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GRAPHIC TOPOLOGY ON FUZZY GRAPHS

Alia M. Alzubaidi1 and Makkia Dammak

ABSTRACT. In this paper, we study the graphic topology TG for a fuzzy graph.
We give some properties of this topology, in particular we prove that TG is
an Alexandroff topology and when two graphs are isomorphic, their graphic
topologies will be homeomorphic. We give some properties matching graphs
and homeomorphic topology spaces. Finally, we investigate the connectedness
of this topology and some relations between the connectedness of the graph
and the topology TG.

1. INTRODUCTION

When we have a topology on a set, we can study some properties of this set
(space) that are preserved according to continuous deformations. For a discrete
sets, Golomb [9] define a topology for the integers. After that, in [13, 18],
the authors define some Alexandroff topologies for connected graphs. Later,
Jafarian Amiri et al. [12] introduced an Alexandroff topology for every locally
finite graphs called graphic topology.

The Alexandroff spaces were given by P. Alexandroff in 1937 in [2] under the
name Diskrete Räume spaces. Recall that an Alexandroff space is a topological
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space (X,T ) satisfying every intersection of elements in T is also in T . As con-
sequence, the topology has a unique minimal basis and some interesting results
and applications [11,15–17,23,24].

Having a topology for a graph can solve many problems in economy domain,
the traffick flow study [3, 13, 18] and many other areas. So, a lot of topologies
were defined on graphs and many properties were studied [1,4,7,10,14,20,22,
25,26].

In this paper, we define the graphic topology on a fuzzy graph. A fuzzy
graph, introduced by Rosenfeld [19] in 1975, is a graph with different degrees
of vagueness associated with its vertices and edges. This type of graphs has a
large application in networks like internet and power grids.

The outline of this paper is as follows. Section 2 is devoted to some prelim-
inaries providing a basic definitions and properties of a topological space and
fuzzy graph.

In section 3, we prove elementary results for the graphic topology and we
give a nontrivial open set and a nontrivial closed set.

In section 4, some advanced properties of graphic topology for fuzzy graph
are given.

Section 5 is added to summarize some relation ship between the connected-
ness of the graphic topology and the connectedness of the graph.

2. PRELIMINARIES

In this section, we recall some basic definitions and properties of a topological
space and fuzzy graphs. For more details, we can see [5,6,8,16,21,24].

Let X a non empty set. A topology for the set X is a collection T of subsets of
X (i.e T ⊂ P(X)) satisfying three conditions:

(i) ∅, X ∈ T ;
(ii) For all A, B ∈ T , we have A ∩B ∈ T ;

(iii) For all {Ai}i∈I a family of elements in T , we have ∪i∈IAi ∈ T .

An element A of the topology T is called an open set. The topology T = P(X)

is called the discrete topology while T = {∅, X} is the trivial topology for X.
In this paper, we will introduce and define a topology on fuzzy graph.

Definition 2.1. Suppose that V is a non empty set and σ : V → [0, 1] and µ :

V × V → [0, 1] are two maps. If the following conditions:
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(i) µ(a, b) ≤ σ(a) ∧ σ(b), where σ(a) ∧ σ(b) = min{σ(a), σ(b)};
(ii) µ(a, b) = µ(b, a), for all a, b ∈ V ;

(iii) µ(a, a) = 0, for all a ∈ V ,

we say that G = (V, σ, µ) is a fuzzy graph and an element a of V is called a vertex
of the graph G.

Example 1. Let G = (V, σ, µ) be a fuzzy graph given in Figure 1 with V =

{a, b, c, d}. The fuzzy subset σ of V is defined as σ(a) = 1, σ(b) = 0.5, σ(c) =

0.4 and σ(d) = 0.25. The fuzzy relation µ is given by µ(a, b) = 0.2, µ(b, c) =

0.3, µ(c, d) = 0.1, µ(d, a) = 0.15 and µ(a, c) = µ(b, d) = 0.

Figure 1. Fuzzy graph in Example 1

A particular type of fuzzy graphs that we will use in section 5 is the fuzzy
bipartite graph.

Definition 2.2. A fuzzy bipartite graph is a fuzzy graph G = (V, σ, µ) such that
V = V1 ∪ V2, V1 ∩ V2 = ∅ and µ(a, b) = 0 for any a ∈ V1 and b ∈ V2.

For G = (V, σ, µ) be a fuzzy graph. We denote

V ? = {x ∈ V ; σ(x) > 0}.

Definition 2.3. A path of length n in a fuzzy graph is a sequence of distinct vertices
x0, x1, · · · , xn−1, xn with µ(xi−1, xi) > 0 for i = 1, · · · , n.

Definition 2.4. Let G = (V, σ, µ) be a fuzzy graph. For any distinct vertices x, y ∈
V ?, we denote d(x, y) the length of the shortest path joining x and y. If there is no
path between then, we set d(x, y) = +∞.

Example 2. In the following fuzzy bipartite graph d(a, c) = 2.
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Figure 2. A fuzzy bipartite graph having two paths joining a and d

Now, for all x ∈ V ? we set

(2.1) Nx = {y ∈ V ?; µ(x, y) > 0},

the set of the neighbors of x (the neighborhood of x in G). We remark that

(2.2) y ∈ Nx if, and only if, x ∈ Ny.

Definition 2.5. A vertex x of G is called an isolated vertex if Nx = ∅.

We remark that any non-isolated vertex is in V ?.

Definition 2.6. The degree of a vertex x in G is the cardinal of its neighborhood
Nx, that is

deg(x) = |Nx|.

We denote ∆ = max{deg(x), x ∈ V } and δ = min{deg(x), x ∈ V }.

In what follows, we suppose that the fuzzy graph G is without isolated ver-
tices. Let

(2.3) SG = {Nx; x ∈ V ?}.

Since V ? =
⋃
x∈V ? Nx, the set SG is a subbasis of a topology TG for V ?, called the

graphic topology of G.

Example 3. For the fuzzy graph in Example 2, we have

SG = {{e}, {d, e}, {a, b}, {a, b, c}},

then the basis is

B = {{e}, {d, e}, {a, b}, {a, b, c}}
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and

TG = {∅, {e}, {d, e}, {a, b}, {a, b, c}, {a, b, e}, {a, b, d, e}, {a, b, c, e}, {a, b, c, d, e}}.

In the next section, we will prove that (V ?, TG) is an Alexandroff space under
some assumptions. So, recall the following definitions.

Definition 2.7. A topological space (X,T ) is called an Alexandroff space if any
intersection of elements in T is an element in T . We say, also, the topology is an
Alexandroff topology.

Definition 2.8. A fuzzy graph G = (V, σ, µ) is called locally finite fuzzy graph if
Nx is a finite set, for all x ∈ V ?.

Definition 2.9. Let (X,T ) be a topological space and A ⊂ X.

(i) We denote Ac the complement of A in X, that is

Ac = {x ∈ X; x /∈ A}.

(ii) A is called a closed set of X if Ac is an open set of X.
(iii) We denote A the smallest closed set of X containing A.

We end this section by the following definition that we will use in section 4.

Definition 2.10. A fuzzy graph G = (V, σ, µ) is called complete if

µ(a, b) = σ(a) ∧ σ(b), for all a, b ∈ V.

Let G = (V, σ, µ) be a fuzzy graph. The complement of G is the fuzzy graph defined
by G = (V, σ, µ), where

µ(a, b) = σ(a) ∧ σ(b)− µ(a, b) = min(σ(a), σ(b))− µ(a, b),

for all a, b ∈ V .

In this paper, by a fuzzy graph we will mean a simple fuzzy graph without
isolated vertex.
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3. ELEMENTARY RESULTS

In the sequel, a fuzzy graph G will be locally finite without isolated vertices.

Theorem 3.1. Suppose that G = (V, σ, µ) is a fuzzy graph. Then, TG is an Alexan-
droff topology on V ?.

Proof. We have to prove that any intersection of open sets is an a open set.
Since this topology TG is defined by a subbasis, it is sufficient to prove that any
intersection of elements in SG is an open set.
Let S ⊂ V ? and consider ∩x∈SNx.

(i) If ∩x∈SNx = ∅, then ∩x∈SNx is an open set.
(ii) If ∩x∈SNx 6= ∅, then let z ∈ ∩x∈SNx. We have z ∈ Nx, for all x ∈ S.

From (2.2), we have x ∈ Nz, for all x ∈ S. So, S ⊆ Nz. But Nz is a finite
set and so S is also finite. Hence, ∩x∈SNx is an open set.

So, (V ?, TG) is an Alexandroff space. �

As consequence of the Theorem 3.1, the topology TG has minimal basis
U = {Ux, x ∈ V ?}, where Ux = ∩A, for all A ∈ TG such that x ∈ A. That is, Ux
is the smallest open set satisfying x ∈ Ux, [2, 5, 8, 16, 23, 24, 26]. We have the
following characterisation of Ux.

Theorem 3.2. Let G = (V, σ, µ) be a fuzzy graph. Then, Ux = ∩y∈NxNy and Ux is
finite, for all x a vertex in V ?.

Proof. Let x ∈ V ?. We have Nx 6= ∅ since x is not isolated. If we consider⋂
y∈Nx

Ny,

we have Ny is an open set and so by Theorem 3.1, it is an open set. For all
y ∈ Nx, x ∈ Ny. So, x ∈ Ny, for all y ∈ Nx. Then, x ∈

⋂
y∈Nx

Ny. Therefore

Ux ⊆
⋂
y∈Nx

Ny.

Conversely, Ux is the minimal element in TG containing x. Since SG is a subbasis
for the topology so, there exists S ⊆ V ? such that

Ux =
⋂
y∈S

Ny.
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We have for all y ∈ S, x ∈ Ny. That is, for all y ∈ S, y ∈ Nx. Then, S ⊆ Nx⋂
y∈Nx

Ny ⊆
⋂
y∈S

Ny.

But
⋂
y∈S Ny = Ux and so the result follows. �

Corollary 3.1. Let G be a fuzzy graph and let x, y ∈ V ? two distinct vertices. Then,
we have

(i) If Nx = {y}, then Ux = Ny.
(ii) If y ∈ Nx, then Ux ⊂ Ny.

(iii) If Uy ⊂ Nx, then Ux ⊂ Ny.

Proof.

(i) If Nx = {y}, then Ux = ∩z∈NxNz = Ny.
(ii) If y ∈ Nx, then Ux = ∩z∈NxNz ⊂ Ny.

(iii) If Uy ⊂ Nx, then y ∈ Uy ⊂ Nx. From (ii), Ux ⊂ Ny.

�

Proposition 3.1. Suppose that G is a fuzzy graph. Then we have: For any x and
y ∈ V ?, y ∈ Ux equivalent to Nx ⊂ Ny. That is, Ux = {y ∈ V ?; Nx ⊂ Ny}.

Proof. From the Theorem 3.2, Ux = ∩z∈NxNz. Then, we have

y ∈ Ux ⇔ y ∈ Nz,∀z ∈ Nx

⇔ ∀z ∈ Nx, y ∈ Nz

⇔ ∀z ∈ Nx, z ∈ Ny

⇔ Nx ⊂ Ny.

�

Corollary 3.2. Suppose that G is a fuzzy graph and x, y ∈ V ?. If y ∈ Ux, then
Nx ⊂ Ny and so deg(x) ≤ deg(y).

Proposition 3.2. Let G be a fuzzy graph and x ∈ V ?. Then, Ux ∩ Nx = ∅ and
Ux ∩ Uy = ∅, for all y ∈ Nx.

Proof. If y ∈ Ux \ {x}, then Nx ⊂ Ny and y 6= x. Since Nx 6= ∅, there exists
z ∈ Nx and so z ∈ Ny. Therefore, d(x, y) = 2 and we get

(3.1) Ux ⊂ {x} ∪ {y ∈ V ?; d(x, y) = 2}.
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Then, Ux ∩ Nx = ∅ and also Nx ⊂ U c
x. If y ∈ Nx, then Uy ⊂ Nx. So, Uy ⊂ U c

x.
Hence Ux ∩ Uy = ∅. �

In the Example 2, d(a, c) = d(a, b) = 2. But Ua = {a, b} and so the two sets in
(3.1) are not equal.

From the Proposition 3.2, we have: Ux ⊂ N c
x, so {x} ⊂ Ux ⊂ N c

x. Then,
{x} ⊂ Ux ⊂ N c

x, and Nx ⊂ U c
x, so Nx ⊂ U c

x.

Proposition 3.3. Let G be a fuzzy graph and x ∈ V ?. Then, y ∈ {x} if and only if
Ny ⊂ Nx. This means, {x} = {y ∈ V ?; Ny ⊂ Nx}.

Proof. y ∈ {x} if and only if, for all open set O containing y, O ∩ {x} 6= ∅. But,
this is equivalent to Uy∩{x} 6= ∅. So, y ∈ {x} if and only if x ∈ Uy and the result
follows by Proposition 3.1. �

Proposition 3.4. LetG = (V, σ, µ) be a fuzzy graph. Then, U = {x ∈ V ?, deg(x) =

∆} is an open set for (V ?, TG).

Proof. Suppose that x ∈ U . We will prove that x ∈ Ux ⊂ U . Let y ∈ Ux, from
corollary 3.2, deg(x) ≤ deg(y) and so deg(y) = ∆. Hence, y ∈ U , that is Ux ⊂ U

and so x ∈ Ux ⊂ U . �

Proposition 3.5. Suppose that G = (V, σ, µ) is a fuzzy graph. Then, V = {a ∈
V ?, deg(a) = δ} is a closed set for (V ?, TG).

Proof. We will prove that V ⊂ V . Since (V ?, TG) is an Alexandroff space, we
have any union of closed sets is a closed set and so,

V =
⋃
a∈V

{a}.

Let y ∈ V , there exists a ∈ V such that y ∈ {a}. From proposition 3.3, Ny ⊂
Na, then deg(y) ≤ deg(a) and so, deg(y) = δ. Hence, y ∈ V and the proof
follows. �

4. ADVANCED PROPERTIES OF GRAPHIC TOPOLOGY

Definition 4.1. Consider (V1, T1) and (V2, T2) two topological spaces and let ψ :

V1 → V2 be a function. ψ is called a continuous or a map if for all O ∈ T2,
ψ−1(O) ∈ T1.
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When the function ψ is bijective and, ψ and ψ−1 are continuous, we say that ψ
is an homeomorphism and the two spaces V1 and V1 are homeomorphic.

Definition 4.2. Consider G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) two fuzzy graphs.
We say that G1 and G2 are isomorphic if there exists a bijection ψ : V1 → V2
satisfying

(4.1) µ2(ψ(x), ψ(y)) = µ1(x, y), for all x, y ∈ V1

and

(4.2) σ2(ψ(x)) = σ1(x), for all x ∈ V1.

Theorem 4.1. Suppose that G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) are two fuzzy
graphs. If G1 and G2 are isomorphic, then the topological spaces (V ?

1 , TG1) and
(V ?

2 , TG2) are homeomorphic.

Proof. Since the fuzzy graphs are isomorphic, there exists ψ : V1 → V2 a bijection
map satisfying (4.1) and (4.2). Let B an open set of (V ?

2 , TG2) in the subbasis
SG2. So, there exists y ∈ V ?

2 such that B = Ny. We set x = ψ−1(y), we get

ψ−1(B) = {z ∈ V1, ψ(z) ∈ B}

= {z ∈ V1, ψ(z) ∈ Ny}

= {z ∈ V1, µ2(y, ψ(z)) > 0}

= {z ∈ V1, µ2(ψ(x), ψ(z)) > 0}

= {z ∈ V1, µ1(x, z) > 0}

= {z ∈ V ?
1 , µ1(x, z) > 0}

= {z ∈ V ?
1 , z ∈ Nx}

= Nx.

So, ψ−1(B) ∈ SG1, that is ψ−1(B) is an open set of V ?
1 . Therefore ψ−1(B) is an

open set of V ?
1 , for all B an open set of V ?

2 . Hence, the function ψ is continuous.
In a similar way, we prove that ψ−1 is continuous. So, the two spaces (V ?

1 , TG1)

and (V ?
2 , TG2) are homeomorphic. �

Remark 4.1. If we consider a fuzzy cycle graph Cn and a complete graph Kn of
order n > 4, then the graphic topology TCn is the discrete topology as TKn but the
two spaces are not homeomorphic. So, the converse of the Theorem 4.1 is not true.
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In what follows, without loss of generality, we suppose that V ? = V .

Proposition 4.1. Suppose that G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) are two
fuzzy graphs and ψ : V1 → V2 a function. The following two assertions are equiva-
lent.

(i) ψ is a continuous function from (V1, TG1) to (V2, TG2).
(ii) Ny ⊂ Nx =⇒ Nψ(y) ⊂ Nψ(x), for all x, y ∈ V1.

Proof. Suppose that ψ is continuous. IfNy ⊂ Nx, then by Proposition 3.1, x ∈ Uy.
Consider the open set Uψ(y), we have y ∈ ψ−1

(
Uψ(y)

)
and so Uy ⊂ ψ−1

(
Uψ(y)

)
.

We get x ∈ ψ−1
(
Uψ(y)

)
, that is, ψ(x) ∈ Uψ(y). From the Proposition 3.1, we

obtain Nψ(y) ⊂ Nψ(x).
Conversely, suppose that we have (ii). Let B an open set for TG2, we will

prove that ψ−1(B) is an open set for TG1. Let x ∈ ψ−1(B), we have ψ(x) ∈ B and
so Uψ(x) ⊂ B, since B is an open set. Now, for all y ∈ Ux, Nx ⊂ Ny (Proposition
3.1). Then, Nψ(x) ⊂ Nψ(y) and so ψ(y) ∈ Uψ(x). Therefore ψ(y) ∈ Uψ(x) ⊂ B and
so, y ∈ ψ−1(B). We get Ux ⊂ ψ−1(B), for all x ∈ ψ−1(B) and the proof of the
Proposition 4.1 follows. �

We have the following characterisation of homeomorphic graphic topology
spaces.

Theorem 4.2. Suppose that G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) are two fuzzy
graphs and ψ : V1 → V2 be a bijective function. Then, ψ is an homeomorphism
between the topological spaces (V1, TG1) and (V2, TG2) if, and only if,

(4.3) Ny ⊂ Nx ⇐⇒ Nψ(y) ⊂ Nψ(x), for all x, y ∈ V1.

Proof. Suppose that ψ is an homeomorphism. Let x, y ∈ V1, from Proposition 4.1
and the fact that ψ is continuous, we have

Ny ⊂ Nx =⇒ Nψ(y) ⊂ Nψ(x).

Now, if we apply the same result to ψ−1, we get

Nψ(y) ⊂ Nψ(x) =⇒ Ny ⊂ Nx,

and then (4.3) follows.
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Conversely, Suppose (4.3) is true. From Proposition 4.1, the function ψ is
continuous. Let a, b ∈ V2, if Na ⊂ Nb, then Nψ(ψ−1(a)) ⊂ Nψ(ψ−1(b)). But

Nψ(ψ−1(a)) ⊂ Nψ(ψ−1(b)) =⇒ Nψ−1(a) ⊂ Nψ−1(b).

We get

(4.4) Na ⊂ Nb =⇒ Nψ−1(a) ⊂ Nψ−1(b), for all a, b ∈ V2.

From Proposition 4.1, the function ψ−1 is continuous. Therefore ψ is an homeo-
morphism. �

Proposition 4.2. Suppose that G = (V, σ, µ) is a fuzzy graph and V ? = V . If
µ(a, b) = 1

2
(σ(a) ∧ σ(b)), then G = G and TG = TG, where G is the complement of

G.

Proof.

µ(a, b) = σ(a) ∧ σ(b)− µ(a, b)

= σ(a) ∧ σ(b)− 1

2
(σ(a) ∧ σ(b))

=
1

2
(σ(a) ∧ σ(b))

= µ(a, b).

So, G and G have the same graphic topology. �

Next, we end this section by giving a necessary and sufficient condition for
compactness of graphic topology such that a topological space V is called com-
pact if each open cover of V has a finite subcover. We have the result.

Theorem 4.3. Suppose that G = (V, σ, µ) is a fuzzy graph. The topological space
(V ?, TG) is compact iff V ? is finite.

Proof. First, when V ? is finite, it is clear that from any open cover we have a
finite subcover.

Conversely, suppose that (V ?, TG) is a compact topological space. If we con-
sider the open cover given by the minimal basis U it has a finite subcover But it
is minimal as basis, Therefore U is finite. Hence, V ? is finite. �
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5. GRAPHIC TOPOLOGY AND CONNECTEDNESS

Let (V, T ) be a topological space. The empty set is called trivial open set. An
open set for V is called proper if it is not equal to V .

Definition 5.1. A topological space (V, T ) is called connected if V can not be writ-
ten as union of two disjoin proper open sets. Sometimes, we say also the topology
T is connected.

Example 4. Consider V = {1, 2, 3}, τ1 = {∅, {1}, {1, 2}, {1, 3}, V }
and τ2 = {∅, {1}, {2, 3}, V }. It is clear that τ1 is connected but the topology τ2 is
not connected.

Definition 5.2. A fuzzy graph G = (V, σ, µ) is called connected if for all x, y ∈ V ?

there exists a path joining x and y.

If a fuzzy graph is not connected, we have what we call connected compo-
nents.

Definition 5.3. Let G = (V, σ, µ) be a fuzzy graph. Let V1, V2, · · · be subsets of V
such that

(i) V = ∪iVi;
(ii) Vi ∩ Vj = ∅, for all i 6= j;

(iii) For i = 1, 2, · · · , for all x, y ∈ Vi, there exists a path joining x and y.
(iv) for all x ∈ Vi, y ∈ Vj and i 6= j, there is no path joining x and y.

Then, each subset Vi is called connected component of the graph G.

We observe that if the fuzzy graph is connected, then it has one connected
component. Also, if the fuzzy graph is finite, then it has a finite connected com-
ponents.

In what follows, we suppose that V = V ?. The first elementary result is the
following.

Proposition 5.1. Let G = (V, σ, µ) be a fuzzy graph. If G is disconnected, then the
graphic topology TG is disconnected.

Proof. Suppose that G is disconnected. So, we have

V =
⋃
i=1

Vi,
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where {Vi}i the connected components of G. Since Vi =
⋃
x∈Vi Nx, we have Vi is

an open set for (V, TG) and W = ∪i=2Vi is also an open set. We have Vi ∩ Vj = ∅,
for all i 6= j, hence V1 ∩W = ∅. Therefore, TG is disconnected. �

Proposition 5.2. Let G = (V, σ, µ) be a bipartite fuzzy graph, then TG is discon-
nected.

Proof. Set V = A ∪B, where A ∩B = ∅ and

µ(x, y) = 0 for all (x, y) ∈ A2 and for all (x, y) ∈ B2.

Let O1 =
⋃
x∈ANx and O2 =

⋃
x∈B Nx. We have O1 6= ∅, O2 6= ∅ and V =

O1

⋃
O2. Also, O1 ⊂ B and O2 ⊂ A and therefore O1 ∩ O2 = ∅. So, TG is

disconnected. �

Corollary 5.1. If G = (V, σ, µ) is a connected bipartite fuzzy graph, then TG is
disconnected.

Proposition 5.3. Let G = (V, σ, µ) be a fuzzy cycle of order n > 4 (connected),
then TG is disconnected.

Proof. Since G is a cycle x1, · · · , xn. We have Nxi = {xi} and so TG is the discrete
topology and so disconnected. �

Proposition 5.4. Let G = (V, σ, µ) be a connected fuzzy graph of order n > 4 such
that {x1, · · · , xn−1} is an n − 1 cycle, deg(xn−1) = 3 and deg(xn) = 1. Then TG is
disconnected.

Proof. For any i = 1, · · · , n− 1, Uxi = {xi} and Uxn = Nxn−1 = {xn, xn−2, x1}. So,
TG is disconnected. �

Note that a fuzzy graph can be connected and also its graphic topology TG is
connected as the fuzzy graph given in Figure 3.
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Figure 3. A connected fuzzy graph having connected graphic topology

Question: For a connected fuzzy graph G, when TG is disconnected?

6. CONCLUSIONS

Let G = (V, σ, µ) be a fuzzy graph. In this paper, we introduced the graphic
topology TG for a fuzzy graph G = (V, σ, µ), where V ? the vertex set satisfying
σ(x) 6= 0. We proved some properties of this topology in particular we prove that
TG is an Alexandroff topology and so, give most of the topological properties by
using minimal basis. As an example, we give a necessary and sufficient condition
for two graphs to be homeomorphic. We also investigate the connectedness of
the graphic topology and prove some relations between the connectedness of
the graph and the topology TG.

As future work, we can think about the open problem: are there some neces-
sary and sufficient conditions for connectivity of TG?
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