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A NEW KERNEL FUNCTION GENERATING THE BEST COMPLEXITY
ANALYSIS FOR MONOTONE SDLCP

Nabila Abdessemed1, Rachid Benacer, and Naima Boudiaf

ABSTRACT. In this article, we propose a new class of search directions based on
new kernel function to solve the monotone semidefinite linear complementarity
problem by primal-dual interior point algorithm.

We show that this algorithm based on this function benefits from the best poly-
nomial complexity, namely O(

√
n(log n)2 log

n

ε
). The implementation of the al-

gorithm showed a great improvement concerning the time and the number of
iterations.

1. INTRODUCTION

Let Sn denotes the space of all n×n real symmetric matrices, Sn+ and Sn++ is the
cone of symmetric positive semidefinite, and symmetric positive definite matrices
respectively. The semidefinite linear complementarity problem (SDLCP) is defined
by:

Find a pair of matrices (X, Y ) ∈ Sn × Sn that satisfies the following conditions

(1.1) X, Y ∈ Sn+, Y = L(X) +Q, and X • Y = Tr(XY ) = 0,
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where L : Sn → Sn is a linear transformation and Q ∈ Sn. Interior point meth-
ods (IPMS) considered the powerful tools to solve linear optimization (LO) and
can be extended to more general cases such as complementarity problem (CP),
semidefinite optimization(SDO) and semidefinite linear complementarity problem
(SDLCP).

The semidefinite linear complementarity problem (SDLCP) which can be viewed
as a generalization of the standard linear complementarity problem (LCP) and
included the geometric monotone semidefinite linear complementerity introduced
by Kojima et al [6], so it became the object of many studies of research these last
years due to the importance of applications in mathematical programming and
various areas of engineering and scientific fields.

Because their polynomial complexity and their simulation efficiency, primal-dual
following path are the most attractive methods among interior point to solve a
large wide of optimization problems ( [8], [9], [12]). These methods are based
on the kernel functions for determining new search directions and new proximity
functions for analyzing the complexity of these algorithms, thus we have shown
the important role of the kernel function in generating a new design of primal-dual
interior point algorithm.

Also these methods are introduced by Bai et al [2] for (LO) and Elghami [4] for
(SDO), then it’s extended by many authors for different problems in mathematical
programming ( [1], [3], [7]).

The polynomial complexity of large update primal-dual algorithms is improved
in contrast with the classical complexity given by logarithmic barrier functions by
using this new form.

A kernel function is an univariate strictly convex function which is defined for
all positive real t and is minimal at t = 1, whereas the minimal value equals 0.
In the other words ψ(t) is a kernel function when it is twice differentiable and
satisfies the following conditions

ψ(1) = ψ′(1) = 0, ψ′′(t) > 0 for all t > 0 and lim
t→0

ψ(t) = lim
t→+∞

ψ(t) = +∞.

We can describe by its second derivative, as follows

ψ(t) =

∫ t

1

∫ ζ

1

ψ′′(ξ)dξdζ.
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We show that the methods of solving (SDLCP) are similar to the methods of (SDO),
but there are difficulties and differences including non-orthogonality of search
directions, therefore this will be studied in detail later.

In this paper, we establish the polynomial complexity for (SDLCP) by introduc-
ing our new kernel function

(1.2) ψ(t) =
1

2
(2t2 +

1

t2
− 5) + e

1
t
−1.

The idea of this work, is to investigate such a new kernel function and the corre-
sponding barrier function and show that our large-update primal-dual algorithm
has best complexity bound in terms of elegant analytic properties of this kernel
function.

The paper is organized as follows. In section 3, we present the generic primal-
dual algorithm, based on Nestrov-Todd direction, the new kernel function and its
growth properties for (SDLCP) are presented in the section 4. In the section 5, we
detailed proofs of the complexity of the proposed algorithm (an estimation of the
step size and its default value, the worst case iteration complexity). In the section
6, some numerical results are presented. Finally, a conclusion in the section 7.

2. PRELIMINARIES

Throughout the paper we use the following notation and we review some known
facts about matrices and matrix functions which will be used in the analysis of the
algorithm. The expression X � 0 ( X � 0) means that X ∈ Sn+ ( X ∈ Sn++).

The trace of n × n matrix X is denoted by Tr(X) =
n∑
i=1

xii. The Frobenius norm

of a matrix X ∈ Rn×n is defined by ‖X‖F =
√
X •X =

√
Tr(XTX). For any

X � 0, λi(X), 1 ≤ i ≤ n, denote its eigenvalues. X1/2 denotes the symmetric
square root, for any X ∈ Sn++. The identity matrix of order n is denoted by I. The
diagonal matrix with the vector x is denoted by X = diag(x). we denote by λ(V )

the vector of eigenvalues of V ∈ Sn++, arranged in non-increasing order, that is
λ1(V ) ≥ λ2(V ) ≥ . . . ≥ λn(V ).

Theorem 2.1. (Spectral theorem for symmetric matrices [2]) The real n× n matrix
A is symmetric if and only if there exists a matrix Q ∈ Rn×n such that QTQ = I and
QTAQ = B, where I is the n× n identity matrix and B is a diagonal matrix.
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Definition 2.1. ( [4], Definition 3.2.1) Let V be a symmetric matrix, and

(2.1) V = QT diag(λ1(V ), λ2(V ), . . . , λn(V ))Q,

where Q is any orthogonal matrix that diagonalizes V , let ψ(t) be defined as in
equation (1.2), the matrix valued function ψ : Sn → Sn is given by

(2.2) ψ(V ) = QT diag(ψ(λ1(V )), ψ(λ2(V )), . . . , ψ(λn(V )))Q,

since ψ(t) is differentiable, and the derivative ψ′(t) is defined by

ψ′(V ) = QT diag(ψ′(λ1(V )), ψ′(λ2(V )), . . . , ψ′(λn(V )))Q, for t > 0.

Using ψ, we define the barrier function (or proximity function) Ψ(V ) : Sn+ → R+,
as follows

(2.3) Ψ(V ) = Tr(ψ(V )) =
n∑
i=1

ψ(λi(V )).

In [4,5], we can be found some concepts related to matrix functions.

3. PRESENTATION OF PROBLEM

The feasible set, the strict feasible set and the solution set of the system (1.1)
are subsets of Rn×n denoted respectively by

F = {(X, Y ) ∈ Sn × Sn, Y = L(X) +Q : X � 0, Y � 0},
F0 = {(X, Y ) ∈ F : X � 0, Y � 0},
S = {(X, Y ) ∈ F : Tr(XY ) = 0}.

The set S is nonempty and compact, if F0 is not empty and L is monotone.
As we know, the basic idea of primal-dual IPMs is to relax the third equation

(complementarity condition) in system (1.1) with the following parameterized
system

(3.1)


X � 0, Y � 0,

Y = L(X) +Q,

XY = µI,

where µ > 0 and I is the identity matrix.
Since L is a linear monotone transformation and (SDLCP) is strictly feasible (i.e,

there exists (X0, Y0) ∈ F0), the system (3.1) has a unique solution for any µ > 0.
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As µ → 0 the sequence (X(µ), Y (µ)) approaches the solution (X, Y ) of problem
(SDLCP). The system (3.1) is equivalent to

(3.2)

{
L(∆X) = ∆Y,

∆X + P∆Y P T = µY −1 −X,

where P is defined in [11]

P = X
1
2 (X

1
2Y X

1
2 )−

1
2X

1
2

= Y −
1
2 (Y

1
2XY

1
2 )

1
2Y −

1
2 .

Let D = P
1
2 , where P

1
2 denotes the symmetric square root of P. The matrix D can

be used to scale X and Y to the same matrix V , defined by

(3.3) V =
1
√
µ
D−1XD−1 =

1
√
µ
DY D,

thus we have

(3.4) V 2 =
1

µ
D−1XYD.

Note that the matrix V and D are symmetric and positive definite. Using (3.3),
the system (3.1) becomes

(3.5)

{
L̃(DX) = DY ,

DX +DY = V
−1 − V,

with

(3.6) DX =
1
√
µ
D−1∆XD−1, DY =

1
√
µ
D∆Y D, and L̃(DX) = DL(DDXD)D.

The linear transformation L̃ is also monotone on Sn. Under our hypothesis the new
linear system (3.5) has a unique symmetric solution (DX , DY ). These directions
are not orthogonal, because

DX •DY = Tr(DYDX)

= 1
µ
∆X • L(∆X) ≥ 0.

Thus, this property makes the analysis more difficult from SDO problem.
So far, we have described the schema that defines classical NT-direction. Ac-

cording to [4,12], we replace the right hand side of the second equation in system
(3.5) by −ψ′(V ). Thus, we will use the following system to define new search
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directions

(3.7)

{
L̃(DX) = DY ,

DX +DY = −ψ′(V ).

The new search directions DX and DY are obtained by solving system (3.7), so
that ∆X and ∆Y are computed via (3.6). By taking along the search directions
with a step size α defined by some line search rules, we can construct a new couple
(X+, Y+) according to X+ = X + α∆X and Y+ = Y + α∆Y .

The generic form of the large-update primal-dual interior point algorithm for
solving SDLCP is stated as follows.

Algorithm Generic interior point algorithm for SDLCP
Input: A threshold parameter τ ≥ 1; an accuracy parameter ε ≥ 0;

barrier update parameter θ, 0 < θ < 1; X0 � 0, Y 0 � 0 and
µ0 = Tr(X0Y 0)/n such that Ψ(X0, Y 0, µ0) ≤ τ

begin
X := X0;Y := Y 0;µ := µ0;

while nµ ≥ ε do
begin

µ = (1− θ)µ;
while Ψ(X, Y, µ) > τ do

begin
Solve system (3.7 ) and use (3.6) to obtain (∆X,∆Y );

determine a suitable step size α;
update (X, Y ) := (X, Y ) + α(∆X,∆Y )

end
end

end

4. PROPERTIES OF NEW KERNEL FUNCTION

In this part, we present the new kernel function defined as follows

(4.1) ψ(t) =
1

2
(2t2 +

1

t2
− 5) + e

1
t
−1.

the properties of this function are crucial in our complexity analysis. We list the
first three derivatives of ψ, as follows

(4.2) ψ′(t) = 2t− 1

t3
− 1

t2
e

1
t
−1,
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(4.3) ψ′′(t) = 2 +
3

t4
+ (

2

t3
+

1

t4
)e

1
t
−1,

(4.4) ψ′′′(t) = −12

t5
− (

6

t5
+

1

t6
+

6

t4
)e

1
t
−1.

It is easy to verify that limt→0 ψ(t) = limt→+∞, ψ(t) = +∞ and ψ(1) = ψ′(1) = 0.

Then ψ(t) is a barrier kernel function, and from (4.3), (4.4) we see that ψ′′(t) >
1, ψ′′′(t) < 0.

Lemma 4.1. Let ψ(t) be defined as in (4.1), then

(4.5) tψ′′(t) + ψ′(t) > 0, for t < 1,

(4.6) tψ′′(t)− ψ′(t) > 0, for t > 1,

(4.7) ψ′′′(t) < 0, for t > 0,

(4.8) 2ψ′′(t)2 − ψ′′′(t)ψ′(t) > 0, for t < 1,

(4.9) ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt) > 0, for t > 1, β > 1.

Proof. For (4.5) and (4.6), using (4.2) and (4.3), we have

(4.10) tψ′′(t) + ψ′(t) = 4t+
2

t3
+ (

1

t2
+

1

t3
)e

1
t
−1 > 0 for t < 1,

and

(4.11) tψ′′(t)− ψ′(t) =
4

t3
+ (

1

t3
+

3

t2
)e

1
t
−1 > 0, for t > 1.

For (4.7), it is clear from (4.4), ψ′′′(t) < 0 for t > 0.
For the (4.8), we have

(4.12) 2ψ′′(t)2 − ψ′′′(t)ψ′(t) = K(t) +H(t)e2( 1
t
−1) +Q(t)e( 1

t
−1) > 0 for t < 1,

where K(t) = 8+ 48
t4

+ 6
t8
, H(t) = ( 2

t6
+ 2

t7
+ 1

t8
) and Q(t) = (28

t3
+ 20

t4
+ 2

t5
+ 6

t7
+ 6

t8
− 1

t9
).

Finally, to obtain (4.9), using (4.6) and (4.7). �

Now, we introduce the proximity measure δ(V ), as follows

(4.13) δ(V ) = 1
2
‖ − ψ′(V )‖ = 1

2

√
Tr(ψ′(V )2) = 1

2
‖DX +DY ‖,
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note that
δ(V ) = 0⇔ V = I ⇔ Ψ(V ) = 0.

Lemma 4.2. For ψ(t), the following assertions holds

1. ψ(
√
t1t2) ≤ 1

2
(ψ(t1) + ψ(t2)) for t1, t2 > 0,

2. 1
2
(t− 1)2 ≤ ψ(t) ≤ 1

2
(ψ′(t))2, for t > 0,

3. ψ(t) ≤ 4(t− 1)2, for t ≥ 1.

Proof. For the first item, using ( [10], lemma 2.1.2) and (4.5), we get the expo-
nential property of ψ(t). For the first inequality in item (2), using (ψ′′(t) > 1), we
have

ψ(t) =

∫ t

1

∫ ζ

1

ψ′′(ξ)dξdζ ≥
∫ t

1

∫ ζ

1

dξdζ =
1

2
(ψ′(t))2.

The second inequality is obtained, as follows

ψ(t) =

∫ t

1

∫ ζ

1

ψ′′(ξ)dξdζ ≤
∫ t

1

∫ ζ

1

ψ′′(ξ)ψ′′(ζ)dξdζ =
1

2
(t− 1)2.

For item (3), using Taylor’s theorem with ψ(1) = ψ′(1) = 0, ψ′′(t) = 8 and ψ′′′(t) <
0, we obtain

ψ(t) ≤ 1

2
(ψ′′(1))(t− 1)2 = 4(t− 1)2.

�

Now, let % : [0,∞) → [1,∞) be the inverse function of ψ(t), for t ≥ 1 then we
have the following lemma.

Lemma 4.3. For ψ(t), we have
√

1 + s ≤ %(s) ≤ 1 +
√

2s, for s ≥ 0.

Proof. Let s = ψ(t) for t ≥ 0, since ψb(t) is monotonically decreasing and ψb(1) = 0

then s = t2−1 +ψb(t) ≤ t2−1, where ψb(t) = 1
2
(t−2−3) + e

1
t
−1 denotes the barrier

term. This implies that t = %(s) ≥
√

1 + s. According to the second inequality in
Lemma 4.2, we have t = %(s) ≤ 1 +

√
2s, s ≥ 0. �

Theorem 4.1. Let 0 ≤ θ ≤ 1 and V+ = V√
1−θ . If Ψ(V ) ≤ τ , then we have

Ψ(V+) ≤ 4

1− θ
(
√

2τ +
√
nθ)2.
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Proof. From ( [2], Theorem 3.3.2) with β = 1√
1−θ , Lemma 4.3, we have

Ψ(V+) ≤ nψ
(

1√
1−θ%(Ψ(V )

n

)
≤ 4n

(
1+
√

2( τ
n

)−
√

1−θ
√

1−θ

)2

≤ 4
1−θ

(√
2τ +

√
nθ
)2

= Ψ0,

since 1 −
√

1− θ = θ
1+
√

1−θ ≤ θ, for 0 ≤ θ < 1. the last inequality is hold Ψ0 is an
upper bound of Ψ(V ). �

Theorem 4.2. [9] Suppose that V1 and V2 are symmetric positive definite and Ψ is
the real valued matrix function induced by the matrix function ψ. Then,

Ψ
([

(V
1
2

1 V2V
1
2

1 )
1
2

])
≤ 1

2
(Ψ(V1) + Ψ(V2)).

Lemma 4.4. For any V � 0,

(4.14) δ ≥
√

Ψ(V )

2
.

Proof. Using the second inequality in Lemma 4.2 and (4.14), we have

δ2 =
1

4
Tr(ψ′(V )2) ≥ 2

4

n∑
i=1

ψ(λi(V )) ≥ 1

2
Ψ(V ),

hence δ ≥
√

Ψ(V )
2
. �

During the algorithm, we assume that τ ≥ 1. Using Ψ(V ) ≥ τ and (4.14), we

have δ ≥
√

1
2
.

5. COMPLEXITY ANALYSIS

5.1. An estimation of the step size. The important idea of this section is to ob-
tain a new complexity results for an (SDLCP) problem by using the proximity
function defined by new kernel function. During an inner iteration, we compute a
default step size α, the decrease of the proximity function and give the complexity
results of the algorithm. Taking a step size α, we have new iterates

X+ =
√
µD(V + αDX)D and Y+ =

√
µD−1(V + αDY )D−1,

where DX , DY and D are defined by (3.6), so we have

V 2
+ = (V + αDX)

1
2 (V + αDY )(V + αDX)

1
2 .

Since the proximity after one step is defined by
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Ψ(V+) = Ψ([(V + αDX)
1
2 (V + αDY )(V + αDX)

1
2 ]

1
2 ).

By Theorem (4.2), we have Ψ(V+) ≤ 1
2
[Ψ((V + αDX) + Ψ(V + αDY )].

Define for α > 0 , f(α) = Ψ(V+) − Ψ(V ) and f1(α) = 1
2
[Ψ((V + αDX) + Ψ(V +

αDY )] − Ψ(V ). It is easily seen that, f1(0) = f(0) = 0 and f(α) ≤ f1(α). Further-
more, f1(α) is a convex function.

Now, to estimate the decrease of the proximity during one step, we need the
two successive derivatives of f1(α) with respect to α. By using the rule of differen-
tiability in [5,9], we obtain

f ′1(α) = 1
2
Tr(ψ′((V + αDX)DX + ψ′(V + αDY )DY ),

and

f ′′1 (α) = 1
2
Tr(ψ′′((V + αDX)D2

X + ψ′′(V + αDY )D2
Y ).

Hence, using (4.13) and (3.7), we obtain

(5.1) f ′1(0) =
1

2
Tr(ψ′((V )(DX +DY )) =

1

2
Tr(−ψ′(V )2) = −2δ2(V ).

In what follows, we use the short notation δ(V ) := δ.

Lemma 5.1. [2, Lemma 4.4] Let ρ : [0,∞) → (0, 1] denote the inverse function of
the restriction of −1

2
ψ′(t), and α, is given by

α =
1

2δ
(ρ(δ)− ρ(2δ)),

then
α ≥ α̃ =

1

ψ′′(ρ(2δ))
.

Lemma 5.2. One has

(5.2) α ≥ 1

6 + 2(6δ + 1)(1 + log(4δ + 1))2
.

Proof. We need to compute ρ(2δ) = s, where ρ : [0,∞) → (0, 1] be the inverse of
−1

2
ψ′(t) for t ∈ [0, 1). This implies

(5.3)
−ψ′(t) = 4δ ⇔ −2t+ 1

t3
+ 1

t2
e

1
t
−1 = 4δ

⇔ e
1
t
−1 = t2(4δ + 2t− 1

t3
)

⇒ t ≥ 1
1+log(4δ+1)

.
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Using the definition of ψ′′(t) and equation (5.3), if s ≤ 1, we have s−1
s5
≤ 0 and

1
s2
≤ (1 + log(4δ + 1))2. Then,

ψ′′(t) = 2 +
3

t4
+ (

2

t3
+

1

t4
)e

1
t
−1 ≤ 6 + 2(6δ + 1)(1 + log(4δ + 1))2

α ≥ 1

6 + 2(6δ + 1)(1 + log(4δ + 1))2.

As a default step size, we take

(5.4) α̃ =
1

6 + 2(6δ + 1)(1 + log(4δ + 1))2.

�

Following the same procedure as in [2], we have the following lemma

Lemma 5.3. Let α̃ be a step size as defined in (5.4) and Ψ(V ) ≥ 1, then

(5.5) f(α̃) ≤ −
√

Ψ0

33(1 + log(2
√

2Ψ0 + 1))2
.

Proof. By (Lemma 4.5, [2]) and α ≥ α̃, we have

f(α̃) ≤ − δ2

6 + 2δ(6 +
√

2)(1 + log(4δ + 1))2

≤ −1

2

 Ψ

6 + 2
√

Ψ√
2

(6 +
√

2)(1 + log(4
√

Ψ√
2

+ 1))2


≤ −

√
Ψ0

33(1 + log(2
√

2Ψ0 + 1))2
.

�

5.2. Iteration bound. To come back to the situation, where Ψ(V ) ≤ τ after µ−
update we need to count how many inner iterations. Let the value of Ψ(V ) after
µ−update be denoted by Ψ0 and the subsequent values by Ψk, for k = 0, 1, . . . , K−
1, where K is the total number of inner iterations in the outer iteration. Then,

(5.6) ΨK−1 > τ, 0 ≤ ΨK ≤ τ.

Lemma 5.4. Let K be the total number of inner iterations in the outer iteration.
Then,

K ≤ 66
(
1 + log(2

√
2Ψ0 + 1))2

)
Ψ

1
2
0 .
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Proof. Using ( [10], proposition 1.2.3), by taking tk = Ψk, β = 1
33(1+log(2

√
2Ψ0+1))2

and γ = 1
2

we get the result. �

Now, we estimate the total number of iterations of our algorithm.

Theorem 5.1. If τ ≥ 1, the total number of iterations is not more than

66(1 + log(2
√

2Ψ0 + 1))2)Ψ
1
2
0

1

θ
log

nµ0

ε
.

Proof. In the algorithm, nµ ≤ ε, µk = (1− θ)kµ0 and µ0 =
xt0y0

n
. By simple compu-

tation, we have

k ≤ 1

θ
log nµ0

ε
.

By multiplying the number of outer iterations and the number of inner iterations,
we get an upper bound for the total number of iterations, namely

K

θ
log nµ0

ε
≤ 66

θ
(1 + log(2

√
2Ψ0 + 1))2)Ψ

1
2
0 log

nµ0

ε
.

This completes the proof. �

Remark 5.1. We assume that τ = O(n), θ = Θ(1) and Ψ
1
2
0 = O(

√
n), we obtain the

solution of the problem at most O(
√
n(log n)2 log

n

ε
).

6. NUMERICAL RESULTS

The main purpose of this section, is to present three monotone SDLCPs for test-
ing the effectiveness of algorithm. The implementation is manipulated in "Matlab".
Here we use "inn" which means the iterations number produced by the algorithm.
The choice of different values of the parameters shows their effect on reducing the
number of iterations.

In all experiments, we use τ = 2, ε = 10−6, α ∈ { 0.9, 1} and θ ∈ { 0.95, 0.99},
the barrier parameter µ0 ∈ {Tr(XY )/n, 0.005, 0.0005}. We provide a feasible
initial point (X0, Y0) such that IPC and Ψ(X0, Y0, µ0) 6 τ are satisfied.

The first example is the monotone SDLCP defined by two sided multiplicative
linear transformation [1]. The second is monotone SDLCP which is equivalent
to the symmetric semidefinite least squares (SDLS) problem and the third one is
reformulated from nonsymmetric semidefinite least squares (NS-SDLS) problem
[7], in the second and third example, L is Lyaponov linear transformation.
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Example 1. The data of the monotone SDLCP is given by L(X) = AXAT , where

A =


17.25 −1.75 −1.75 −1.75 −1.75

−1.75 16.25 −2 0 0

−1.75 −2 16.25 −2 0

−1.75 0 −2 16.25 −2

−1.75 0 0 −2 16.25

 ,

Q =


−9.25 1.25 1.25 1.25 1.25

1.25 −8.25 1.5 0 0

1.25 1.5 −8.25 1.5 0

1.25 0 1.5 −8.25 1.5

1.25 0 0 1.5 −8.25

 .

The strictly feasible initial starting pointX0 � 0 is given byX0 = Diag(0.0620, . . . , 0.0620).

The unique solution X∗ ∈ S5
+, is given by

X∗ =


0.0313 0.0020 0.0020 0.0020 0.0020

0.0020 0.0313 0.0019 0 0

0.0020 0.0019 0.0312 0.0019 0

0.0020 0 0.0019 0.0312 0.0019

0.0020 0 0 0.0019 0.0313

 .

The number of inner iterations for several choices of α, θ and µ obtained by algo-
rithm are presented, in Table 1

TABLE 1. Number of inner iterations for several choices of α, θ and µ

α = 0.9 µ

θ Tr(XY )/n 0.005 0.0005
0.95 11 11 10
0.99 13 12 10

α = 1 µ
θ Tr(XY )/n 0.005 0.0005
0.95 7 7 7
0.99 7 7 6

Example 2. The data of the monotone SDLCP which is equivalent to the symmetric
semidefinite least squares (SDLS) problem, is given by
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L(X) =
1

2
(ATAX +XATA) and Q = −1

2
(ATB +BTA),

where

A =



6 −1 0 0 0

−0.1 6 −1 0 0

0 −0.1 6 −1 0

0 0 −0.1 6 −1

0 0 0 −0.1 6

0 0 0 0 −0.1


,

and

B =



1 0 0 0 0

−0.4 1 0 0 0

−0.4 −0.4 1 0 0

−0.4 0 −0.4 1 0

−0.4 0 0 −0.4 1

−0.4 0 0 0 −0.4


.

The strictly feasible initial point X0 � 0 defined by X0 = Diag(0.2369, . . . , 0.2369).

The unique solution X∗ ∈ S5
+ of the proposed example is given by

X∗ =


0.1639 −0.0215 −0.0342 −0.0328 −0.0300
−0.0215 0.1553 −0.0227 −0.0019 −0.0027
−0.0342 −0.0227 0.1558 −0.0194 0.0014

−0.0328 −0.0019 −0.0194 0.1564 −0.0189
−0.0300 −0.0027 0.0014 −0.0189 0.1598


The number of inner iterations for several choices of α, θ and µ are presented,in table
2.

TABLE 2. Number of inner iterations for several choices of α, θ and µ

α = 0.9 µ

θ Tr(XY )/n 0.005 0.0005
0.95 11 11 10
0.99 12 12 10

α = 1 µ
θ Tr(XY )/n 0.005 0.0005
0.95 7 7 7
0.99 7 7 6
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Example 3. We consider the monotone SDLCP which is reformulated from NS-SDLS
problem, the matrices A and B of NS-SDLS are given by

A =



−0.3157 0.0330 0.0603

−0.3274 −0.0158 0.0625

−0.3569 0.0787 0.0563

−0.2994 0.0301 0.0496

−0.3243 −0.0048 0.0715

−0.3447 0.0736 0.0545

−0.2417 0.0709 0.0522

−0.2063 −0.0099 0.0233

−0.3285 0.1585 0.0979

−0.2484 0.0878 0.0622

−0.2196 0.0023 0.0280

−0.3148 0.1506 0.0922



,

and

B =



−1.4257 0.1528 0.4398

−1.4024 −0.3092 0.4187

−1.3766 0.4366 0.4197

−1.4274 0.1424 0.4353

−1.3994 −0.3095 0.4206

−1.3716 0.4285 0.4193

−1.4269 0.1581 0.4335

−1.4015 0.3229 0.4214

−1.3767 −0.4189 0.4333

−1.4257 0.1515 0.4358

−1.3989 0.3276 0.4217

−1.3724 0.1454 0.4356



.

Lyapunov linear transformation L(X) is symmetric and strictly monotone given by

(6.1) L(X) =
1

2
(G−1X +XG−1) and Q = −1

2
(G−1ATB +BTAG−1),

where G = ATA. The unique solution X∗ of monotone SDLCP is given by
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X∗ =

 5.1571 −0.2615 1.9198

−0.2609 6.2655 −4.0779

1.9199 −4.0778 0.6117

 .

The number of inner iterations for several choices of α ∈ { 0.3, 0.5, 0.9}, µ =

Tr(XY )/n with feasible starting point X0 = I are presented in the following ta-
ble 3.

TABLE 3. Number of inner iterations

α µ = Tr(XY )/n
0.3 6
0.5 3
0.9 2

The results in these tables show that the algorithm based on our kernel func-
tion ψ(t) is effective. the number of iterations and the time produced depends
on the values of the parameters α, θ and µ, for all possible combinations of this
parameters in practical computation, we obtained the better results than [1], [7].

7. CONCLUSION

In this paper, we introduced our new kernel function, with a complete theoreti-
cal study related to their characteristics, which contributed well to creating a new
design for primal-dual interior-point algorithms. We showed that the theoretical
complexity of large-update interior point method is O(

√
n(log n)2 log

n

ε
), which

improves the best iteration complexity. Finally, the numerical results obtained are
excellent, which indicated that our kernel function used in algorithm is efficient.

REFERENCES

[1] M. ACHACHE, N. TABCHOUCHE: A full Nesterov-Todd step primal-dual path- folowing in-
terior point algorithm for semidefinite linear complementarity problems, Croation Operational
Research Review. 9 (2018), 37–50.

[2] Y.Q. BAI, M. ELGHAMI, C. ROOS: A comparative study of kernel functions for primal-dual
interior point algorithms in linear optimization, SIAM. J. Optim., 15 (1) (2004), 101–128.

[3] N. BOUDIAF: Problème de complémentarité linéaire semidéfini, Etude théorique et algorith-
mique, Thèse de doctorat en sciences mathématiques, université de Batna, Algerie, 2012.



A NEW KERNEL FUNCTION GENERATING THE BEST COMPLEXITY. . . 941

[4] M. ELGHAMI: New primal-dual interior point methods based on kernel functions, Ph. D. thesis.,
Delft University, Netherland, 2005.

[5] R.A. HORN, R.J. CHARLES: Matrix Analysis, Cambridge university press, UK, 1986.
[6] M. KOJIMA, M. SHINDOH, S. HARA: Interior point methods for monotone semidefinite

linear complementarity in symmetric matrices, SIAM J. Optimization, 7 (1997), 86–125.
[7] N.G.B. KRISLOCK: Numerical solution of semidefinite constrained least squares problems,

Master of science. The university of British colombia, Canada, 2003.
[8] M.R. PEYGHAMI, S. FATHI HAFSHEJANI, S. CHEN: A primal-dual interior point method

for semidefinite optimization based on a class of trigonometric barrier functions. J. Oper. Res 44
(2016), 319–323.

[9] J. PENG, C. ROOS, T. TERLAKY: New class of polynomial primal-dual methods for linear and
semidefinite optimization, European. J. Oper. Res 143(2) (2002), 234–256.

[10] J. PENG, C. ROOS, T. TERLAKY: Self regular function and new search directions for linear
and semidefinite optimization, Math. Programming, 93 (2002), 129–171.

[11] M.J. TODD: A study of search directions in primal-dual interior point methods for semidefinite
programming, Optim. Methods Softw., 11 (1999), 1–46.

[12] G.Q. WANG, Y.Q. BAI, C. ROOS: Primal-dual interior point algorithm for semidefinite
optimization based on a simple kernel function, J. Math. Model Algorithms, 4 (2005), 409–
433.

LTM, DEPARTMENT OF MATHEMATICS

UNIVERSITY OF MOSTAFA BEN BOULAÏD BATNA2
53 ROUTE DE CONSTANTINE. FÉSDIS, BATNA,
ALGERIA.
Email address: n.abdessemed@univ-batna2.dz

LTM, DEPARTMENT OF MATHEMATICS

UNIVERSITY OF OF MOSTAFA BEN BOULAÏD BATNA2
53 ROUTE DE CONSTANTINE. FÉSDIS, BATNA,
ALGERIA.
Email address: r.benacer@univ-batna2.dz

EDPA, DEPARTMENT OF MATHEMATICS

UNIVERSITY OF OF MOSTAFA BEN BOULAÏD BATNA2
53 ROUTE DE CONSTANTINE. FÉSDIS, BATNA,
ALGERIA.
Email address: n.boudiaf@univ-batna2.dz


	1. Introduction
	2. Preliminaries
	3. Presentation of Problem
	4. Properties of New Kernel Function
	5. Complexity Analysis
	5.1. An estimation of the step size
	5.2. Iteration bound

	6. Numerical results
	7. Conclusion
	References

