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MAXIMUM NORM CONVERGENCE OF NEWTON-MULTIGRID METHODS
FOR ELLIPTIC QUASI-VARIATIONAL INEQUALITIES WITH NONLINEAR

SOURCE TERMS

Mohammed Essaid Belouafi1 and Mohammed Beggas

ABSTRACT. In this paper, Newton-multigrid scheme on adaptive finite element
discretisation is employed for solving elliptic quasi-variational inequalities with
nonlinear source terms. We use Newton’s method as the outer iteration for the
standard linearization, and using standard multigrid as the inner iteration for
the solution of the Jacobian system at each step. The uniform convergence of
Newton-multigrid methods is shown in the sense that the multigrid methods have
a contraction number with respect to the maximum norm.

1. INTRODUCTION

We apply Newton-multigrid methods for solving obstacle problems based on re-
formulating the nonlinear quasi-variational inequality (QVI) as a Hamilton-Jacobi-
Bellman (HJB)-equation.

For the discretization, the finite element approximation is used to derive a dis-
cret system, and then we use an iterative procedure proposed by Hoppe [22]
to solve the obtained system. Then we describe how to apply Newton-multigrid
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methods to solve the nonlinear algebraic systems obtained by the HJB reformula-
tion 4.1, we do this by first linearizing the nonlinear system by Newton’s method
and then apply multigrid methods for the solution of the Jacobian system in each
iteration.

For the inner iteration, we describe the maximum norm convergence analysis
of the multigrid methods proposed by Arnold for elliptic PDEs [2]. According
to Hackbusch [26], the proof of these results is based on the approximation and
smoothing properties. For the outer iteration, we will see that Newton’s method
converges quadratically when the approximation solution is close to the actual
solution of the nonlinear system.

The remainder of this paper is briefly summarized as follows. In §2, we state
some assumptions and we introduce a continuous problem. In §3 the standard
finite element discretizations is applied to derive a system of equations, and in §4
we describe a Newton-multigrid method for the solution of the algebraic systems
obtained by the HJB reformulation. In §5 we present a uniforme convergence
results of these multigrid methods.

2. CONTINUOUS PROBLEM

2.1. Notations and assumptions. Let Ω be an open in RN , with sufficiently smooth
boundary ∂Ω for u, v ∈ V (V = H1

0 (Ω)), a(u, v) be a variational form associated
with the continuous non-linear operator A. Then, given a nonlinear right-hand
side f(u) such that:

f(u) ∈ L∞ ∩ C1(Ω̄),
∂f

∂u
≥ 0 in Ω̄× {u : u ≥ 0} .

Moreover, assume that A satisfies the coerciveness assumption

∃v ∈ V such that ∥u− v∥−1 ⟨Au− Av, u− v⟩ −→ ∞, ∥u∥ −→ ∞, ∀u ∈ V,

and that A is continuous surjective M-function and strictly T-monotone, i.e., ∀u, v ∈
V, (u− v)+ ̸= 0

⟨Au− Av, (u− v)+⟩≥0.

We defined the operator M : V ∩L∞ (Ω) −→ V ∩L∞ (Ω) by:
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Mu = k + inf
ε≥0,x+ε∈Ω

u (x+ ε) , k is a positive constant,(2.1)

M ∈ W 2,p (Ω) , Mu ≥ 0, on ∂Ω : 0 ≤ g ≤Mu,

where g is a regular function defined on ∂Ω. Let Kg(u) an implicit convex and non
empty set given by

Kg (u) = {v ∈ V, v = g on ∂Ω, v ≤Mu, in Ω} .

Consider the following problem: Find u ∈ Kg (u) solution of

(2.2)


a (u, v − u) ≥⟨f(u), v − u⟩ v ∈ Kg(u),

u ≤Mu Mu ≥ 0,

u = g on ∂Ω.

It is well known that under the previous hypothesis the problem (2.2) has a
unique solution.

3. DISCRETE PROBLEM

Let a decreasing sequence (mesh size parameter) {hk}lk=0 such that

hk+1 < hk, 0 ≤ k ≤ m− 1.

We present a nested quasi-uniform triangulations family {Tk, k ∈ N} of

Ωk =
⋃

T ∈Tk

T.

For all Tk we have
Ωk ⊂ Ωk+1 ⊂ Ω.

dist (∂Ωk, ∂Ω) ≤ c0h
2
k.

hkhk+1 ≤ c1.

On each level k, we select a piecewise linear finite element space

(3.1) Vk =
{
vk ∈ C (Ω) ∩H1 (Ω) | vk|Ωk

∈ P1

}
,

and we associate on each hk an analogous discretization of the problem (2.2) by
a finite element method (FEM). To facilitate the notation, put

Ωk = Ωhk
, Vk = Vhk

, Ak = Ahk
.
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We define the standar basis functions φi
k, i ∈ (1, . . . ,m (hk)) as

φi
k

(
xj
k

)
= δij.

xi
k denote a vertex of the triangulation Tk. Let Uk = Rmk , the usual finite element

restriction operator from Uk into Vk is bijection defined by

(3.2) rkv (x) =

m(hk)∑
i=1

v
(
xi
k

)
φi
k (x) .

On Uk we use a scaled euclidean scalar product

⟨u, v⟩k = h2
k

mk∑
i=1

uivi, and the associated norm ∥u∥k = ⟨u, u⟩
1/2
k ,

furthermore, the adjoint operator r∗k : Vk −→ Uk satisfies

⟨rku, v⟩L2 = ⟨u, r∗kv⟩ , ∀u ∈ Uk, v ∈ Vk.

The maximum norm ∥.∥∞ (on Uk) and the norm∥.∥L∞ (on Vk) are equivalent,
which are denoted by ∥.∥∞.

Lemma 3.1 ( [2]). Let rk the restriction operator defined by (3.2), then there exist
constants C1 and C2 independent of k such that

∥rk (u)∥L∞ = ∥u∥∞ , ∀u ∈ Uk,

C1 ∥v∥L∞ ≤ ∥r∗k (v)∥∞ ≤ C2 ∥v∥L∞ , ∀v ∈ Vk.

The numerical approximation of the QVI (2.2) by finite elements leads to the
solution of the following discrete QVI in finite dimension. Find uk ∈ Kg,k such that

(3.3)

{
⟨Akuk, vk−uk⟩≥ ⟨f(uk), vk − uk⟩ , ∀vk ∈ Kg,k,

uk ≤Mkuk, vk ≤Mkuk,

where

f(uk) ∈ L∞ (Ω) ,

Mkuk = K + inf
ϵ≥0, (x+ϵ)∈Ω̄

uk (x+ ϵ) , k is a positive constant,

Kg,k = {v ∈ Vk : v = πkg on ∂Ω, v ≤Mkuk in Ω} .
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And πk define the interpolation operator on ∂Ω.

The regularity results described by Ph. Cortey-Dumont in [19] are valid for
our problem. Assuming that the hypothesis in [19] for the case of the non-lineair
operator are satisfied, then the existence and uniqueness of the solution of the
discrete problem (3.3) is well-known. Moreover, we have the following regularity
result:

Theorem 3.1 ( [19]). Let u and uk are solutions of the problems (2.2) and (3.3)
respectively, then there exists a constant C independent of hk such that:

(3.4) ∥u− uk∥
L∞ (Ω) ≤ Ch

2 |log hk| 2.

4. DESCRIPTION OF NEWTON-MULTIGRID METHODS FOR QVIS

4.1. The well defined HJB-formulation of the discret problem. Formally, the
QVI (3.3) can be written as the following HJB equation.

Let the unique solution uν
k of the discrete HJB equation

(4.1) max
1≤i≤N

(
Ak,i[u

ν
k]u

ν
k,i−f [uν

k]k,i , u
ν
k,i−Mku

ν−1

k,i

)
= 0.

Choose an initial vector u0
k ∈ Uk. Given the iterate uν

k ∈ Uk, ν ≥ 0, we may split
the set

Jk = {1, 2, . . . ,mk} by Jk =
3⋃

p=1

Jp
k (u

ν
k) ,

as

(4.2)
J 1

k (uν
k) =

{
i ∈ Jk | (Ak[u

ν
k]u

ν
k − fk[u

ν
k])i > uν

k,i −Mku
ν−1
k,i

}
,

J 2
k (uν

k) =
{
i ∈ Jk | (Ak[u

ν
k]u

ν
k − fk[u

ν
k])i < uν

k,i −Mku
ν−1
k,i

}
,

J 3
k (uν

k) =
{
i ∈ Jk | (Ak[u

ν
k]u

ν
k − fk[u

ν
k])i = uν

k,i −Mku
ν−1
k,i

}
.

And compute uν+1
k ∈ Uk as the solution of the nonlinear equation

(4.3) Aν
k[u

ν
k]u

ν+1
k = f ν

k [u
ν
k],

where

(4.4) Aν
k[u

ν
k] =

{
Ak,i, if i ∈ J 1

k (u
ν
k) ,

Ik,i, if i ∈ J 2
k (u

ν
k) ∪ J 3

k (uν
k) .
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(4.5) f ν
k [u

ν
k] =

{
fk,i, if i ∈ J 1

k (u
ν
k) ,

Mku
ν−1
k,i , if i ∈ J 2

k (u
ν
k) ∪ J 3

k (uν
k) ,

with Ak,i (resp. fk,i)is the ith row of Ak[u
ν
k] (resp. the ith component of the right-

hand side fk[u
ν
k]) of our discret problem, and Ik,i is the ith row of the identity

matrix Ik.
We can prove the monotone convergence of the iterates if we assume Ak to be

continuously differentiable.

Theorem 4.1 ( [22]). Let (uν
k) be the iterate obtained by the previous iterative

scheme so it satisfies the H.J.B equation above, moreover we suppose that Ak to
be continuously differentiable, then the sequence (uν

k)v≥0 converges monotonely de-
creasingly towards the unique solution u∗

k of (3.3).

4.2. Newton-Multigrid Algorithm. Multigrid methods can be used to efficiently
solve the nonlinear partial differential equations (PDE). To do this for solving the
nonlinear system (4.3), we use Newton-multigrid method, in which a standard
linearization is applied, such as in Newton’s method. After the linearization of the
problem (4.3), the standard multigrid method can be used for solving the Jacobian
system in each linearization step.

Let vνk an approximation to the exact solution uν
k of the nonlinear system (4.3),

denote by e the error ek = uν
k − vνk .

Defining the residual to be Rk = f ν
k [u

ν
k] − Aν

k[u
ν
k]v

ν
k . Subtracting the original

equation (4.3) from the residual, we obtain

(4.6) Aν
k[u

ν
k]u

ν
k − Aν

k[u
ν
k]v

ν
k = Rk.

Since Aν
k[u

ν
k] is nonlinear, Aν

k[u
ν
k](ek) ̸= Rk, this means that for the nonlinear prob-

lem, we can not determine the error by solving a linear equation on the coarse
grid, as in standard multigrid. However, we must use (4.6) as the residual equa-
tion.

By applying Newton’s method to the system (4.3), We can use (4.6) as a basis for
the multigrid solver: for simplicity, we choose to use Fh as a nonlinear operator,
and we define the system of equations (4.3) on fine grid as:

(4.7) Fk(u
ν
k) = Aν

k[u
ν
k]u

ν
k − f ν

k [u
ν
k] = 0.
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The residual on the fine grid is rewritten as:

Rk(u
ν
k) = −Fk(u

ν
k).

Then Newton iteration for solving (4.7), is described as

uν+1
k = uν

k + (Jk(uν
k))

−1Rk(u
ν
k), k = 0, 1, 2, 3, . . . .

Here
Jk(uν

k)) = F ′
k(u

ν
k),

is the Jacobian matrix of the nonlinear system.
The multigrid approache for the nonlinear system of equations (4.7) can be

obtained by solving the Jacobian linear system for eνk as:

(4.8) Jk(uν
k)e

ν
k = Rk(u

ν
k).

In the linear multigrid, we choose an iterate eνk, ν > 0, we get ēνk by α applications
of an iterative method for the solution of the system (4.8), denoted by

(4.9) ēνk = Sα
k (eνk) .

S is the iteration matrix of smoothing method, and α is the number of iterations
performed.

Denote by e∗k the solution of (4.8). Setting the error Eνk = ēνk − e∗k , and the
residual d(ν)k = Rk(u

ν
k)− Jk(uν

k)ē
ν
k, we can write the equation (4.8) as

Jk(uν
k) (ē

ν
k + Eνk ) = Rk(u

ν
k).

Which results in the residual equation

Jk(uν
k)Eνk = Rk(u

ν
k)− Jk(uν

k)ē
ν
k = d

(ν)
k .

So to determine Eνk completely, we need to calculate Eνk−1 at level (k − 1) as the
solution of the coarse grid system

(4.10) Jk−1(e
ν
k−1)Eνk−1 = d

(ν)
k−1.

Here Eνk−1

(
resp Jνk−1(e

ν
k−1), d

(ν)
k−1

)
define an approximation at the level k − 1 of

Eνk
(

resp Jνk(eνk), d
(ν)
k

)
:

Eνk−1 = RkEνk , Jνk−1(e
ν
k−1) = RkJνk(eνk)Pk, d

(ν)
k−1 = Rkd

(ν)
k .
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Consequently, we determine an improved iterate for (4.8) at the level k by

(4.11) eν+1
k = ēνk + Pk

(
Eνk−1

)
.

We use the identity operator

Π : Vk−1 −→ Vk

Πv = v,

to define the restriction and the prolongation operators, i.e.,

(4.12) Pk = r−1
k rk−1, Rk = P t

k.

Remark 4.1. The previous algorithm describes one cycle of a multigrid method (as
the inner iteration) to solve (4.8) for two hierarchy of grids Ωk and Ωk−1, and one
iteration of Newton’s method (as the outer iteration) to solve (4.7). Thus we can
solve the system (4.10) approximately by applying the two-grid iteration recursively
to all hierarchy of grids {Ωk, k = 0, . . . ,mk} and we terminate the iteration process
of the Newton-multigrid when the iteration error is small.

The Newton-multigrid iteration may be described as the following algorithms
1and 2.

Algorithm 1 Newton-Muligrid methods

Choose an initial guess u0
k and a desired tolerance η.

while (Rk < η) do
compute the Jacobian matrix Jk and the residual vector Rk

Solve the linear system by a Muligrid method eνk ←MGM(Jk,Rk, e
ν
k)

Set uν
k ← uν

k + eνk ;
Set Rk ← f ν

k [u
ν
k]− Aν

k[u
ν
k]u

ν
k;

end while

5. MULTIGRID CONVERGENCE ON L∞-NORM

In this paragraph, the analysis of the uniform convergence for the multigrid
algorithm ( the inner iteration) is described as well as the convergence of New-
ton’s method ( the outer iteration) under assumptions which are similar to those
that have been imposed on the multigrid methods for the solution of nonlinear
equations.
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Algorithm 2 Muligrid methods

MGM(Jk,Rk, ek, α1, α2, µ)
ek ← smoother(Jk,Rk, ek, α1); % ( presmoothing)
dk ← Rk − Jkek; % Computat the residual
Rk;Pk; % Define the prolongation and the restriction
Jk−1 ← RkJkPk; % Restrict Jk
dk−1 ← Rkdk; % Restrict dk
Ek−1 ← dk−1 · 0; % Define a start value
if size(Jk−1 ≤ µ) % Coarsest grid Ωµ then
Ek−1 ← J−1

k−1dk−1; % The direct solve on the coarse grid
else
Ek−1 ←MGM(Jk−1, dk−1, Ek−1); % Solve the coarse problem

end if
Ek ← PEk−1; % Prolongat Ek−1

ek ← ek + Ek; % Add correction
ek ← smoother(Jk,Rk, ek, α2); % (Postsmoothing)
return ek

We now present the main hypotheses:

(1) There exist u∗
k ∈ Kg,k such that Fk(u

∗
k) = 0.

(2) For any uk in the neighborhood of u∗
k there exist a linear mapping F ′

k(uk)

such that: for any small ε > 0 there exist an η > 0 such that

∥Fk(uk)−Fk(u
∗
k)−F ′

k(u
∗
k)(uk − u∗

k)∥ ≤ ε∥uk − u∗
k∥,

whenever ∥uk − u∗
k∥ < η.

(3) The derivative F ′
k(uk) is invertible and (F ′

k(uk))
−1 is a bounded linear op-

erator, for any uk in the neighborhood of u∗
k, that is,

∥(F ′
k(uk))

−1∥ ≤ κ,

with a constant κ. In addition, we assume that the mapping (F ′
k(uk))

−1 is
continuous in uk. That is, for any ε > 0 there exist an η > 0 for which

∥I −F ′
k(u

∗
k)(F ′

k(uk))
−1∥ ≤ ε,

and
∥I − (F ′

k(u
∗
k))

−1F ′
k(uk)∥ ≤ ε,

hold, whenever ∥uk − u∗
k∥ < η.
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5.1. The iteration matrix of the multigrid algorithm. The iteration matrix of
the two-grid method with α1 presmoothing and α2 postsmoothing iterations on
level k is given by

(5.1) TGk (α1, α2) = Sα2
k

(
J−1
k − PkJ−1

k−1Rk

)
JkSα1

k .

One can easily prove that the multigrid method is linear.

Theorem 5.1 ( [3]). The multigrid method is a linear iterative method with the
iteration matrix MGk given by

MG0 = 0,(5.2a)

MGk = Sα2
k

(
Ik − Pk (Ik −MGk−1) J−1

k−1Rk

)
JkSα1

k ,(5.2b)

= TGk + Sα2
k Pk(MGk−1)J−1

k−1RkJkSα1
k , k = 1, 2, . . . .(5.2c)

5.2. Approximation property. The proof of the approximation property is based
on Theorem (3.1) and Lemma (3.1).

Theorem 5.2 ( [15]). Under the previous assumptions, the matrix

χ =
[
J−1
k − PkJ−1

k−1Rk

]
,

satisfies the following approximation propertie:

(5.3) ∥χ∥∞ ≤ Ch2
k |log hk|2 .

Proof. According to Theorem (3.1) we have

∥u− uk∥
L∞ ≤ Ch2

k |log hk|2 ∥∇(f)∥
L∞ , u ∈ W 2,p.

Then
∥u− u∗

k∥L∞ ≤ Ch2
k |log hk|2 ∥∇(f)∥

L∞ .

So we get∥∥u∗
k−u∗

k−1

∥∥
L∞
≤ ∥u∗

k−u∥L∞ +
∥∥u∗

k−1 − u
∥∥

L∞
(5.4)

≤ Ch2
k |log hk|2 ∥∇(f)∥

L∞ + Ch2
k−1 |log hk|2 ∥∇(f)∥

L∞

≤ Ch2
k |log hk|2 ∥∇(f)∥

L∞ .

The Galerkin discretization results in
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a (rku, rkv) = ⟨Aku, v⟩L2 , ∀u, v ∈ Uk.

Then

(a (rku, rkv))
′
= ⟨(Jk)u, v⟩L2 , ∀u, v ∈ Uk.

Also we have

(a
(
r−1
k (Ak)

−1(fk), v
)
)
′
=

〈
(r∗k)

−1∇(f), v
〉
L2 , ∀v ∈ Kg,k.

Let uk ∈ Kg,k and uk−1 ∈ Kg,k−1, be such that

a (uk, v) =
〈
(r∗k)

−1 f, v
〉
L2 ,

a (uk−1, v) =
〈(

r∗k−1

)−1
f, v

〉
L2

,

it follow that u∗
k = r−1

k J−1
k ∇(f) and u∗

k−1 = r−1
k−1J

−1
k−1Rk∇(f).

Using (5.4) and Lemma (3.1) we get∥∥r−1
k J−1

k ∇(f)− r−1
k−1J

−1
k−1Rk∇(f)

∥∥
∞ ≤ Ch2

k |log hk|2 ∥∇(f)∥
L∞ .

Then ∥∥J−1
k − r−1

k rk−1J−1
k−1Rk

∥∥
∞ ≤ Ch2

k |log hk|2 .

This completes the proof∥∥J−1
k − Pk (Jk−1)

−1Rk

∥∥
∞ ≤ Ch2

k |log hk|2 .

□

5.3. Smoothing prorperty. To demonstrate a smoothing prorperty, we decom-
pose Jk = Ek −Nk, and use the following assumptions:

(5.5) Ek is regular and
∥∥E−1

k Nk

∥∥
∞ ≤ 1, for all k.

(5.6) ∥Ek∥∞ ≤ Ch−2
k , for all k, with C independent of k,

For the pre&post-smoothing, we use a relaxation method with iteration matrix

Sk = Ik − ωE−1
k Nk, ω ∈ (0, 1) .
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Theorem 5.3 ( [2]). Assume that the previous assumptions and notations are satis-
fied, then there exist a constant C independont of k and α such that

(5.7) ∥(Jk)Sα
k ∥∞ ≤ C

1√
α
h−2
k ,

holds.

5.4. Convergence result of multigrid methods. Besides the approximation and
smoothing property, we also need to get the following stability bound:

(5.8) ∃Cs : ∥Sα
k ∥∞ ≤ Cs, for all k and α.

The convergence analysis is based on the following splitting of the two-grid itera-
tion matrix, with α2 = 0:

∥TGk (α1, 0)∥∞ =
∥∥((Jk)−1 − Pk (Jk−1)

−1Rk

)
(Jk)Sα1

k

∥∥
∞ ,

≤
∥∥(Jk)−1 − Pk (Jk−1)

−1Rk

∥∥
∞ ∥(Jk)S

α1
k ∥∞ .

Theorem 5.4. Under the previous assumptions, there exist a constant C independent
of k and α, such that the iterate uν

k, ν ≥ 0 for two grids k and k − 1 satisfies:

(5.9)
∥∥uν+1

k − u∗
k

∥∥
∞ ≤

(
C√
α
|log hk|2

)
∥uν

k − u∗
k∥∞ .

Proof. We have:∥∥uν+1
k − u∗

k

∥∥
∞ =

∥∥((Ik − Pk (Ik −MGk−1) (Jk−1)
−1Rk

)
(Jk)Sα1

k

)
(uν

k − u∗
k)
∥∥
∞

≤
∥∥Ik − Pk (Ik −MGk−1) (Jk−1)

−1Rk

∥∥
∞ ∥(Jk)S

α1
k ∥∞ ∥(u

ν
k − u∗

k)∥∞

≤
(
C2

1√
α
h−2
k

)(
C1h

2
k |log hk|2

)
∥uν

k − u∗
k∥∞

≤ C1C2√
α
|log hk|2 ∥uν

k − u∗
k∥∞ .

□

Usually, we will choose a hierarchy of more than two grids. The iteration matrix
(5.2) in this case can be defined by using the iteration matrix (5.1) for all levels k
recursively.
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Theorem 5.5 ( [3]). Consider the multigrid method with iteration matrix given
in (5.2). Then under the previous assumptions and for parameter values α2 = 0,
α1 = α > 0, τ = 2.

For any ζ ∈ (0, 1) there exists an α∗ such that for all α ≥ α∗

(5.10) ∥MGk∥∞ ≤ ζ, k = 0, 1, . . .

holds.

Proof. Combining by the smoothing property, the approximation property and the
stability bound (5.8), then the same arguments as in [3, Theorem 7.20] can be
applied. □

For the outer iteration, when we apply Newton’s method one can see that it
converges quadratically [5] once the approximation solution is close to the current
solution of the nonlinear system.

(5.11) ∥uν+1
k − u∗

k∥ ≤ C∥uν
k − u∗

k∥2.

Conclusion 5.6. In this work, we have applied Newton-Multigrid methods for the
nonlinear quasi-variational inequality related to HJB equation. we have proposed
three numerical methods. For the discretization, the finite element method is used to
construct the discrete system, and the two approaches of Newton-Multigrid methods:
Newton’s method as the outer iteration for the global linearization, and a standard
multigrid methods for solving the Jacobian system. The uniform convergence of this
Non-linear multigrid has been demonstrated successfully.

It is well known that if the initial guess is accurate, the iteration of any nonlinear
method is much faster. An interesting future case is to apply nested iteration, which
produces a good initial guess by first solving the problem on a coarser grid, and doing
this on all levels, it is the so-called FMG approach.
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