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A COMBINATION OF ORTHOGONAL POLYNOMIALS SEQUENCES: 2 — 5
TYPE RELATION

Amel Belkebir' and Mohamed Cherif Bouras

ABSTRACT. In the present paper, a new characterization of the orthogonality of
a monic polynomials sequence {Q,}, -, is obtained. This is defined as a linear
combination of another monic orthogonal polynomials sequence {P, }, -, such as

Qn(l)+rnQn—l(x) = Pn(l')+5npn—1(z)+tnpn—2 (x)+v7zpn—3 (1)+wnpn—4(l); n 2 0

where w,r, # 0, for every n > 5. Futhermore, the relation between the corre-
sponding linear functionals is showed to be

k(z—c)u= (z*+az® + ba® + dz +e)v

where ¢, a, b, d, e € C and k € C\{0}. Finally, an illustration using special case of
the above type relation is given.

1. INTRODUCTION

Let P be the linear space of polynomials in one variable with complex coeffi-
cients and let P’ be its algebraic dual. (u, f) denotes the action of v in P’ on f in
P and by (u), := (u,2™), n > 0, the moments of u with respect to the monomial
sequence {z"},>o. When (u), = 1, the linear functional « is said to be normalized.
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In this work we need to recall some operations in P’, (see [6], [8]]). For any « in
P’, any ¢ in P and any complex numbers a, b, ¢ with a # 0, let Du = u/, qu, hqu,
7yu and ou be respectively the derivative, the left multiplication, the translation,
the homothetic and the pair part of the linear functionals defined by duality:

(W', f) == {u,f),
(qu, ) == (w,qf),
(hatt, f) = (u, ho f)

(mou, f) = (u, 7o f) = (u, f (x + 1)),
(ou, [) := (u,0f) = (u, f(2?)), f€P.

The linear functional « is called regular (quasi-definite) if the leading princi-

(u, f (az)),

pal submatrices #,, of the Hankel matrix % = (u;1;), .., related to the moments

1,J

un, = (u,z™), n > 0, are nonsingular, for each n > 0 [6].

Definition 1.1. [6] A sequence of monic polynomials {P,}, -, is called orthogonal
with respect to the linear functional u if the following orthogonality conditions hold

(u, Py (2) Py () =0, n#m,
(u, P (2)) #0,  n=>0,

where deg P, = n, for every n > 0.

In this case, {P,},, satisfies the following two order recurrence relation:

Poii(x) = (2 — ) Po(2) — Y Pua(x), n2>1,
Py(z) =1, Pi(x)=z— Py,

where ~,, # 0, for each n > 1.

Let v and v be two regular linear functionals and let {P,} ., and {@,}, -, be
the corresponding sequences of monic orthogonal polynornials.iAssume that there
exist non-negative integer numbers M and N, and sequences of complex numbers
{rin},>o and {syn}, -, such that the structure relation

M N
Qn(x) + Zri,nani(aﬁ = Pn(x) + Zsi,npnfi(x>

M+N

holds for n > 0. Further, assume that ry; sy v # 0 and sy a4 # 0, det [aij]ijzl

0 where the entries «;; of the matrix are defined on the basis of {r;,}, ., and
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{Skn},>0 - Then there exist two polynomials ¢ and ¥ with deg® = M and deg ¥ =
N such that
O(2)u = V(z)v.

These polynomials & and ¥ can be constructed in an explicit way [9]. On the
other hand, the converse result is also analyzed. A characterization theorem for
the sequence {(Q), }, -, to be orthogonal assuming { P, }, ., is orthogonal is obtained
when M =0 and N = 1,M:1andN:1,M:Oand7N:2,leandN:2,
M=0and N =3, M =0and N = k [1-5].

In this contribution, we are interested to the case M =1 and N = 4.

Let {P,},~, be the M OPS with respect to the regular functional « and {Q,},~,
be monic po_lynomials sequence with deg ,, = n. Suppose that these sequencés
are related by 2 — 5 type relation as follows:

(1.1) Qu(2)+7r,Qn_1(2) = Py(x)+8,Pr1(x)+t, Pro (2) 40, Py_s () +w, Py_4(x),

n > 0, with the initial conditions Q (z) = Py (z) = 1 and Q_; (z) = P_,,, (z) = 0,

for m = 1, 2, 3, 4 and {rn},>0, {50 }nz00 {ntnso s {Un}nse @and {wy}, 5, are se-
quences of complex numbers with the initial conditions

T’OISOItO:tl:'Uozvl:UQZ’U)O:UJl:UJQIUJg:O.

The main purpose of this paper is to obtain necessary and sufficient conditions for
the orthogonality of the monic polynomials sequence {Q,}, -, - In addition, we es-
tablish a relation between the linear functionals « and v, res}ectively, correspond-
ing to MOPS's {P,},-, and {Qn},>, as k (x — c)u = (z* + az® + ba? + dv + e) v
with ¢, a,b, d, ¢ € Cand k € (C\{O}. This article is organized as follows. In
section 2, we develop some basic results and lemmas. Section 3, is devoted to
find the characterizations of the orthogonality of the monic polynomials sequence
{Qn},>0- Finally, we illustrate a special case of the above type relation.

2. 2 — 5 TYPE RELATION

Let {F,},5, and {@.},, be two sequences of monic orthogonal polynomials
with respect to the regular functionals v and v respectively, where (u, 1) = (v, 1) =

L let {B},50 s {n)n>, @and {En} . {¥n},>, the corresponding sequences char-

n>
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acterizing {P,},., and {Q,},-, . respectively. Suppose that these sequences are
related by relation (1.1) . )

The initial conditions wy # ry (v — 13 (ts — 19 (s1 —7r1))) and wsrs # 0 yield a
relation between the linear functionals v and v such as

ou = YPv

where ¢ and ¢ are polynomials of degree 1 and 4, respectively.
Firstly, if wy # r4 (v3 — r3 (t2 — 79 (s1 —71))) and 75 # 0, then there exists a com-
plex number ¢ such that

((x —c)u,Qs () = 0.

Moreover, ((z — ¢) u, @, (z)) = 0, n > 5. Indeed,
(=0 () = Bo—c,
((z =0 (@) = n+(s1—r1)(Bo—o),
(z=0)u, Q2 () = (s2—r2)1+ (t2 —72(s1 —71)) (bo—©),
(=0 (@) = (ts—rs(s2—7r2))n 4 (v3 =3 (f2 — 12 (51 —71))) (Bo — ¢,
(=0 (@) = [va—ralts —(s2—r2))]m

+ [ws —ra(v3 =73 (f2 — 72 (51 = 11)))] (Bo — ),
(r=c)u,Qs(x)) = [ws —715(vs—714(ts —713(52 —72)))| ™
(2.1) =15 [wy — 14 (V3 — 13 (t2 — 12 (51 —11))) (Bo — )]

Then there exists ¢ such that

((z —c)u,Qs () = 0.
This implies

(2.2) cim By — LY (Vg — 74 (t3 — 13(52 — 12)))

rswy — 1y (v3 — 713 (ta —ra (81— 11)))

Thus,
(x—)u,Qn(x)) = =1 ((x — ) u, Qp1 (), n > 6.
On the other hand [|8]

4

N (O DR XS P
=) gm0

=
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Therefore, if wy # 14 (v3 —r3 (ta — 12 (s1 —1r1))) and wsrs # 0, it can be deduced

that the relation between u and v is
(z —c)u=q(z)v,
where ¢ is a polynomial of exact degree 4.
Lemma 2.1. Let {P,},, and {Q.},-, be two monic orthogonal polynomials se-

quences (MOPS) with respect to the regular linear functionals u and v respectively,
where (u,1) = (v, 1) = 1. Assuming that there exist sequences of complex numbers

{Tn}nz(w {Sn}nzm {tn}nzov {Un}nzo and {wn}nzo
with the initial conditions
TOZSQZtOZtl:Uozvlzvgsz:wlzwgzwgzo,

such that the relation (1.1|) holds, for every n > 0, then

(1) Ifwg # 1y (vg—13(ta —7r9(51 —11))) and r5 = 0, then
Wy, # Ty (Vn1 — Tt (tne2 — "o (Sn_3 — Th_3))),
forn >4, and r, = 0, for every n > 5. In this case the relation (|1.1)) reduce
to a 1 — 5 type relation
Qn(x) = P, () + anPr_1 (x) + b, P2 ()
+ ¢ Po_s () + d, Pp_4(x),

n > 0, with
Ap =8y, — Tn n>1,
bn =1tn — rn(sn—l - rn—l) n =2,
Cp = Up — rn(tn—l - rn—l(sn—Q - rn—2)) n Z 37

dn = Wy — T (Vn1 — Tno1(tpeg — Tne2(Sn—3 — Tn-3))) n >4.

(2) Ifwy # 1y (v3—r3(ta —1r9(s1 —11))) and r5 # 0 then r,, # 0, n > 5.
(3) Ifwy # ry (v3 — 13 (te — 19 (81 — 11))) and wsrs # 0 then w,r, # 0, for n > 5.
Thus, in this case the relation (|1.1)) is a non-degenerate 2 — 5 type relation.

Proof. We have
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(2.3)

(1)

(2)
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(u, Q1 (x)) =81 — 14

(u, Q2 () =ta — 12 (51 —11),

(u, Q3 () = v3 — 13 (t2 — 12 (51 — 711))
(u, Qu () = wy — 14 (v3 — 13 (t2 — 12 (51 — 711))),
(u,Qn (x)) = —rp (U, Qn_1), n > 5.

\

If wy # 14 (v3 — 73 (t2 — 12 (51 — 71))) and r5 = 0, from ({2.3) , we have
(u, Q; (x)) #0, i=1,2 3,4
and
(U, Qn (x)) =0, n=>5.

So, there exists a polynomial ¢ of degree 4 such that u = ¢(x)v. Therefore,
Qn(z) = Py(x) + anPy_1(x) + b, Py o(x) + ¢ Pry_3(x) + d,, P4 (),
for each n > 0, with ¢, # 0, n > 4. Again, the relation leads to

Sp = Qp + 7T, n>1,

t, ="0b,+7, a1 n>2,

Up =Cn+7Tpbo1 n>3,

Wy =dy +7, Cho1 N >4,
and r,d, 1 =0,n>5.S0,r, =0,n>5 and w, # 0, n > 4. Then, this
case is the degenerate 1 — 5 type relation.

If wy # ry(vs—r3(ta—r2(s1 —11))) and r5 # 0, according to (2.3), we
have

<u7 Q4 (I)> 7é 0 and <U’7 Q5 (ZL’)) 7£ O)
and if r, = 0, for each n > 6, we get

(u, Qn (x)) =0, n >6.

Assuming that there exists n > 6 such that r, = 0, putting s := min{n €
N /n>6, r, =0}, then

(u,Qn(2)) =0, n=s,
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and
(u,Qn (z)) #0, 4<n<s-—1.

So, there exists a polynomial ¢ of degree s — 1 such that u = ¢(z)v [7].
Therefore,

Qu(e) = Pa(e) + S aniPasle),

where a,, s_; # 0, n > s — 1. Taking into account ({1.1]), this is not possible.
Thus r, #0,n > 5.
(3) If wy # ry(vs—r3(ta —1r2(s1 —r1))) and wsrs # 0, then there exists a
constant ¢ such that
(@ — c)u = q(z)v,

where ¢ is a polynomial of degree 4 and by (1.1)) we can write

((z =) u,Qn (z) Qns (2))
= ((zr—c)u,(P,(x) 4+ spPr_1 () + tp Py (x)
+n, B3 () + Wy Po—y(2)) Qn—s (z))
—1p (2 — ) U, Q1 (2) @n—s (2))
= wp (u, P4 (2)) — 1 ((# — ) u, Q1 (2) Ques (z)), n > 5.

Consequently, the following expression is obtained

wy (u, Pi_y (2)) = ((z—c)u, (Qn () + raQn1 (x)) Qn_s (z))
= (@(2)v, (Qn () + raQn-1 (¥)) Qu-1(x))
= 1 (0,¢(2)Qn-1 (z) Qn-sa ()
= ka0, Q0 (0)

where k; is the leading coefficient of the polynomial ¢.Now, it is enough
to apply (2) to obtain r, # 0, n > 4, and from definition we have
Wy, #0,n > 5.

0

In the following proposition, we show that if wy # ry (v3 — r3 (t2 — 12 (51 — 11)))
and rsw; # 0 this is equivalent to assume that the functional (x — ¢) u is regular.
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Proposition 2.1. Let {P,},., and {Q,},-, be two MOPS with respect to the reg-
ular functionals u and v, re;pectively, with (u,1) = (v,1) = 1. Assume that there
exist sequences of complex numbers {r,} ~o,{sn},>0: {tn},>0 and {v, },, with ini-
tial conditions 1o = sog = to = t; = vy :7111 = 0y — 0, such that the relation (I1.1])
holds and the initial conditions wy # 74 (v3 — 13 (to — ro (s1 —11))) and rsws # 0.
Then the following statements are equivalent:

i) The functional (x — ¢) u is regular.

“) Wn, 7é T'n (Un—l —Th- (tn—Q — Th-2 (Sn—S - rn—3))) y 1 Z 4.

Proof. Multiplying the relation (1.1)) by P,_; and applying u, the same way for
P, s, P,_3 and P,_4, we get, respectively,

<u> @n (l’) Poa ("L‘)> = (Sn - rn) <u’ PE—I (ZL‘)> , n=>1,

(u, Qn (:E) P s (‘T» = (tn —Tn (Sn—l - Tn—l)) <uv PE—Q (x)> , n=>2,
(U, Qn (2) Poo3 (7)) = (v — 7 (tno1 — Tne1 (Sne2 — Tn2))) <u, Ps—S (37)> , n=>3,
<u7 Qn (ib’) Pn*4 (l’)> = [U)n - T’n(’l)n,1 - rnfl(tan - Tn72(3n73 - Tnf?)))] <u7 P3_4> )

n > 4. Thus

wn_rn<vn—l _rn—l(tn—Q_Tn—Q(Sn—3_rn—3)) 7é 0= <U, Qn ([E) Pn—4 (fL’)) 7é 07 n Z 4.

Knowing that (x — ¢) u is regular if and only if P, (¢) # 0, for each n > 0.
Moreover, we need to show that (u, Q,.4 (z) P, (x)) # 0 & P, (¢) # 0, for each
n > 0. Either for

n

P.(x) = Z ani(r —c)',  n >0,
i=0

with a,,0 = P,(c) and a,, = 1. From Lemma 2.1}, we have

(x —c)u = q(z)v.

Hence
<’LL, Qn+4 (aj) Pn (.CE)) = <(£If - C)ua (x - C)n_lQn+4 ($)>
+ Z (02 <(:U - C)U, (SC - C)iilQnJA (:U)>

+F, (¢) (u, Qna (7))
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= (0@~ Qe () + Y s (0.4 — ) Qua ()

+Pu(c) (u, @nea (x)), n>0.

Hence
<U7Qn+4 (l’) P, (I)> = Pn(c> <u7Qn+4 (l‘)>, n >0,
from Lemma [2.T] and the relation (2.3)) , we get

(u,Qn (2)) #0, n=>4.

3. CHARACTERIZATION OF ORTHOGONALITY

Let {P.},>, be a MOPS with respect to a regular functional u and let {f3,},-,
{¥n}n>, e the corresponding sequences of recurrence coefficients, so that

(3.1) Poii(z) = (= By) Pu(®) =y Pra(x), 120,

with the initial conditions Py(x) = 1, P_1(z) = 0 and the condition ~, # 0, for
eachn > 1.
In this section, we give the characterizations of the orthogonality of a sequence
{Qn},>o of monic polynomials defined by a non-degenerate type relation ((1.1)) .
From Lemma the conditions wy # 74 (v3 — r3 (ta — 1o (s1 —71))) and ryws #
0 must hold, in order to have a non-degenerate 2 — 5 type relation with {P,}, .,
and {Q,},-, MOPS and these conditions imply w,r, # 0, for each n > 5. )
The follo_wing is the first characterization of the orthogonality of the sequence

{Qn}nzo :

Proposition 3.1. Let {P,},., be a MOPS satisfying (3.1) , we define recursively
a sequence {Q,},~, of monic polynomials by the structure relation such that
wy # 14 (v3—13 (22 —1ry(sy —r1))) and w,r, # 0 for n > 5. Then, {Qn}nZO is a
MOPS with recurrence coefficients { En} >0and {¥n},>1 » where

(32) 6n = ﬁn — Sn+1 + sp + "m+1 —Tn, N 2 07
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(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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;?n =Y+t — tn_l,_l + Sn (Sn+1 — Sp — 671 + ﬂn—l)
—Tn <T’n+1 —Tp — ﬁn + 571—1) T 2 ]'7

by — fo = as(s1 —11),
bs — f3 = az(sa — r2),

c3 —bs(sy — 1) = as (ta — sa(sy — 1)),
by — f1 = a4(s3 —r3),

cq — by(se —13) = ay (t3 — s3(s9 — 1r2)),

es — by (ta — s2(51 —11)) = aafvs — s3(ta — s2(51 —11))

— t3(81 —T1>] +C4(81 —7”1)7
bs — f5 = as(s4 — 14),
c5 — bs(s3 —13) = as(ts — sa(ss —13)),

e5 — bs (t3 — s3(s2 —12)) = as[ve — sa(ts — s3(52 —72))

— t4(82 — 7"2)] + C5($2 — 7“2),

ks — bs [vs — s3 (ta — sa(s1 —11)) — t3(s1 — 71)]
= a5 [wy — 54 (vs — 83 (ta — s2(51 —11))) — t3(s1 —11)
—ty (to — s2(s51 —71)) — va(51 — 71)]

+C5 (tg — 82(81 — 7”1)) + 65(81 — 7”1).

As a consequence, for each n > 6, we have

(3.14)

(3.15)

bn = QpSn—1,

Cp = Qply_1 5
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(316) €n = QApUp—i,
kn = QapWp-1,
(317) fn = AnTn—1,
where
(318) Ay = Tn + tn - tn+1 + Sn (3n+1 — Sp — ﬁn + ﬁn—l) ) n 2 17
(3.19) b, == SpYn—1 + tn (Sn+1 — Sp — ﬁn + ﬁnf2> —Upy1 +Up, N2 27
(320) Cp = tnPYan + (%0 <3n+1 — Sp — ﬁn + 57173) — Wn+41 + Wy, N Z 37
(321) €n = UnYn-3 + wy, (Sn-‘rl — Sp — Bn + 671—4) , N Z 47
kn = WnYn—4, N > 57
(322) fn = rn;?n—la n > 2.

Proof. From the definition of @),,, we find
Qn+1<x> = PnJrl(x) + 3n+1Pn($) + tn+1pn71 (.1') + Un+1Pn72 (l‘)
+ Wni1 s (2) — 101Qn (@),

n > 0, and by replacing (3.1)) in (3.23]), applying (1.1]) to 2 P,(x), and substituting
xP,_1(z), xP,_o(x), P,_3(x) and x P,_4(x), using again (3.1)) , taking into account,

(3.23)

polynomials with negative index are zero, we obtain

Qni1(z) = (2= Bn)Pal2) = Y Pr1(2) + Sps1 Fu()
Flni1Fn1(2) + vns1 Pa2(2) + Wi 1 Pos(@) — 101 @Qn()
= 2Qu(x) = (Bn — Snt1 + Sn + Tt — ) Qn()
=1y (Bn = Snt1 + $n) Qn-1(2)
+ [s0 (Bn = Snt1 + Sn = Bu1) + tugr — tn — Yl Paa (@)
+ [tn (Bn — Sn+1 + Sn = Bu2) — SnVn—1 — Un + Vpp1] Poa(2)
+ [Un (Bn = Sn+1 + Sn = Bus) — taVn—2 — Wn + Wnt1] Pos(2)
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+ [wn (Bn — Sp41 T Sp — ﬂn74) — Un’yn,g] Pn,4(x)
_wn7n74pn75<x> —Tn (Qn(x) - .’L’anl(ﬂi)) ) n Z O

Putting
671 = ﬁn_3n+1+sn+rn+1 — Tn, n > 07

we get, for n > 0,
Quirle) = (z- En) Qu(@) + 7 (a1 = 10 = B ) Qua ()
— [ tnt1 + Sn (Snt1 — Sn — Bn + Bu1)] Poor(2)
[snfyn 1+ tn (Sng1 — Sn — Bn + Ba—2) + Uy — Unpa] Pra(2)
— [tnVn—2 + n (Snt1 — 80— Bn + Bu-s) + wn — wpia] Pos(z)
— [nYn—3 + Wi (Snt1 = Sn = Bu + Boa)] Paa(®) — W yn—aFPp—5(2)
—75 (Qn(x) — an—l(ﬂf)) :
S0, {@Qn},> isa MOPS if and only if ¥, # 0, for each n > 1, and
Tn (Tn+1 —Tn — §n> Qn-1(z)
— [ tnt1 + Sn (Snt1 — Sn — B + Ba1)] Pao1(2)
[Sn”Yn 1+ tn (Snt1 — S — B+ Bn2) + Vn — Vny1| P ()
— |
— |

tnYn—2 + Un (Sps1 — Sn — Bu + Bn—3) + Wy — Wyni1] P—s(2)
UnYn—3 + Wy, (Snt1 — Sp — Bn + Bnea)] Pra(2) — Wy yn—aPr_s(x)
—rp (Qn(z) — xQn—l(x))
(B.24) = —FQua(z), n>0.

On the other hand, {Q,},-, will be a MOPS if and only if ¥,, # 0, for each n > 1,

and

(3.25) Qn(x) — 2Qn_1(2) = —Bn1Qn1(2) = Fn_1Qn_o(z), 1 >1.
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Replacing (3.25)) in (3.24]), we get the following expression

(3.26) [% + 7 <7“n+1 — o= B+ gn—l)] Qn—1() + raYn-1Qn—2(x)
= [+ tn — tas1 + S0 (Snp1 — S0 — Bn + Bn-1)] Paa(2)
+ [$nY¥n—1 + tn (Snt1 — Sn — Bn + Ba—z) + Uy — Uny1] Pra(2)
+ [tnYn—2 + Vn (Sns1 — Sn — Bn + Pu—s) + wn — Wpy1] Po—s(x)
+ [0nYn—3 + Wn (Snt1 = $n = B + Baa)] Poa(®) + Wi yn—aFPp5(2),

which holds, for each n > 1.
First, suppose that {Qn}n20 is a MOPS with recurrence coefficients { En}
and {7,},,. Then,

(327) QnJrl(x) = <LE - En) Qn<x> - :YJnanl(x)y n Z 07

with the initial conditions Qy(xz) = 1, @_;(z) = 0 and the condition 7,, # 0 for
every n > 1.
To obtain ((3.26)) , it is enough to replace Q,,(z) — xQ,_1(z) in (3.24).
Conversely, if is satisfied and 7, # 0, for every n > 1, we show that
{Qn} >, satisfies . Notice that, for every n > 1,

o (Ba1Qur (@) 4+ 51Qua(@) ) = ~FuQur (@)

n>0

(et = = Ba) (5uPact(2) + b Paa(@) + 0a P s(2) + wn Poa(2) = 10Qu 1 (x))
+ 80 (Ba-1Pn1(2) + -1Pn2(x)) + tn (Bu-2Pn2(2) + T-2Pn-3(x))
+ Un (Bn-3Pn-3(%) + Yn-3Pn-a(2)) + wn (Bp-aPr-a(x) + Yu-1Frs(2))
+ (9 + o = tnt1) Pac1(@) + (vn = vns1) Pra()
+ (W, — Wya1) Poos(x) — vpy1 Pra(2).
Applying (1.1) in s, P,—1(x) + £, P,—a(x) + v, Po_3(z) + w,, P,—4(x) and using (3.1)),
we get

P B 1@ua () + 50 1Qua(@)| = o (@Qui(2) = Qul@) + (2= B ) Qul)

= Qui1(2) = MQna(z), n=>1
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Consequently;,
Quia(@) = (2= B ) Qu(@) +FuQu-1(2)
= =1 [Qu(@) = (2 = Buct ) Quot(2) + a1 Queale) |, 2 1.
Moreover, from (1)
Qi(z) = Pi(z) + 81 —ri =3 — By + 85— =2 — f,

we deduce recursively
Qn+1(x) = <LL‘ - gn) Qn(x) - ;\}/JnQn71<x>7 n =1

Thus, {Qn},, is @ MOPS with recurrence coefficients { Bn}n>0 and {u},5 -
From and we have , that is equivalent to
(fo = Tn-10n) Qua(z) = (b — Sp_1an) Pr2(7) + (¢n — tn1an) Po3(7)
+ (en — Vn—1an) Poa(®) + (kn — Wn1as) Poos(2), n > 2,

where a,,, b,, ¢, fu, e, and k,, are defined by (3.18) — (3.22) .

and the relations (3.4) — (3.17) hold. Replacing in (3.28) by n =2, n =3, n =4
and n = 5, we get the relations (3.4) — (3.13)) .Therefore it is easy to check that

(3.14]) — (3.17)) hold for n > 6. Indeed, since wy # r4 (v3 — 73 (t2 — 2 (51 — r1))) and
rn # 0, for n > 5. Then by ([2.3) , we deduce
(u,Qn) #0, n >4
Applying u to both sides of (3.28]) , we get
(fn - Tn—lan) <u7 Qn—2> - 0, n Z 6.
This leads to
fn = Tpn—10Qn, n > 67
and this proves (3.17) . Multiplying (3.28)) by P,,_», P,,_3, P,_4 and P,_5 and apply-

ing u, we obtain, respectively (3.14]) — (3.16)) .
Conversely, from (3.16]) and (3.17)) we have

Tpn—1 Wy

?n—l = Yn—4, n Z 6a

'n Wp—1
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this implies

T = n wnﬂ%—:’n n > 5.
T'nt1 Wy
Thus
Yn 0, n>5.
Hence, the conditions — with 4,937, # 0 imply that holds and
Yn # 0, for every n > 1. =

Now, we will prove that the orthogonality of the sequence {Q,}, -, can be also
characterized by the fact that there are five sequences depending on the parame-
ters 7, Sn, tn, Un, wyand the recurrence coefficients which remain constants.

Theorem 3.1. Let {P,},, be a MOPS with respect to a regular linear functional

u and the sequence of monic polynomials {Q,},, is given by the relation If
{Qn} .50 Is @ MOPS with respect to a regular linear functional v, then

(3.28) k(z — c)u= (2" + az® + b2® + dz + e) v

with ¢, a, b, d, e € C and k € C\{0} and the normalizations for these linear func-
tionals (u,1) = (v,1) = 1.

Proof. Applying the regular linear functional u corresponding to the MOPS {P,.}, -,
in ([1.1)) , we obtain, for each n > 4

((x = c)u, Qy (x)) = 0.

Then, according to [8] taking into account (/1.1)) , we expand the linear functional

u in terms of the dual basis { < Qg% } of the MOPS {Q,},, as follows:
U, &5 ) i>o B
4
<(33 — C)“» QZ)
T —c)u= — " (Q);v.
== " g5 ¢

Since {Qn},5( is @ MOPS with respect to v, the recurrence coefficients {Bn}
and {7,},, are given by (3.2) and (3.3 , furthermore

(3.29) Vn = (0. Qn) £0, n>1.

<U7 Q%71>

n>0
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Indeed, making both sides of (3.28)) acting on the polynomials @y, @)1, @2, @3 and
()4, and taking into account (2.1)) , we get

(330) k [(tg — T3 (82 — TQ)) 71 + (’03 — T3 (tQ — T2 (Sl — 7”1))) (ﬁo — C)]
= (53 + Ba + B + 50) T1Y27s + aV17273

(331) ]{7 [(Sg — 7’2) Y1 + (tQ — T2 (81 — 7"1)) (BO — C)]
= (ﬁﬁs +71 + 752 + 5(2) + Bf + 53 + 5150 + 5152 + gzgo) Y2

+a <B2 + 51 + go) Y12 + by

(3.32)  k[y+(s1—r1)(Bo—0)
= 2 <§1 + Bo) ¥+ <E2 +26, + Bo) Y2 + (BS’ + gf + gfgo + 5153) M

+a(%+&’2+Bf+§§+§1§o)%+b<51+50)%+d%

(3.33)  k(Bo—c
= 53 + (51 + 72 + 3§§ + 512 + lego) M +a ((51 + 250) Y+ gg)

+b<%+§§>+d§o+e

(3.34)  k{[va—rs(tz — (s2—12))|m
+ [wy — 14 (3 =13 (t2 — 72 (51 —71)))] (B0 — ) }

= 71727374

where, 71, 72, 73 and 7, are given by (3.2) and(3.3) .
Using the relations ((3.30)) — (3.34)) and taking into account ({2.2)) , thus, the values
of ¢, a, b, d, e and k are given as follows

L o— ﬁ%%%%
Ws 71 7
Y ws — 15 (Vg — 74 (t3 — 13(S2 — 12)))

c = [Bp——

5wy — 14 (Vg — 73 (ty — 2 (51— 11)))’
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P ] vz — 13 (t2 — 12 (51 —11))
e Y ooy PRt PRy
75 (t3 — 13 (52 = 1r2)) wa — (v3 — 13 (t2 — 72 (51— 11))) v
ws wy — 74 (V3 — 13 (ty — 19 (51 —71)))
BsBo — BrBa + 5351 + 5%52 + BoBafir + BaBafr — gf - 53 —YM =Y =3
N [ (v3 —r3(ta —ra(s1—11)))
wy — 74 (V3 — 73 (t2 — 72 (51 —71)))

7”_5(753—7“3(32—7“2))104—(03—7“3(t2—7“2(81—7“1)))1)4 5~ >

+U)5 Wy — T4 (Ug — T3 (tg — T (81 — 7’1))) :| (6251 + BO)
T_5$ ) ﬁw5—r5(v4—r4(t3—(52—r2))) (s —

+w5( ? 2)73+w5w4—r4(v3—r3(t2—r2(51—rl))) (tz =72 (51 =m1).

- (53 + gf + Efgo + 51%) - (251 + 250) M- (62 + 251 + go) or;
n { (v3 =73 (t2 =12 (851 — 11)))
wy — 14 (V3 — 13 (t2 — 12 (51 — 71)))

7"_5(753—7“3(32—7“2))1114—(U3—T3(t2—7"2(51—7“1)))1)4 55 3

+w5 Wy — Ty (’Ug — T3 (tg — 79 (81 —7“1))) :| (6261 +BO>
7"_55 o)A ﬁw5—7"5(1}4—7’4(t3—(82—7"2))) (s —

+w5 ( 2 2) 73_'_ Ws Wy — T4 (U3 —ry (tg — 1y (51 _T1)>> (tZ 2( 1 1))7

- (53 + Ef + Bfﬁo + 51&%) - (2§1 + 250) M- (52 +26, + Eo) Yo

. [rs R e e O m)))) (o1 - m} Y4

wy — 14 (vy — 13 (ta —r2(s1—11)) ws
—a [§1+572+B?+E§+§1§0} —b</§1+§0)>
T1Y2Y3 Ws — 15 (Vg — 14 (t3 — (52 — 72)))
ws  wy — 74 (V3 — 13 (ty — 19 (51 —711)))
- (56* + (71 +7, + 363 + B} + 251&0) 71)

—a ((51 + 230) M+ 58) —b (71 + ES) — dfo.
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4. PARTICULAR CASE

In this section, a special case of relation (|1.1)) is obtained. Let us consider the
symmetric MOPS {F,}, ., , this means that 3, = 0, for each n > 0. From Propo-
sition 3.1} the equations (3.14) , (3.15)) , (3.16) and (3.17) become, for each n > 6,

Up— Uy,
(41) Sn+1 = Sn + ! Yn—4 — —Vn-3,
Wp—1 W,
Wn,
(42) tn—i—l == tn + Yn — Yn—4 + sp (Sn—i-l - Sn) 5
n—1
(43) Up+1 = Up + SnYn—1 + tn (Sn-I—l - Sn)

—Sp—1 [771 + tn - tn—i—l + Sn (sn-l—l - Sn)] )
(44) Wpt+1 = Wp + tn’Yn—Q + Up (Sn—i-l - Sn)

_tnfl [PYn + tn - tn+1 + Sn (SnJrl - Sn)] )
Wn Yn—4 wn—l—l Yn—3

(4.5) Tnil = Tn+ - ,  n>0>5.
Wp_1 Tn Wy Tn+l
The equations (3.2]) and (i3.3]) become
gn = Sp = Sptl T Tnt1 — Tny N > 0;

Too = Attt + Sn (Sugn = 50) = 7 (St = Sa+ Bat ) 21,

for each n > 6, we have

Y Un Un—1 Wy Yn—4a Wn+1 TVn—3
(46) 5n = —Tn-3— Yn—a + -
Wp, Wp—1 Wp—1 Tn Wy Tn+l
Yn—3 Wn+41 Yn—4 Wn,
= Up — - Up—1— — |-
Wp, Tn+1 Wp—1 Tn
~ W, Up—1 Un 153
(47) Yn = Yn—4 — Tn ( Tn—4 — ——Vn-3 | — Tnﬁnfl'
Wn—1 n—1 Wn,

In this case, we treat the following three subcases.

i)If s,, = sy and r,,_; = 1, for each n > 6, from (4.1)) and (4.5) , we obtain

Un Up—1 V4
—Vn-3 = Tn—4 = .. = — 1,

Wp, Wp—1 Wy

Wn41 Wn, Ws
Tn-3 — Tn—4 = .- = — 71,

Wn, Wp—1 Wy

the relation (4.7) yields
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(4'8) :Y/n = %’yla n 2 6.
Wy

We conclude that 3, = 0 and 3, are constants, for each n > 6. From (4.2) , we have

w
Wy

ii) If s,, = s, r,—1 = ry and ¢, = ¢y, for each n > 6, from (4.9) and (4.8)) , we get
;\};n = Tn, n > 6.

The coefficients v, are constants, for each n > 6, then {P,},., is the sequence
of anti-associated polynomials of order 6 for the Chebyshev polynomials of the
second kind [10].

iii) If r,, 1 = ry, s,, = 81, t,, = t2 and v,, = v3, for each n > 6, from (4.3)) , we have
Unt1 = Un + SnVn-1 — Sn—1"n; n > 6,
hence

Upt1 = Un + 81 (Yne1 — Tn) n>"7,

it is clear that s; (v,—1 —7,) =0, foralln > 7.

iv) If r,_y =ry, s, = 51, t, = ta, v, = v3 and w, = wy, for each n > 6, from (4.3)) ,
we have
Wnpt1 = Wy + V-2 — tn—17n; n >0,
hence
Wyt = W + b2 (Y2 — Tn) » n>8,
it is clear that t5 (7,2 — ) = 0, for all n > 8.

Remark 4.1. Ifrn_l =T, S, = 81 and t, =10 TH_1 =171, 8y, = S1, b, = to and
Uy = U307 Ty =11, S, = 81, t,, = tg, v, = v3 and w,, = wy for each n > 6, then

En == O, Tl26,

Tn = TUn =76, n26
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Example 1. Let {P,},., be the sequence of monic Chebyshev polynomials of the
second kind orthogonal with respect to the weight function W(z) = (1 — a:2)% on

1
(=1,1). Then g, =0, v, = " > 1, and the relations (4.1)), (4.2) , (4.3)) and (4.5)),

for each n > 6, become

1 Un—1 Un
Sn+1 = Sn + - - |>
4 Wn—1 Wn,

1 W,
thrl = tn+_(1_ )+Sn(5n+l_3n)7

4 Wn—1
1
Upn+1 = Up + an + tn (Sn—H - Sn) — Sp—1 |:Z + tn - tn—‘rl + s, (Sn—i-l - Sn):| y
1 1
Wp+1 = Wy + Ztn + vy, (Sn+1 - Sn) - tn—l Z + tn - tn—l—l + Sy (Sn—H - Sn) s

1( Wy—1 Wy, >
Tn = Tp—1+ — — .

4 T'n—1Wn—2 'nWnp—-1

Assume that r,,_ =11, s, = s; and t,, = to, for each n > 6, we obtain

1
Wn+1 :wn_‘_Z(tn_tn—l)a nZ 67
in particular,

Wpi1 = Wy, n>"7.

In this situation, we deduce constant connection coefficients, for n > 7.

REFERENCES

[1] M. ALFARO, F. MARCELLAN, A. PENA, M.L. REZOLA: On linearly related orthogonal
polynomials and their functionals, J. Math. Anal. Appl., 287 (2003), 307-319.

[2] M. ALFARO, F. MARCELLAN, A. PENA, A., M.L. REZOLA: On rational transformations of
linear functionals: direct problem, J. Math. Anal. Appl., 298 (2004), 171-183.

[3] M. ALFARO, F. MARCELLAN, A. PENA, M.L. REZOLA: When do linear combinations of
orthogonal polynomials yield new sequences of orthogonal polynomials, J. comput. Appl. Math.,
233 (2010), 1446-1452.

[4] M. ALFARO, A. PENA, M.L. REZOLA, F. MARCELLAN: Orthogonal polynomials associated
with an inverse quadratic spectral transform, Comput. Math. Appl., 61 (2011), 888-900.

[5] M. ALFARO, A. PENA, J. PETRONILHO, M.L. REZOLA: Orthogonal polynomials generated
by a linear structure relation: inverse problem, J. Math. Anal. Appl., 401(1) (2013), 401,
182-197.



A COMBINATION OF ORTHOGONAL POLYNOMIALS SEQUENCES: 2 — 5 TYPE RELATION 913

[6] T.S. CHIHARA: An Introduction to Orthogonal Polynomials, Gordon and Breach. New York,
1978.

[7]1 K. H. KwoON, D. W. LEE, F. MARCELLA, S. B. PARK : On Kernel polynomials and self-
perturbation of orthogonal polynomials, Ann. Mat. Pura Appl., 180(2) (2001), 127-146.

[8] P. MARONI: Une théorie algébrique des polynémes orthogonaux. Application aux polynémes
orthogonaux semi-classiques, in: Orthogonal Polynomials and their Applications, (C. Brezinski
et al., Eds.). IMACS Ann. Comput. Appl. Math., 9, Baltzer, Basel, (1991), 95-130.

[9] J. PETRONILHO: On the linear functionals associated to linearly related sequences of orthogo-
nal polynomials, J. Math. Anal. Appl., 315(2) (2006), 379-393.

[10] A. RONVEAUX, W. VAN ASSCHE: Upward extension of the Jacobi matrix for orthogonal

polynomials, J. Approx. Theory, 86(3) (1996), 335-357.

LABORATORY OF LANOS

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BADJI MOKHTAR

ANNABA, ALGERIA.

Email address: abelkebir2022@gmail.com

LABORATORY OF LANOS
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BADJI MOKHTAR
ANNABA, ALGERIA.

Email address: bourascdz@yahoo.fr



	1. Introduction
	2. 2-5 type relation
	3. Characterization of orthogonality
	4. Particular case
	References

