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ON A BIVARIATE KATZ’S DISTRIBUTION

Michel Koukouatikissa Diafouka!, Chedly Gélin Louzayadio, Rodnellin Onésime Malouata,
Nophie Rogedine Ngabassaka, and Rufin Bidounga

ABSTRACT. In this paper, we propose the bivariate distribution of the univariate
Katz distribution [[7] using the technique of the product of marginal distributions
by a multiplicative factor. This method has been examined in [[11]] and used in [[9]
to construct a bivariate Poisson distribution. The obtained model is a good way to
unify bivariate Poisson, bivariate binomial and bivariate negative binomial distri-
butions and has interesting properties. Among others, the correlation coefficient
of the obtained model can be either positive, negative, or null, and the necessary
condition of zero correlation is a necessary and sufficient condition for indepen-
dence. We used two methods to estimate the parameters: the method of moments
and the maximum likelihood method. An application to concrete insurance data
has been made. This data concerns natural events insurance in the USA and third-
party liability automobile insurance in France [|13].

1. INTRODUCTION

One of the most important questions in the modeling and analysis of count data
is how to formulate a probability distribution, and one method of constructing
multivariate distributions is the technique of the product of marginal distributions
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by a multiplicative factor. Developed in [11]] and used in [|9] to construct a bivari-
ate Poisson distribution, the technique of the product of marginal distributions by
a multiplicative factor consists of constructing a multivariate distribution whose
random variables can be dependent or independent with a correlation coefficient
which can be positive as well as negative or null. This method is thus one of
the alternatives to the method of trivariate reduction (see [3]) as well as par-
allel works such as [5,6,12]), whose multivariate distributions obtained admit
only a positive correlation [5]. In the bivariate case, the technique of the prod-
uct of marginal distributions by a multiplicative factor stipulates that the random
pair (X,Y’), whose random variables X and Y have for probability mass functions
p(r) = P(X = z) and p(y) = P(Y = y) respectively, accepts for probability mass
function pmf p(z,y) = P(X = z,Y = y) given by

(1.1 p(x,y) = p(@)p(y)[1 + a(g1(z) — Eg1(X)]) (92(y) — E [g2(Y)])],

where g; and g, must be bounded functions of (x,y) € R? and « any real number in
a suitable range choosen such that 1+a (g;(x) — E [g1(X))]) (92(y) — E [g2(Y)]) > 0
for all z,y > 0, with p(z) and p(y) as marginals. In [9]], the authors constructed
the bivariate Poisson distribution by taking ¢;(t) = ¢2(t) = ™%, ¢ > 0.

With this in mind, we construct a bivariate Katz distribution using the technique
of the product of marginal distributions by a multiplicative factor by taking the
same ¢; and ¢, functions as [9]. Indeed, in [7] author formulated one of the
most important families of probability distributions in the analysis and modeling
of count data. Defined from the successive probability ratios

p(z+1) A+ p8z
1.2 = =0,1,...
( ) p(Z) Z+ 1 ) z 07 Y )
with p(0) # 0 and p(z) = P(Z = z), where A > 0 and § < 1, it is understood that

if \+ 0z <0thenp(z) =0for z=1,2,... [1,12], its pmf is given by [14]

%e—k if 3 =0,
p(z) = ' z2=0,1,...,
M(l — B)M#  otherwise,
z.

where («), is the Pochhammer symbol and defined to be (o), = a(a+1)...(a +
z—1)for z=0,1,..., and « any real number with («), = 1. This distribution is
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a good way to unif Poisson, binomial, and negative binomial distributions when
g =0, B <0and § > 0, respectively [2]. Thus, the bivariate Katz distribution
is unified with the bivariate Poisson, bivariate binomial, and bivariate negative
binomial distributions.

On this, the rest of the paper is presented as follows. First, we present suc-
cessively the following notions: probability mass function, moment generating
function, moments, correlation and independence. Secondly, we estimate the pa-
rameters of the model using two methods: the method of moments and the max-
imum likelihood method. Finally, we make an application to concrete insurance
data followed by a conclusion. This data concerns natural events insurance in the
USA and third-party liability automobile insurance in France [13]].

2. BIVARIATE KATZ’S DISTRIBUTION

In this section, we present and study the bivariate Katz distribution from a prob-
abilistic and statistical point of view. In the rest of this section, as in the others, we
do not consider the particular case where one of the univariate Katz distributions
reduces to the Poisson distribution, because otherwise it is sufficient to consider
the Poisson distribution as a limit of the Katz distribution when the dispersion pa-
rameter tends to zero. And in particular, the case where the two univariate Katz
distributions reduce to the univariate Poisson distributions, comes down to the
bivariate Poisson distribution (cf. [9]).

2.1. Probability mass function. Let be consider two univariate Katz random
variables, X and Y, with parameters (A1, 51) and (\y, 32), respectively. From
(1.1), the random pair (X,Y") follows a bivaraite Katz distribution with param-
eters (A1, A, 81, B2, a) which the pmf p(z,y) is

pla,y) = (1= B/ (1 — gyl ﬁﬁdgzy/!@z)yﬂf@

Y 1 _— 516_1} =X1/B1 L {1 _ ﬁ26_1:| —X2/B2
1+a(e [—1—31 € —1—52 ’

where p(z) and p(y) ((x,y) € N?) are pmf of univariate Katz distributions as

2.1 X

marginals with parameters (A, 51) and (Aq, 82), respectively.
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2.2. Moment generating function. Let consider two random variables X and Y
with joint probability given by (1.1), the moment generating function My y of
(X,Y)is:

MX’Y(tl, t2> :E |:6t1X+t2Y]

= Z e p()p(y)1 + o (e — B [e_X]) (e¥—F [e_YD]

= e"p(x) > e ply) + o (Z e V() — E [e X etlwp(ﬂf))
X (Z = Wp(y) — B[] ) emp(y)>

=Mx (t1) My (t2) + a [Mx(t; — 1) — Mx(—1)Mx(t1)]
(2.2) [My (ty — 1) — My (=1) My (t3)],

where My and My are the moment generating functions of variables X and Y,
respectively. Since, the moment generating function of univariate Katz random

B ~\/B
11 _ﬁgt> (see [[1,12]),

from (2.2) we deduce the moment generating function My y of the Katz random
pair (X,Y') with parameters (A, Ao, 51, B2, @),

1— 51€t1 —A1/B1 1— /626152 —X2/Ba2
Mer(hota) ={ 75 T

(1 _ Bl€t1_1>_>\1/61 - <1 . Ble—1>—)\1/ﬂ1 <1 . Bletl)—)\l/ﬂl
- ﬁl 1— 61 1— Bl

y (1 _ 526t2—1)>\2/ﬁ2 - (1 _ 526_1>/\2/'82 (1 . 526t2>/\2/,82
1—p 1— /s 1— 5, '

2.3. Moments. Since the marginal pmf of X and Y are univariate Katz distribu-
tions with parameters (A, ;) and (\y, 82), then the mean vector is

A1
_ | 1B

1= f,

variable Z with parameters (), 3) is equal to M (t) = (

+«

X
Y

E
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and the dispersion matrix

A1
2.3) D (1—51)? Cov(j(y Y) |
2
cov(X,Y) 1= 5

where
cov(X,Y) = E[XY] — E[X]E|Y]

=2 wyp(@)p(y) [+a (e = B[ ]) (7 = B[77])] - EX]E[Y]

o (B [Xe ] - EXIE [ X)) (B [ve ] - EVIE[))
=a-cov (X,e ) cov (Y,e™)

B et 1— 516—1 —A1/B - A\ 1 — 616—1 —A1/B1
—“ 1 — et 1— 53 1—-5 1-5
Dpe L 1— B2€—1 —X2/B2 Ao 1— 626—1 —X2/B2
g 1_&@—1{ Iy 1 _1—52[ Ry } |
QM Ay (1 — 671)2

(1= B1)(1 = B2) (1= pre) (1 = Bret)

1— Be ! =X1/B1 1 — Boet —A2/B2
555 ]

2.4. Correlation and independence. From (2.3)), the correlation coefficien of X
and Y is

(2.4) Pxy = RVONPY: (1 - 6_1)2 |:1 — ﬁ16—1:| —A1/B1 [i?e_l] —X2/fa
- (I=FeH(1—=pFe ) | 1—=p 1— 5 .
Following [9], o can be bounded as follows

1

- {1 _516—1}/\1/51 . |:1 _626_1:|>\2/B2 ’
1—51 1_62

laf <

and pxy,
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Vs (1 _ 6—1)2 |:1 . Ble—l} —A1/B1 |:1 . 526_1:| —Xa/ B2
c(=Beh(A=peh) [ 1-6 1

|pXY| = L |:1 . 5161:|/\1/ﬁ1 L |:1 _ /8281:|/\2/52
1—51 1_52

From (2.4)), it follows that for this model, pxy = 0 if and only if & = 0. This
shows that the condition of zero correlation is a necessary and sufficient condition

for the independence of the random variables X and Y. Moreover, the correlation
coefficient of this model is positive, negative, or null according to « is positive,
negative, or null.

3. PARAMETERS ESTIMATING

In this section, we are interested in the estimation of the parameters, and we
examine two methods of estimation: the method of moments and the maximum
likelihood method. The asymptotic behavior of the obtained estimators is not stud-
ied because the asymptotic properties are directly derived from them (cf. [10]).
In practice, the moment estimators (MME) can be used as initial values in the
determination of the maximum likelihood estimators (MLE).

3.1. Method of moments. Let be considered a n—sample (z;,v;), i = 1,2,...,n
and note
7= y Zyz ox =~ i(ﬂc-—f)2 3§:1 n(y -7
n =1 ’ =1 Z ’ n =1 Z
and

SXy = — any y ?J)

where n, , is the frequency of the random pair (z,y) forx =0,1,..., y=0,1,...
and Z Ny = N.

The method of moments consists of equaling the theoretical moments with the
empirical moments in order to determine the estimators. The system of equaling
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the theoretical moments to the practical moments is

4 M\ -
1—p 7
A
1 _ 52 - y7
N
_ 2 T X
3.1) (1 6)
o
(1 o ﬁ2)2 Y> ;
Oé/\1>\2 (1 — 6_1)
(1= B1)(L = B2) (1= Pret) (1 — fre™)
1—pre ! —Ai/B 1—Boe~ !t —2/B2 .
. [ =51 } [ 152 ] - XY

From (3.1]), we derive the moments estimators:

( =2
)\1 = 6_27
o
)\2 = y—
oy’
~ T
ﬂl =1~ ga
52 =1- %7
Oy
(=80 = B) (1 - /61671> (1 - 51671> Sxy
o= —=
L )\1/\2 <1A—A€_1)2
' [1316_1]>\1/51 [1326_1]/\2/,32
\ 1—51 1—32 ’

961

3.2. Maximum likelihood method. In this section, we start with the maximum

likelihood of the univariate Katz distribution in order to deduce the maximum

likelihood of the bivariate Katz distribution.

3.2.1. Maximum likelihood method for the univariate Katz distribution. Let Z be a

Katz random variable with parameters (\, ). We propose an expression for the

log-likelihood function of the univariate Katz distribution for any 5 < 1 while

keeping in mind that for 5 < 0if A+ 5z <Oforall 2 =1,2,...,p(z) =0.
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Firstly, since p(0) = (1 — 3)*¥ then from (1.2)), we have:

p(z) = 2HPEZD B
A — A A
:—”iz 1)x...x—;6XTp(0), =12,
) | R Y 2=1,2,...,
k=1 k
i.e.,
_ AB 2
(3.2 p(s) = SO T sk - 1)) 2 =0,
’ k=1

with convention H =1forz=0.

k=1
Secondly, taking the logarithm of (3.2]), we have:

logp(z) = %log(l - B)+ Zlog[)\ + Bk —1)] + log(z!), z=0,1,...,
k=1

with convention Z =0 forz=0.

k=1

Finally, under this convention, considering a n—sample z = (z,...,z,) and
putting 6 = (\, §) the vector of the parameters, the log-likelihhod function log L(6; z)
of the univariate Katz distribution is:

(3.3) log L(0; z) = FA log(1 — fB) + Z Zlog [\ + B(k —1)] + nlog(2!),

=1 k=1

where log( z' Z log(z!)

3.2.2. Maximum likelihood method for the bivaraite Katz distribution. Now let us
consider a n—sample (x,y) = (x1,41), ldots, (x,,y,)and put 01 = (A1, A2, B, e, @),
01 = (M, 1) and 0y = (\g, B2) the vectors of the parameters. According to
and (3.3)), the log-likelihood function logL(6;x,y) of the bivariate Katz distri-
bution is a function of the univariate Katz distribution’s log-likelihood functions
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log L(01; z) and log L(6s;y) is equal to:

log L(0; (z,y)) = log L(61; z) + log L(62; )
n _17-M\/B1 —17—A2/B2
e TR
- Ml - M2

=1
4. APPLICATIONS

In this section, we make an application to concrete insurance data, such as that
from [|13] and concerning natural events insurance in the USA (application 1) and
third-party liability automobile insurance in France (application 2). To estimate
the parameters, we used the package maxLik for the R statistical environment [4].

4.1. Application 1. Data description: In order to study the joint distribution of
the random pair (X, Y'), the North Atlantic coastal states of the United States (from
Texas to Maine) that can be affected by tropical cyclones have been divided into
three geographical zones: Texas, Louisiana, and Mississippi (Zone 1), Alabama
(Zone 2), and other states (Zone 3). To do so, we used the data from the Table
first row in each cell, which shows the realizations of (X, Y’) observed during
the 93 years from 1899 to 1991, where X and Y are the yearly frequencies of
hurricanes affecting Zones 1 and 3 [13]].
And the elementary statistics are

0.7419355 &% = 0.6283310

T

y = 0.4731183 oy = 0.5345956

Table 1: Comparison of observed and theoretical yearly
frequencies of Hurricanes (1899-1991) having affected
Zone 1 and Zone 3 [13]

Zone 3
0 1 2 3 Total
Zone 1
0 27 9 3 2 41
27.176007 10.8133049 2.8300534 0.60754107
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28.799891 9.5517349 2.2731149 0.46203950

1 24 13 1 0 38
23.049160 9.9598363 2.6881501 0.58368569
22.397167 11.0478636 3.0828705 0.66618815

2 8 2 1 0 11
7.915677 3.5246400 0.9612066 0.20948894
7.066103 4.0071084 1.1621309 0.25439741

3 1 0 2 0 3
1.351342 0.6083693 0.1665229 0.03634042
1.005382 0.5999297 0.1761737 0.03872171

Total | 60 24 7 2 93

First row: observed frequency
Middle row : theoretical frequency for MME
Last row: theoretical frequency for MLE

Estimation and goodness-of-fit: Table [2| contains the parameter estimates for
both methods, and the corresponding theoretical frequencies are presented in Ta-
ble (1, second and third rows of each cell for MME and MLE, respectively. For the
MLE, the log-likelihood corresponding is equal to -179.4414.

TABLE 2. Parameters estimation

Method Parameters

A A2 Io B2 Q
MME 0.8760801 0.4187107 -0.1808036 0.1149978 0.2059890
MLE 0.9066641 0.4254498 -0.2346817 0.1057741 0.9799467

We have used the Pearson’s y? test to calculate the differences between the ob-
served and expected values after grouping the values into 7 categories: (0,0),
(0,1), (0,2 and 3), (1,0), (1,1 and above), (2,0) and (other cases). Table |3| con-
tains the values of the corresponding y? and p—value for the two estimation meth-
ods. This last table shows that we can’t reject the idea that the data fits a bivariate
Katz distribution with a type I error probability of 5% for both methods.
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TABLE 3. Goodness-of-fit

Method | x?  p—value
MME 1.357 0.9684
MLE 2.7496 0.8396

4.2. Application 2. Data description In [13], author describes these data as fol-

lows. The claims experience of a large automobile portfolio in France including

181038 liability policies was observed during the year 1989. The corresponding

yearly claim frequencies, collected in table 2 (first row in each cell), have been

divided into material damage only (type 1) and bodily injury (type 2) claims.
And for this data, the elementary statistics are:

0.051005866 o3 = 0.053884078

T
sxy = 0.0001930154

7y = 0.005529226 oy = 0.005520779

Table 4: Comparison of observed and theoretical yearly
frequencies of Automobile third party liability insurance

[13]
T 2
yPe 0 1 2 Total
Type 1
0 171345 918 2 172265

171356.0 916.51289192 1.812641
171339.3 918.77207313 1.819196

1 8273 73 0 8346
8241.683 75.78842897  0.1740909
8256.275 76.14888396 0.1751368

2 389 5 0 394
418.4827 4.44364827 0.01047165
418.1020 4.45319390 0.01050725
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3 31 1 0 32
21.62586 0.24097439 0.0005722265
21.51784 0.24051046 0.0005718383

4 1 0 0 1
1.127173 0.01277756 0.00003042178
1.116183 0.01269212 0.00003025611
Total | 180039 997 2 181038

First row: observed frequency
Middle row : theoretical frequency for MME
Last row: theoretical frequency for MLE

Estimation and goodness-of-fit. Table [5| contains the parameter estimates for both
methods, and the corresponding theoretical frequencies are presented in Table |4
second and third rows of each cell for MME and MLE, respectively. For the MLE,
the log-likelihood corresponding is equal to -42578.77.

TABLE 5. Parameters estimation

Parameters
Method

/\1 )\2 Bl 52 «

MME 0.04828139 0.00553768 0.05341488 -0.00153004 1.73265626
MLE 0.04837225 0.00555236 0.05305245 -0.00153998 1.73420781

The values of the corresponding x? and p—values of the two estimation methods
are presented in Table [f] after considering seven categories: (0,0), (0,1 and 2),
(1,0), (1,1 and 2), (2,0), (2,1 and 2), and (other cases). With a probability of
Type 1 error of 5%, it is apparent from Table [6] that the data fit the bivariate Katz
distribution for both estimation methods.

5. CONCLUSION

The product of marginal distributions by a multiplicative factor is an appealing
method for constructing multivariate distributions, and the bivariate Katz distri-
bution obtained by this method has some intriguing properties. Among others,
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TABLE 6. Goodness-of-fit

Method | x?  p—value
MME 6.6488 0.3546
MLE 6.6624 0.3532

the correlation coefficient of the obtained model can be either positive, negative,
or zero, and the necessary condition of zero correlation is a necessary and suf-
ficient condition for the independence of the random variables X and Y. This
property makes this model a suitable alternative to the bivariate Katz model using
the trivariate reduction method, whose correlation coefficient can only be strictly
positive (cf. [8]]).

Also note that the marginal distributions of bivariate Katz distribution are Katz
distributions for the technique of the product of marginal distributions by a mul-
tiplicative factor, which is still not the case for the trivariate reduction method.
For this last method, the marginal distributions of bivariate Katz distribution are
distributions of sums of random variables that follow Katz distributions (cf. [|8]]),
and for these marginal distributions to be Katz distributions, it is necessary that
the Katz dispersion parameters be equal (cf. theorem 3 in [[14]).
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