

∑
i∈I Xi + 1 with I ⊆ E, then

e(x) =
∏

i∈I xi.

In the practice, by using standard representatives, we can indifferently use the
variable x for X.

Example 2. Decoding Reed-Muller Code C1(3, 2) = M2, a 1-error correcting code.
Consider g1 = xy + x + y + 1, g2 = xz + x + z + 1, g3 = yz + y + z + 1 ∈ F2[x, y, z]

and set G2 = {g1, g2, g3}. Then, G2 is a Groebner basis for the ideal 〈G2〉. Let
v = (1, 0, 0, 0, 0, 1, 0, 1) be a received word, so v(x) = xyz + y + 1 by correspondance
(2.1). Using the grlex order we have remG2(v(x)) = x+z+1. Then, e(x) = xz and we
get the codeword c = (1, 0, 0, 0, 0, 1, 0, 1) + (0, 0, 1, 0, 0, 0, 0, 0) = (1, 0, 1, 0, 0, 1, 0, 1) ∈
M2 = C1(3, 2).
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Example 3. Decoding Reed-Muller Code C1(4, 2) =M3, which is a 3-error correcting
code. In F2[x1, x2, x3, x4] consider G3 = {g1, g2, g3, g4} with

g1 = x1x2x3 + x1x2 + x1x3 + x1 + x2x3 + x2 + x3 + 1

g2 = x1x2x4 + x1x2 + x1x4 + x1 + x2x4 + x2 + x4 + 1

g3 = x1x3x4 + x1x3 + x1x4 + x1 + x3x4 + x3 + x4 + 1

g4 = x2x3x4 + x2x3 + x2x4 + x2 + x3x4 + x3 + x4 + 1.
Then, G3 is a Groebner basis for the ideal < G3 >. Let v0 be a received word,
v0 = (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0) ∈ (F2)

24. The code C1(4, 2) = M3 has
as minimum distance d = 23 = 8, it is a 3-error correcting code. By correspondance
(2.1), we can write v0(x) = x1x2x3+x1x2x4+x1x3x4+x1+x2x3x4+x2+x3+x4 ∈ A.
Then, v0(x) = g1(x) + g2(x) + g3(x) + g4(x). Consequently, remG3(v0(x)) = 0 and
hence c = v0 ∈ C1(4, 2). Let us reconsider now another the received word v1 =

(0, 1, 1, 0, 1,1, 0,0, 1, 0, 0,0, 0, 1, 1, 0) obtained from v0 by adding errors on its sixth,
eigth and twelth entries. It means that v1(x) = x1x2x3 + x1x2x4 + x1x3x4 + x1x3 +

x2x3x4 +x3 +x4, then we have v1(x) = g1(x)+g2(x)+g3(x)+g4(x)+x1x3 +x1 +x2.
As a result remG3(v1(x)) = x1x3 + x1 + x2. As ωt(remG3(v1(x))) = 3 ≤ t = 3

then c(x) = v1(x) + remG3(v1(x)) = x1x2x3 + x1x2x4 + x1x3x4 + x1 + x2x3x4 +

x2 + x3 + x4. In other terms, after decoding of the received word v1, we get the word
c = (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0) = v0. All of three errors have been corrected.

Finally, let introduce this time only one error into v0 on its second entry and denote
v2 the corresponding received word,

v2 = (0,0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0).

Equivalently, v2(x) = x1x2x4 + x1x3x4 + x1 + x2x3x4 + x2 + x3 + x4. We can write,
v2(x) = g2(x) + g3(x) + g4(x) + x1x2 + x1x3 + x1 + x2x3 + x2 + x3 + 1. As a result
remG3(v2(x)) = x1x2+x1x3+x1+x2x3+x2+x3+1. Since ωt(remG3(v2(x))) = 7 > 3 =

t, then it suffices to choose a set S ∈ Ω which saisfies the conditions of the algorithm.
For S = {I} with I = {1, 2, 3}, we have xI = x1x2x3. We can write xI = g1(x) +

x1x2 +x1x3 +x1 +x2x3 +x2 +x3 +1 and so v2(x) = g2(x)+g3(x)+g4(x)+g1(x)+xI .
Hence, v2(x) − xI ∈ 〈G3〉 and remG3(v2(x) − xI) = 0. As a result ωt(remG3(v2(x) −
xI)) = 0 ≤ t − card(s) = 2. Thus, the decoding of v2(x) gives c(x) = (v2(x) − xI) +

remG3(v2(x)− xI) = x1x2x3 + x1x2x4 + x1x3x4 + x1 + x2x3x4 + x2 + x3 + x4. Hence,
we have found the initial codeword c = (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0) = v0.
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