Advances in Mathematics: Scientific Journal 11 (2022), no.9, 803-816

EBV NUET A ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.11.9.5

DECODING BINARY REED-MULLER CODES VIA GROEBNER BASES
Irrish Parker Ramahazosoa!, Harinaivo Andriatahiny, and J.J. Ferdinand Randriamiarampanahy

ABSTRACT. The binary Reed-Muller codes can be characterized as the radical pow-
ers of a modular group algebra. In this paper, we deal with the Groebner bases to
decode these codes.

INTRODUCTION

Several authors have studied the Reed-Muller codes (see e.g. [4], [5], [[71, [81).
S.D. Berman [3] showed that the binary Reed-Muller codes can be described as the
radical powers of the group algebra F,[G] where I, is the field of two elements
and G is the additive group of the field Fyn of 2™ elements with m > 1 an integer.
FF[(] is isomorphic to the quotient ring A = Fo[ X1, ..., X,,]/(X?—1,..., X2 —1).
If M is the radical of A, then the Jennings basis of M* is a linear basis of M* over
F,. Moreover, it is well-known that the Groebner basis is an efficient algebraic tool
to solve a large range of problems (see e.g. [1]l, [6], [9]]). In this paper, using the
fact that from the Jennings basis of M*, one can construct a basis for the ideal M*
and dealing with Groebner bases properties, we give an algorithm for decoding
the binary Reed-Muller codes.
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1. GROEBNER BASIS

In this section, we introduce some background about Groebner bases (see [1]], [6])
and Reed-Muller codes which are useful to our results.

Definition 1.1. Let k be a field and N the set of non negative integers. A monomial in
the polynomial ring k[X, ..., X,,] is a product of the form X* = X" ... X% with

a=(a,...,0,) € N Let | o |= oq + - - - + v, be the total degree of the monomial
X

A monomial order in k[X,...,X,,] is a relation denoted > on N satisfying for
o, e N™:

(i) > is a linear order on N™,
(i) ifa > fand vy € N, then a + v > [ + 7,
(iii) > is a well-ordering on N,
We will write o > 3 in N™ if and only if X > X? in k[X1,..., X,).

Example 1.
- Lexicographic order >.,:
a > .. B 1f, and only if, the left-most non zero entry of a — 3 is positive.
- Graded lexicographic order > gc;:

a >griee 01 and only i | o |>[ 5 [ or [ o [=| f | and o > e, f.

Definition 1.2. A polynomial f € k[X;,...,X,,] is a linear combination of mono-
mials with coefficients in k : f =) a, X"
Let > be a monomial order on k[ X, ..., X,

The multidegree of f is defined as multideg(f) = maxs (a]a, # 0). We call
- leading coefficient of f: lc(f) = umultides()
- leading monomial of f: lm(f) = X* where o = multideg( f).
- initial term of f: in(f) = a, X* where a = multideg( f).

Theorem 1.1. Let > be a monomial order and F = (fi, ..., f;) be an ordered s-tuple
of polynomials in k[X, ..., X,,]. Then, every polynomial f € k[X,,...,X,,] can be
written as f = ayf1 + -+ - + asfs + r with a;,r € k[Xy,..., X,,] where r = 0 or r is
a linear combination of monomials with coefficients in k none of which is divisible by
any of in(f1), ..., in(fs). The polynomial r is called the remainder on division of f by
F. Furthermore, if a;f; # 0 then multideg(f) > multideg(a; f;).
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Remark 1.1. The operation of computing the remainders on division by
F = (f1,...,fs) is linear over k. In fact, if r; (i = 1,2) is the remainder on divi-
sion of g; by F, then for any c;, ¢y € k, the remainder on division of ¢, g1 + ¢2go by F
IS ciry + corg .
Definition 1.3. Fix a monomial order and let I C k[X3,...,X,,] be an ideal, I #
{0}. We call initial ideal of I the ideal of k[ X, ...,

in(f), f el ie in(I)= (in(f)|f € I).
A finite set G = {g1, . .., gs} is a Groebner basis for I if the initial terms in(g), . . .,

in(gs) generate in(I), i.e. in(l) = (in(g1), . ..,in(gs))-
Theorem 1.2. Fix a monomial order. Every ideal I in k[X;,...,X,,], I # {0} has a
Groebner basis. Furthermore, any Groebner basis for an ideal I is a basis for I.

m| generated by all initial terms

Proof. cf [6] p.75 O

Proposition 1.1. Let G = {g, . .., g5} be a Groebner basis for an ideal I C k[X;, ...,
X For f € k[Xy,...,X,,] there is a unique remainder r on division of f by G with
the following properties:

(1) no term of r is divisible by any of in(g,), . . ., in(gs),

(2) thereis g € I such that f =g+ .
The remainder r is unique up to how the elements of G are listed in the division by
G. We will write r = remg/( f) or simply rem(f) if confusion does not happen.

Corollary 1.1. Let G = {¢1,...,9s} be a Groebner basis for an ideal I C k[X, ...,
X)) andlet f € k[X,,...,X,,). Then, f €1 <= remg(f)=0.

Definition 1.4. Let X, X? be two monomials with o = (ay,...,q,,) and B =
(B1,...,Bm). The least common multiple of X* and X” is the monomial X" =
lem (X%, X?) where v = (71, ..., Ym) With v; = max(ay, ;) fori=1,...,m.
For f,g € k[Xy, ..., X,,], we call the S-polynomial of f and g the polynomial
X7 X7
ST R
where v = lem(multideg( f), multideg(g)).

)Y

Theorem 1.3. Let I be a polynomial ideal and G = {g1,- - , g5} a basis for I. Then,
G is a Groebner basis for I if and only if for all pairs i # j, the remainder on division
of S(gi,g;) by G is zero (G listed in some order).
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Definition 1.5. A Groebner basis G for a polynomial ideal I is said reduced if
(1) le(g) =1 forall g € G.
(2) For all g € G no monomial of g lies in (in(f) | f € G\ {g})-

Proposition 1.2. Fix a monomial order. Every polynomial ideal of the ring k[ X, . . .,
X,,] has a unique reduced Groebner basis.

2. REED-MULLER CODES

In this section, we recall some properties of the Reed-Muller codes of length 2™
over F,. Let us consider the set in the polynomial ring Fy[ X1, ..., X,,]

H={X?-1,...,X% -1}

m

and the quotient ring A = Fy[X;, ..., X,,]/(H) where (H) is the ideal generated
by H. We will denote respectively by z, ..., x,, the equivalence classes mod (H)
of the variables X1, ..., X,, i.e.

v, =X;+(H) for i=1,...,m,

Then, every element of .4 can be written as

1 1
a(;p) = E CLZ'ZL'Z — E Ce g Qi imlel R [E:;L”
i€{0,1}m i1=0  im=0
with i = (i1,...,4y) € {0,1}™, 2* = 27" - - 2¥» and a; = a;,..._ 4, € Fo.

We always consider the corresponding standard representative

Z CLZXZ Z Z Qi ..., imXil s X;;Ln S FQ[XI, NP ,Xm]

i€{0,1}m i1=0  im=0
with X? = X' ... X'=_ It is clear that a(z) = a(X) + (H).
Let us fix an order on the set of monomials {z’ | i € {0,1}™}. Then we have the
following isomorphism:

6 A — (Fy)*"

(2.1 a(r) = > a;ix’ — a = (43)i=(i,....im)e{0,1}m

i=(i1,0-vim) €40, 1}
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A linear code of length 2™ over F, is a linear subspace of (Fy)?". By the iso-
morphism ¢, 4 can be considered as the ambient space for the codes and the

codeword a = (a;)i=(i,,...i,.)efo,1y» can be identified with the polynomial a(z) =

Ly

.....

We have the following well-known result.

Theorem 2.1. The ring A is a local ring and its maximal ideal is the radical of A
denoted M = rad(.A). Moreover, for each integer 0 < ¢ < m, the set

k=1

is a linear basis for the radical power M! over F,. It is known as the Jennings basis
of M*, and we have the following ascending chain of ideals

{0ycM*cM™tc...cMcCA.

Corollary 2.1. For all integer ¢ with 0 < ¢ < m, we have

ame ) = (1) + (1) o+ ()

From now on, let denote P(m,2) the set of all polynomials in reduced form in m
variables Y, ...,Y,, over [F, i.e.

1 1
P(m,?) = {P()/l, ... 7Ym> = Z s Z Uiy i )/fl .. YT)Z{" Uiy ..o € ]FQ} .
11=0 tm =0

Let r be an integer such that 0 < r < m and denote P,(m,2) the vector subspace
of P(m,2) generated by the monomials of total degree at most equal to 7:

P.(m,2) ={P(Y1,...,Y,) € P(m,2) | deg(P) <r}.
Definition 2.1. The r-th order Reed-Muller code of length 2™ over Fy is defined as
Cr(m,2) = {(P(i1, . im))o<ir, im<1 € (F2)*"| P € P.(m,2)}.
C,(m,2) are subspaces of (IF,)?" and we have the following ascending sequence :
{0} € Co(m,2) C Ci(m,2) C -+ C Cp(m,2) = (F2)*".

Theorem 2.2 (Berman). For every integer 0 < { < m, we have M* = C,,,_s(m, 2).
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The weight of the vector v = (vy,...,vem) € (F2)*" is wt(v) = card({ i | v; # 0}),

where card denotes the number of elements in the set.

Theorem 2.3. The Reed-Muller code M has minimum weight d,,;,(M*) = 2¢
where 0 </ < m.

Remark 2.1. M* is a t-error correcting code where t is the greatest integer such that
2t +1 < 2

3. MAIN RESULTS

In this section will be presented the main results and a decoding algorithm. Let
us fix an integer ¢ such that 0 < ¢ < m and by taking account of (2.2), consider

g€:{<$1—1>11($m_1)lm€A’0§Z1,,ngl,ZZkzg}
k=1

Proposition 3.1. G, is a basis for the ideal M.

Proof. Since M* is an ideal and G, C M, then for all g € G,, we get Ag C M".

Therefore, Egegl Ag C M". Conversely, since 7, is a linear basis for M’ over F,,

then every element of M’ is a linear combination of elements in J,. Moreover,

every element of 7, can be written as a product ag with a € A and g € G,. Thus,
¢

we have M" C 3° - Ag. O

Definition 3.1. For each integer ¢ such that 0 < ¢ < m, we denote G, the subset of
Fy[Xq,. .., X,,] defined by

Gy = {(X1 — 1) (X, — 1)

0 <1, .. im <1, Zz’kzﬁ}
k=1

and (Gy) the ideal of 5[ X4, . .., X,,] generated by G,.
We denote E = {1,...,m} and for every subset I C E, we set
X = []x,  with Xp=1,
el
g = [[Xi—1) with gy=1.
el

In the same manner, we define in A,
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JT[:HI'Z‘ with ZE@:]_ and v, =X+ < H>.

el
Remark 3.1. We can write

Go={g9r| I € P(E), card(/) = ¢} where P(E)={I|ICE}

It follows that card(Gy) = (TZ) Moreover, by expanding all factors in g;, we get
(31) gr = Z XLIX]—|— Z XL
LeP(I) LeP(D\{I}

Furthermore, with respect to grlex order > ..., we have in(g;) = X;. So, the initial
ideal of G is given by in(Gy) = (in(g) | g € G¢) = (X1 | I € P(E), card(I) = {).

We recall that (G,) + (H) is the ideal of F,[ X3, ..., X,,] generated by G, U H, i.e.
(Ge) + (H) = (G, U H).
We give a new proof for the following proposition.

Proposition 3.2. We consider grlex order. For each integer ¢ such that 0 < { < m,

(1) Gy is a reduced Groebner basis for the ideal (G),
(2) H={X?-1,...,X2 — 1} is a reduced Groebner basis for (H),
(3) G, U H is a reduced Groebner basis for the ideal (G) + (H).

Proof. (1) Let I, J C E be subsets with card(/) = card(J) = £. So

g X7 X7
(g[7gj) - in(g[)gl - in(gj>gJ
X7 X7
= EQ} - X—JQJ

= (Xagumnn)gr — (Xaumng)gs
= (Xnn)gr — (Xns)gs
= (JTIX =D+ 1gr = (JTIXi = 1)+ 1])gs

ieJ\I ieI\J
= Z 9x)9r — ( Z 9K)9s
KeP(J\I) KeP(I\J)

= Z IKII — Z 9K 97,

KeP(J\I) KeP(I\J)
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where X7 = lem(Im(gr),Im(gs)) = lem(X;, X;) = Xyus. It is obvious that
remg,(gxgr) = 0 for all K € P(J \ I) and similarly remg,(9xgs) = 0 for all
K € P(I\J). Furthermore, by the Remark|[1.1] it follows that reme, (S(g1, g.)) = 0.
Then, by the Theorem (1.3 we conclude the expected result.

Using similar way as in (1), one can prove (2) and (3). O

Proposition 3.3. For every integer ¢ such that 0 < ¢ < m, we have
M =(<Gy>+<H>)/<H>

Proof. The morphism
¥ (Ge) + (H) — M
g+h — g+ < H>
is surjective by Proposition and the fact that G, = {g/+ < H >, gr € G,}.

Moreover, it is clear that ker(y) = (H). O

Corollary 3.1. For every integer { such that 0 < ¢ < m, we have
M <G> (< Gy >N < H>)

Proof. From [2]] p.491 we have ((G,) + (H))/(H) ~ (Gy)/({(G¢) N (H)) and the
expected result follows from Proposition O

Remark 3.2. Generally, for 0 < ¢ <m, (Gy) N (H) # {0}.

In the particular case where ¢ = 1, we have G; = {X; — 1,...,X,, — 1} and
H={X{-1,...,X2 -1} = {(X; — 1)?,...,(X,, — 1)*}. Thus, (H) C (G,) and
M~ (Gy)/(H).

For ¢ > 1, as example consider the case m = 3 and ¢ = 2. In the polynomial ring
Fy[X,Y, Z], we have

Gy = {(X =D -1D(Z-1D)"0<i,j,k<1,i+j+k=2}
= {X =D -1),X-1)(Z -1, -1)(Z-1)}
and H = {X? —1,Y? — 1, Z? — 1}. The polynomial of the ideal (H), f(X,Y, Z) =
(Y +1)(X? — 1)+ (X — 1)(Y? — 1) can be written as f(X,Y,Z) = (Y + 1)(X —
DX+D)+X - -1)(Y+1) =(X+Y)(X —1)(Y — 1) which belongs to the
ideal (G2). Then (G2) N (H) # {0}.
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From now on, if ¢(x) € M, by Proposition[3.1}, we can write
C(.I') = Z Cit,..oim (.I'l — 1)“ Ce (.Z'm — 1)im,

i=(i1,..im)€{0,1}™
|i[=¢

and we always consider the corresponding standard representative

c(X) = Z Ciy i (X1 — 1)2'1 e (X — 1)“” e< Gy >.

i=(i1,m i) €{0,1}™
Ji|=¢

It is clear that ¢(z) = ¢(X) + (H).
For the remainder of the section, we always consider the graded lexicographic
order >, such that X > 10 Xo >grier -+ >grier Xm-

Remark 3.3. If a(z) = b(z) in A, then a(X) — b(X) € (H). Therefore rempy(a(X) —
b(X)) = 0. So rempy(a(X)) = remy(b(X)). Since a(X) and b(X) are standard
representatives of a(z) and b(x), then rempy(a(X)) = a(X) and remy (b(X)) = b(X).
It follows that a(X) = b(X) in Fa[ X1, ..., X,

Definition 3.2. Let { € N with 1 < ¢ < m. For every subset | C E' = {1,...,m}, we
denote by o(I) the subset of P(I) = {L | L C I} such that

remg, (X)) = Z X

Leo(I)

Definition 3.3. We define the operator A as AAB = (A\ B) U (B \ A), where
A, B C E. Generally, we have AABAC =(AAB)AC.

Proposition 3.4. Let m,¢ € N with 1 < { < m. For every subsets I,J C E, I # J,
we have  reme, (X1 + X7) = X2, ooy aon XLt

Proof. By the Remark|[1.1], we get
remg, (X7 + X) = remg, (X;) + remg, (X;) = Z X7+ Z X

Leo(I) Lea(J)

= Z X, + Z X, +2 Z X,

Leo(I)\o(J) Lea(I)\o(I) Leo(I)no(J)

= > X

Leo(I)Ao(J)
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Proposition 3.5. Let | C E = {1,...,m}, { € Nwith 1 < ¢ < m, and t the greatest
integer such that 2t + 1 < 2'. Then,

(1) ifcard(l) < L then o(I) = {I};

(2) if card(I) = { then o(I) = P(I) \ {I}.

Proof. (1)- Suppose that card(/) < ¢, then X; contains less than ¢ factors X;, and
no initial term in(g;) of every g, € G, divides X;. Therefore, rem¢,(X;) = X; and
hence o(7) = {I}.

(2)- Now assume that card(/) = ¢. Then, g; € G, and we can write X; = g; +

> repanin X1 by equality (3.1), where card(L) < ¢ for every L € P(I) \ {I}. It
follows that, remeg, (XI) = ZLGP(I NI} XL and so U( ) ( ) \ {[} O

Corollary 3.2. For each I C E such that card(l) = ¢ > 1, we have wt(remg, (X7)) >
t where t is the greatest integer such that 2t + 1 < 2°.

Proof. Let I be a subset of E = {1,..., m}. By Proposition [3.5] (2), if card(I) = ¢,
then wt(remg,(X;)) = card(o(I)) = card(P(I) \ {I}) = 20d() — 1 = 2¢ — 1,
As t is the greatest integer such that 2t + 1 < 2¢, we have 2t < 2/ — 1. Thus,
wt(reme, (X7)) > t. O

Theorem 3.1. Let m,¢ € Nwith 2 < { < m. Let c¢(z) € MY be a transmitted code-
word and v(x) € A the received word, i.e. v(z) = c(x)+e(x) with wt(e(z)) < t where
t is the greatest integer such that 2t + 1 < 2% Then, remg,(v(X)) = remg,(e(X))
and

(1)- ifremg,(v(X)) =0 then c(z)=v(z);

(2)- if remg, (v(X)) = Z Xy, for some k < t and pairwise distinct

Leo(I1)A--Ao(Iy)

subsets Iy,...,I;, C E, then e(x) = xp, + --- + x, which means that v(z)

contains k errors located at zy,, ..., xy,.

Proof. Let c(x) € M" and ¢(X) € (G,) be its standard representative. Since G,
is a Groebner basis for (G,), then remg,(¢(X)) = 0 and therefore remg, (v(X)) =
remg, (e(X)). Moreover,

(1)- if remg, (v(X)) = 0, then remg,(e(X)) = 0 i.e. e(x) € M. In addition, by
assumption, wt(e(z)) < t < 2° = dypin (M), then e(x) = 0 and v(x) = c(z).

(2)- if remg, (v(X)) # 0 with reme, (v(X)) = 32, s a0, Xz fOr some integer
k < t and pairwise distinct subsets I3, . .., [, C E, then by Proposition[3.4, we have
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remg, (v(X)) = remg, (X7, + -+ Xy, ). Setting (X)) = v(X) — (X, +--- + X1,)
implies that remg,(¢/(X)) = 0. Then, ¢(X) € (G,) and hence ¢(z) € M. As a

) =d(x) + € (z) with €'(z) = 21, + - - - + z;,. However, by
assupmtion v(x) = c(z)+e(x) then, €'(z) —e(z) = c(z) —(z) € M. Furthermore,
wt(e'(x) — e(x)) < wt(e'(z)) + wt(e(z)) < k+t < 2t < 2° = dppin(MF). It follows
that, ¢/(z) = e(x) and ¢ (z) = ¢(z). Thus, v(z) = c¢(z) +e(z) with e(z) =z, +-- -+
Ty, . O

k

result, we can write v(x

Theorem 3.2. Let m,¢ € N with 2 < ¢ < m. Let c(z) € M’ be a transmitted
codeword and v(z) € A the received word, i.e. v(x) = c(x) + e(z) with wt(e(z)) <t
where t is the greatest integer such that 2t + 1 < 2°. Then, wt(remg,(v(X))) < t if;
and only if, remg,(v(X)) = e(X) and e(z) = 0 or e(x) = xp, + - -+ + x;,_ for some
k < t and pairwise distinct subsets I ,..., I, C E such that card(l;) < ¢ for all
i=1,... k.

Proof. Assume that wt(remg, (v(X))) < t. Denote (X ) = remg,(v(X)) the remain-
der on the division of v(X) by G,. Then, we can write v(X) as v(X) = ¢/(X)+r(X)
with ¢(X) € (G,) and r(X) = 0 or every term in r(X) is divisible by none of
in(g), g € Gy and wit(r(X)) < t. Then, v(z) = c¢(x) + e(x) = d(x) + r(x), so
r(z)—e(x) = c(x)—(x) € M. Inaddition, wt(r(z)—e(z)) < wt(r(z))+wt(e(z)) <
2t < 2 = dpin(MY). Tt follows that, r(z) = e(z) and () = c(x). Thus,
v(x) = ¢(x) + e(x) with e(z) = r(z). In other terms, remg, (v(X)) = 7(X) = e(X).
And if (X) = 0 then e(X) = 0. If r(X) # 0, there are k£ € N and pairwise dis-
tinct subsets I,...,I; C E such that r(X) = X, + --- + X;,. The assumption
wt(r(X)) < t implies that £ < ¢t. Moreover, since no term in r(X) is divisible
by any of in(g), g € Gy, it follows that card(l;) < ¢ for all i = 1,..., k. Hence,
e(x) = xp, + -+ xy, for some k < ¢ with card(l;) < (foralli=1,... k.
Conversely, suppose that remg,(v(X)) = e(X). Hence, if e(z) = 0 then we
have remg,(v(X)) = 0 and so, wt(remg,(v(X))) = 0 < t. On the other hand, if
e(X)= Xy +---+ X, for some k <t and pairwise distinct subsets [;,...,I; C E,
then wt(remg, (v(X))) =k < t. O

By taking into account the above discussion, we have the following result

Theorem 3.3. Let m,¢ € N with 2 < ¢ < m. Let v(x) € A be a received word
containing at most t errors, where t is the greatest integer such that 2t + 1 < 2°.
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Then, v(x) can be decoded by the following algorithm:
Input:
-
- Gy a Groebner basis for (Gy)
-Q={SCP{L,...,m}) | card(l) > L forall I € S}
Output: a codeword c(z) € M*
Begin
- Compute remg, (v(X)).
- If wt(remg, (v(X))) < t, then ¢(X) = v(X) — remg, (v(X)).
Else find the element S € () such that

wt(remg, (v(X) — ZXI)) <t — card(9)

IeS

and we obtain

End

Corollary 3.3. Consider the Reed-Muller code M?. Let v € (F3)?" be a received vec-
tor containing at most one error. We denote v(x) the polynomial in A corresponding
to v. We have v(x) = c(z) + e(z) with c(z) € M? and wt(e) < 1.
- Ifremg, (v(X)) = 0 then c(x) = v(x).
- If remg, (v(X)) = >, ., X; or remg, (v(X)) = >, X; + 1 with I C E, then
e(r) =1L, v

In the practice, by using standard representatives, we can indifferently use the
variable x for X.

Example 2. Decoding Reed-Muller Code C,(3,2) = M?, a 1-error correcting code.
Consider y =zy+z+y+1l,go=xz+x+2+1L, g3=yz+y+2+1€Fz vy, 2]
and set Go = {g1,92,93}. Then, G5 is a Groebner basis for the ideal (G3). Let
v=(1,0,0,0,0,1,0,1) be a received word, so v(z) = xyz + y + 1 by correspondance
(2.1). Using the grlex order we have remg, (v(x)) = x+2z+1. Then, e(z) = zz and we
get the codeword ¢ = (1,0,0,0,0,1,0,1)+(0,0,1,0,0,0,0,0) = (1,0,1,0,0,1,0,1) €
M? = (C4(3,2).
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Example 3. Decoding Reed-Muller Code C1(4,2) = M3, which is a 3-error correcting
code. In Fy[zy, xo, w3, x4] consider G3 = {q1, g2, g3, g4 } With
g1 = X1T2%3 + T1X9 + X123 + T1 + Tox3 + T2 + 23+ 1
go = X1T2T4 + T1X9 + X1T4 + T1 + Toxy + T2+ 14 + 1
g3 = L1234 + 123 + 0104 + 1 + 324 + 23+ 24 + 1
g4 = T2X3%4 + T2X3 + ToZy + T2 + X374 + 3 + 4 + L.
Then, (3 is a Groebner basis for the ideal < G35 >. Let vy be a received word,
v = (0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0) € (F.)*. The code Cy(4,2) = M3 has
as minimum distance d = 2 = 8, it is a 3-error correcting code. By correspondance
, we can write vy(r) = T1T2%3+T1ToTy+T1X3T4+T1 +Tox3xy+To+ 13+ 74 € A
Then, vo(x) = g1(z) + g2(x) + g3(x) + ga(z). Consequently, reme,(vo(z)) = 0 and
hence ¢ = vy € Cy(4,2). Let us reconsider now another the received word v, =
(0,1,1,0,1,1,0,0,1,0,0,0,0,1,1,0) obtained from v, by adding errors on its sixth,
eigth and twelth entries. It means that vy (z) = z12223 + X129y + T12374 + 123 +
To%3x4 + T3+ x4, then we have vy (z) = g1(x) + g2(x) + g3(x) + g4(2) + 2123 + 1 + 22
As a result remg, (v1(x)) = x5 + 1 + T2. As wi(remg,(v1(z))) =3 <t =3
then c(z) = vi(x) + remg, (v1(x)) = x1T2w3 + 12274 + T12374 + 1 + ToxzTy +
x9 + x3 + x4. In other terms, after decoding of the received word vy, we get the word
c=1(0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0) = vg. All of three errors have been corrected.
Finally, let introduce this time only one error into v, on its second entry and denote
vy the corresponding received word,

vy = (0,0,1,0,1,0,0,1,1,0,0,1,0,1,1,0).

Equivalently, vo(z) = 2129%4 + 212324 + 1 + T22324 + X9 + 3 + x4. We can write,
vo(x) = go(x) + g3(x) + ga(x) + x129 + T 123 + X1 + Tox3 + X9 + 23 + 1. As a result
reme, (v2(2)) = T122+21203+1 +2223+T2+x3+1. Since wi(reme, (v2(z))) =7 > 3 =
t, then it suffices to choose a set S € ) which saisfies the conditions of the algorithm.
For S = {I} with I = {1,2,3}, we have x; = x xox3. We can write x; = g1(x) +
T1Ty+ 1123+ 1+ Tox3+ o+ 23+ 1 and so ve(x) = go(x) + g3(z) + ga(x) + g1(x) + ;.
Hence, vy(x) — x; € (G3) and remg, (va(x) — 1) = 0. As a result wt(reme,(ve(x) —
xr)) = 0 <t — card(s) = 2. Thus, the decoding of v,(x) gives c(x) = (vo(x) — 1) +
reme, (V2(x) — x1) = T 1293 + T1XT2xy + T1T3%4 + T + ToX324 + T2 + X3 + x4. Hence,
we have found the initial codeword ¢ = (0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0) = v.
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