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POTENTIAL WAVE FORM IN IONIC MODELS
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ABSTRACT. In this paper, we have defined an optimization problem allowing to
directly find the shape of the cardiac wave of some ionic models. This allowed
us to compare some of these ionic models via a parameter identification prob-
lem instead of comparing them directly by plotting the graphs for given values
of the parameters. Compared to the empirical methods used to adjust one or
two parameters at a time encountered in electrophysiology, we believe that our
parameter identification approach is reliable and able to simultaneously identify
four to eleven parameters of an ionic model. Using this approach, we adjusted
the parameters of the Mitchell-Schaeffer and Aliev-Panfilov models to recover the
shape of the action potential obtained experimentally by fluorescence.

1. INTRODUCTION

Several ionic models are available to describe the evolution of the potential
across the membranes of cardiac cells. These models are generally read as a sys-
tem coupled to highly nonlinear differential equations with many adjustable pa-
rameters. Parameters setting becomes more and more important to be able to cus-
tomize these models from medical data (see for example [7,8]), to compare these
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models with each other in the best possible way or to represent the most complex
dynamic behavior of heart cells such as restitution properties. It is not easy to
study the combined effect of parameter variation and the literature is generally
not too explicit about how parameters are adjusted in ionic models. Parameters
setting is possible with simpler ionic models using the totic formula relating pa-
rameters to phase durations [7,9,13]. Few attempts have been made to approach
the parameters adjustment of an ionic model. In this article, we have explored the
possibility of varying the cost functions and the influence this has on the quality
of the identified parameters. Instead of defining a cost function that depends on
values derived from the model solution (phase durations and wave speed) [11],
we have defined a new cost function that depends directly on the solution of the
Mitchell-Schaeffer model. This new parameter identification problem allowed us
to directly find the shape of the cardiac wave with the standard Mitchell-Schaeffer
ionic model [9] using as a cost function the square of the difference of the numer-
ical and experimental potentials of the cardiac wave. Then we used the trapezium
method to approximate this identification problem and carried out validation tests
of the proposed numerical method. One of the undeniable advantages of this new
approach is the flexibility in the ionic model choice. To demonstrate the flexibility
of the approach, we have identified in the literature several usual ionic models
in increasing order of complexity, namely the Aliev-Panfilov model, the modified
Mitchell-Schaeffer model and the Fenton-Karma model ( [1,3,15,16]), in the pur-
pose of producing the action potential of each of these ionic models. We now know
how to numerically solve each of these ionic models to produce an action potential,
in itself an important advance for our work because it is far from easy to produce
significant numerical solutions with these models. The originality of our approach
compared to all that is published in the scientific literature consists in comparing
ionic models via parameters identification problem instead of only drawing graphs
for given values of the parameters. We have shown that it is possible to adjust the
parameters of the Aliev-Panfilov model to recover almost perfectly the shape of the
wave predicted by the standard Mitchell-Schaeffer model, and this in three differ-
ent regions of the heart, ventricles, Purkinje fibers and atriums. We believe, we are
the first to make optimal use of the parameter space to show that different ionic
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can produce the same type of action potential. Using this approach, we also com-
pared the Fenton-Karma models to the standard Mitchell-Schaeffer model. These
two models give trans-membrane potentials with a different shape when plotted
against time, but we were able to adjust their overall shape and in particular the
phase durations. Then, we compared the standard Mitchell-Schaefffer model to
that of Beeler-Reuter [2]. The potential generated by Beeler-Reuter admits a sig-
nificantly more complex shape than that of standard Mitchell-Schaefffer, but we
were able to adjust their overall shape. We also compared the modified Mitchell-
Schaeffer model to the Beeler-Reuter model, which proved to be better than the
standard Mitchell-Schaeffer model in approaching the complex form of the poten-
tial obtained by the Beeler-Reuter model. All these comparisons were made by
adjusting the parameters of each of these models. Finally, we performed numer-
ical simulations to adjust the parameters of the standard Mitchell-Schaeffer and
Aliev-Panfilov models to find the shape of the action potential obtained by fluores-
cence on pigs at the Medical Biophysics Laboratory of the University of Toronto,
Canada [10]. Once again, the validity of this approach testifies that the potential
generated by standard Mitchell-Schaefffer fits better the potential obtained by flu-
orescence than that of Aliev-Panfilov. All our test cases illustrate the effectiveness
of our parameter identification methods, at least for the ionic models with two or
three variables

2. OPTIMIZATION PROBLEM TO FIND THE SHAPE OF THE CARDIAC WAVE

We now present a parameter identification method which tries to adjust the
transmembrane potential u = u(t) predicted by an ionic model (such as the
Micthell-Schaeffer model) to the potential ũ = ũ(t) measured experimentally or
calculated using another ionic model. We minimize the function

(2.1) J(τ) =
1

2

∫ T

0

| u(s, τ)− ũ(s) |2 ds,

where (u, v) is solution of the standard Mitchell-Schaeffer model:

(2.2)


du

dt
= f(u, v, τ), with u(0, τ) = u0,

dv

dt
= g(u, v, τ), with v(0, τ) = v0,
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with

(2.3) f(u, v, τ) =
1

τin
vu2(1− u)− 1

τout
u,

(2.4) g(u, v, τ) =


1− v

τopen
, if u < ugate,

−v

τclose
, if u ≥ ugate.

τin = 0.3ms, τout = 6ms, τopen = 130ms, τclose = 150ms, ugate = 0.13.

The function J is none other than the square of the norm in L2(0, T ), that is
∥ u− ũ ∥2L2(0,T ). Minimizing J therefore comes to looking for the solution of (2.2)
closest to ũ in the sense of the norm L2(0, T ).

2.1. Numerical method used to find the shape of the wave. We have used
the Nelder-Mead method (as in [11]) to minimize the function J = J(τ) of the
problem (2.1)-(2.2), while using the trapezoidal method [6] to approximate the
integral (2.1):

(2.5) J(τ) ≃ ∆t

2

[
(u0 − ũ0)

2 + 2
N−1∑
i=1

(ui − ũi)
2 + (uN − ũN)

2

]
,

with ti = i∆t, i = 0, . . . , N and ∆t =
T

N
. The potential ũ = ũ(s) is in general

known for discete values ũi, i = 0, . . . , N. It is therefore natural to approximate
(2.1) by a quadrature formula. The values ui, i = 0, . . . , N, are none other than
the approximations of the potential u(ti) obtained by the method of solving the
system of ordinary differential equations (2.2).

2.2. Validation test of the optimization method. We want to validate our nu-
merical approach. To do this, we will generate a potential ũ (called here the
”experimental” potential) with the standard Mitchell-Schaeffer model for the pa-
rameters τ ∗ = [0.3, 6, 130, 150]. Then we will try to check if the numerical potential
u obtained by minimizing the function J = J(τ) of the problem (2.1)-(2.2) totally
covers the shape of ũ, that is to say u = ũ. Starting from the parameters τ0 close
to the parameter τ ∗ as initial condition, the Nelder-Mead method must produce a
τfinal equal to τ ∗ when it converges. We set the tolerance of the method to within
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10−4. A value of J(τfinal) close to zero guarantees that the adjustment of u on ũ is
good in the sense of least squares. The Table 1 gives the results corresponding to
the test cases of validation of the method.

TABLE 1. Validation test Results of the optimization method.

τ0 τfinal J(τfinal)
[0.27, 5.8, 127, 140] [0.2998765, 5.9979534, 118.43252, 149.9954] 0.0000003
[0.2, 5.5, 125, 140] [0.3, 6, 129.98955, 150.00001] 4.180D − 13
[0.39, 8, 140, 170] [0.3000001, 6.0000023, 130.00916, 150.00001] 4.620D − 13
[0.29, 7, 120, 140] [0.3000103, 6.00017, 130.98011, 150.00037] 1.498D − 09

Each row of the table 1 reads as follows, for example for the first line: starting
from τ0 = [0.27, 5.8, 127, 140] as initial condition, after 261 evaluations of the func-
tion J and 136 iterations of the Nelder-Mead method until convergence ∥ τk+1 −
τk ∥< 10−4 or k > kmax, we got τfinal = [0.2998765, 5.9979534, 118.43252, 149.9954]

for which J(τfinal) = 0.0000003. We notice in the table 1 that for initial values
τ0 quite close to the values of the parameter τ ∗ = [0.3, 6, 130, 150], we manage to

calculate τfinal with a relative error
| τfinal − τ ∗ |

| τ ∗ |
of the order of 10−5 to within

10−6, except for the first test case where τfinal = [0.2998765, 5.9979534, 118.43252,

149.9954]. The potentials u and ũ coincide, that is to say, we manage to overlap
the two graphs for these two variables, as can be seen in Figure 1 (left and right
graphs). The gate variables v and ṽ numerical and experimental, respectively, do
not seem to coincide for all τ0. This is not surprising because the function J con-
tains a least squares term on u and not on v. The fact that J(τfinal) = 0 at most
to within 10−6 allows us to verify that we have correctly identified the parameters
since this corresponds to a difference of at most 10−3 between u and ũ in L2(0, T )

norm, however without control over the adjustment of v.

3. VARIANT OF THE WAVE FORM FITTING PROBLEM.

Due to the difficulty of controlling the gate variable v, we added to the min-
imization function J(τ) in (2.1) a term of the least squares type depending on
the numeric and experimental gate variables of the cardiac wave. This addition
of a term to adjust only makes sense by adjusting the standard Mitchell-Schaeffer



996 D.V. Pongui Ngoma, V.D. Mabonzo, L.J.P. Gomat, G. Nguimbi, and B.B. Bamvi Madzou

(A) τ0 = [0.39, 8, 140, 170] (B) τ0 = [0.25, 5.8, 128, 140]

FIGURE 1. Graphs of (u, v) and (ũ, ṽ) at convergence of the Nelder-
Mead method

solution (u, v) to another solution of (ũ, ṽ) standard Mitchell-Scheaffer. Other-
wise, the gate variable ṽ = ṽ(t) is a variable that represents the slow activity of
a multitude ions and cannot be measured experimentally. Also, the gate variable
ṽ of another two-variable model, such as the Aliev-Panfilov model (see below),
will look completely different and cannot be adjusted with the v of the standard
Mitchell-Schaeffer model. The minimization function becomes:

(3.1) J(τ) =
1

2

∫ T

0

| u(s, τ)− ũ(s) |2 ds+ 1

2

∫ T

0

| v(s, τ)− ṽ(s) |2 ds

where (u, v) is solution of the standard Mitchell-Schaeffer model:

(3.2)


du

dt
= f(u, v, τ), with u(0, τ) = u0,

dv

dt
= g(u, v, τ), with v(0, τ) = v0.

Minimizing J means looking for the solution of (3.2) closest to ũ and ṽ in the
sense of the norm L2(0, T ).

We discretize the function J by the trapezoidal method:

J(τ) ≃ ∆t

2

[
(u0 − ũ0)

2 + 2
N−1∑
i=1

(ui − ũi)
2 + (uN − ũN)

2

]
+

+
∆t

2

[
(v0 − ṽ0)

2 + 2
N−1∑
i=1

(vi − ṽi)
2 + (vN − ṽN)

2

]
,(3.3)
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with ti = i∆t, i = 0, . . . , N and ∆t =
T

N
. The potential ũ = ũ(s) is generally known

for discrete values ũi, i = 0, . . . , N. It is therefore natural to approximate (3.1) by
a quadrature formula. The values ui and vi, i = 0, . . . , N, are none other than
the approximations of the solution of u(ti) and v(ti) obtained by the ODE system
resolution method (3.2).

By resuming the calculations of the table 1, with the new minimization function
(3.1), we obtain the result of the table 2.

TABLE 2. Results of the Numerical method validation test.

τ0 τfinal J(τfinal)
[0.27, 5.8, 127, 140] [0.2999999, 5.9999981, 129.29997, 150] 4.980D-12
[0.2, 5.5, 125, 140] [0.3000003, 6.0000051, 130.00001, 149.99997] 4.774D-12
[0.39, 8, 140, 170] [0.3999990, 5.9999839, 130.00003, 149.99998] 8.093D − 12
[0.29, 7, 120, 140] [0.3000001, 6.0000016, 129.99995, 150] 6.853D − 12

By comparing table 1 and 2, we see that, for values of the parameter τ0, suffi-
ciently close to the values of the parameter τ ∗ = [0.3, 6, 130, 150], we manage to
match u and ũ, v and ṽ two by two, and τfinal ≈ τ ∗ for all test cases in table 2. The
graphs (left and right) in Figure 2 give the same results for different values of the
parameter τ0, with the graphs of the functions u and ũ as well as v and ṽ which
coincide perfectly.

(A) τ0 = [0.39, 8, 140, 170] (B) τ0 = [0.25, 5.8, 128, 140]

FIGURE 2. Graphs of solutions (u, v) and (ũ, ṽ)
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4. VARIOUS IONIC MODELS

In this section we will present some ionic models and in the next section we will
seek to compare these ionic models.

4.1. Aliev-Panfilov model. The Aliev-Panfilov model [1] is an ionic model, com-
posed of two ordinary differential equations which describe the dynamics of the
trans-membrane potential u and a gate variable v,

(4.1)


du

dt
= ku(u− a)(1− u)− uv + Istim,

dv

dt
= −ε(u, v)(v + ku(u− a− 1))

where

ε(u, v) = ε0 +
µ1v

u+ µ2

, τAP = [k, a, ε0, µ1, µ2] , Istim = Istim(t)

is an external stimulation current. The following values of parameters are given
in [1]:

k = 8, a = 0.15, ε0 = 0.002, µ1 = 0.2 and µ2 = 0.3.

The function ε(u, v) is used to adjust the restitution curve of the Aliev-Panfilov
model [?] to the experimental results, through the parameters µ1 and µ2. The
Aliev-Panfilov model contains two time-dependent variables and five parameters
like the standard Mitchell-Schaeffer model.

We used the Scilab ode function to numerically calculate the solution of the
Aliev-Panfilov model presented in Figure 3 with a stimulation current Istim(t) =

0.06 for t ∈ [100, 120], 0 everywhere else, and the initial condition (u0, v0)
t ≡ (0, 0)t.

We set T = 1200 ms and computed the solution (ui, vi) for i = 1, 2, . . . , N .
The potential u obtained for the Aliev-Panfilov model presents a slight peak

followed by a short phase of repolarization at the beginning of the second phase
(that is to say "the tray"). The standard Mitchell-Schaeffer model does not have
this peak. Moreover, the representation of the gate variable v of the Aliev-Panfilov
model admits a reversed form compared to that of standard Mitchell-Schaeffer,
due to the fact that the state of equilibrium is (u, v) = (0, 0) for the Aliev-Panfilov
model compared to (u, v) = (0, 1) for the standard Mitchell-Schaeffer. The variable
v is not included between 0 and 1 for the Aliev-Panfilov model.
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FIGURE 3. Representation of the trans-membrane potential u and
the covering variable v as a function of time of the Aliev-Panfilov
model, τAP = [8, 0.15, 0.002, 0.2, 0.3].

4.2. Modified Mitchell-Schaeffer model. The modified Mitchell-Schaeffer model
[15,16] is an ionic model, composed of three ordinary differential equations which
describe the dynamics of the trans-membrane potential u(t), of the gate variable
v(t) and the concentration c(t). This modified Mitchell-Schaeffer model is com-
posed of ten parameters (see table 3):

- the equation for the trans-membrane potential u is the sum of three cur-
rents: the incoming current Iin = Iin(u, v, c), the outgoing current Iout =
Iout(u) and the external stimulation current Istim = Istim(t). This equation
is written

(4.2)
du

dt
= Iin(u, v, c) + Iout(u) + Istim(t)

where the current Iout is a linear current and is defined by Iout(u) = − u
τout

,
the current Iin is a nonlinear current which is the sum of two concentra-
tions (independent and dependent)

(4.3) Iin(u, v, c) =
uv

τin
{ϕci(u) + βe−cϕcd(u)} avec β > 0 constant.
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The equation (4.3) is justified by the fact that the accumulation of charges
in the cell weakens the current towards the interior, thus reducing the
variation of the action potential u. The behavior of the modified Mitchell-
Schaeffer model is not sensitive to the form of the functions ϕci(u) and
ϕcd(u) which can be taken as linear in pieces, that to say:

ϕci(u) =



u

ugate

if u ≤ ugate,

1 if ugate < u ≤ 1− ugate,

(1− u)

ugate

if 1− ugate < u,

and

ϕcd(u) =


0 if u ≤ ugate,

1− | 1− 2u |
1− 2ugate

if ugate < u ≤ 1− ugate,

0 if 1− ugate < u.

- the equation for the gate variable v is defined as follows:

(4.4)
dv

dt
=


(1− v)

τopen
if u ≤ ugate,

−v

τclose(u)
if u > ugate,

with

(4.5)
1

τclose(u)
=


1

τfclose
−

(
1

τfclose
− 1

τsclose

)(
1− u

1− usldn

)
if u > usldn,

1

τsclose
if u ≤ usldn,

where τfclose, τsclose and usldn are fast close, slow close and slow down po-
tential, respectively.

- the concentration equation is characterized by a current, noted I(t), which
leads to the accumulation of charge in the cell and a linear current which
attenuates the cell charge according to a time constant τpump. This equa-
tion is written:

(4.6)
dc

dt
= −I(t)− c

τpump
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with

(4.7) I(t) =


ε

1− ugate

(Iin + Iout) if u > ugate and
du

dt
> 0,

0 else

where currents Iin and Iout are defined in (4.2) and (4.3).

TABLE 3. Parameters of Modified Mitchell-Schaeffer Ionic Model.

Parameters Values Units
τin 0.28 ms
τout 3.2 ms
β 7.3
ugate 0.13
usldn 0.89
τopen 500 ms
τfclose 22 ms
τsclose 320 ms
τpump 30000 ms
ε 0.033

The solution (see Figure 4) of the modified Mitchell-Schaeffer model was ob-
tained numerically using the Scilab ode function with a stimulation current Istim =

0.004 for t ∈ [100, 150], and 0 everywhere else, starting from the initial condition
(u0, v0, c0)

t ≡ (0, 0.99, 1.5)t. We set T = 1400 ms, and used the parameters defined
in the Table 3.

Compared to the standard Mitchell-Schaeffer model, note the changes in the
trans-membrane potential u, that to say a peak followed by early repolarization at
the beginning of the tray period (observed for certain cardiac cells such as Purkinje
fibers ) as well as the much more abrupt return to equilibrium at the end of the
treshold phasis. The gate variable v behaves quite differently with the modified
Mitchell-Schaeffer model compared to the standard Mitchell-Schaeffer, although
the equilibrium value for it is still 1.

4.3. Fenton-Karma model. The Fenton-Karma model [3, 17] is an ionic model,
composed of eleven parameters (see table 4) and three ordinary differential equa-
tions that describe the dynamics of the trans-membrane potential u and two gate
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(A) Trans-membrane potential, u (B) gate variable v

(C) Concentration c

FIGURE 4. Representation of trans-membrane potential (a), gate
variable (b) and concentration (c) as a function of time
of the modified Mitchell-Schaeffer model, with τMSm =
[τin, τout, β, ugate, usldn, τopen, τfclose, τsclose, τpump, ε] given in table 3.

variables v and w for fast and slow ion channel closures, respectively. More pre-
cisely,

- the equation defining the trans-membrane potential u, is given by:

(4.8)
du

dt
= − (Ifast + Islow + Iung + Istim)

such that
1. Ifast is a fast in-cell current, defined by

Ifast = −v
Q(u)

τfast
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where τfast is the fast depolarization time and Q(u) is a piecewise
linear function depending on the trans-membrane potential u,

(4.9) Q(u) =

(1− ugate)(1− u) if u ≥ ugate,

0 if u < ugate.

2. Islow is a slow current in the cell, defined by

Islow = −w
s(u)

τslow
,

where τslow is the characteristic time related to the tray phase and s(u)

is a regular function

(4.10) s(u) =
1

2
{1 + tanh(k(u− usig))} .

3. Iung is a ungated current favoring the passage of ions in the cell, given
by

Iung =
P (u)

τung
,

where τung is the passage time of ions in the cell and P (u) is a piece-
wise linear function depending on the trans-membrane potential u

and the critical exit potential uout

(4.11) P (u) =

1 if u ≥ uout,
u

uout

if u < uout.

- The equation defining the gate variable v for fast closing is given by

(4.12)
dv

dt
=

(v∞(u)− v)

τv(u)

where

(4.13)

v∞(u) = 0 and τv(u) = τvclose if u ≥ ugate,

v∞(u) = 1 and τv(u) = τvopen if u < ugate.

- The equation defining the gate variable w for slow closing is defined by

(4.14)
dw

dt
=

(w∞(u)− w)

τw(u)
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where

(4.15)

w∞(u) = 0 and τw(u) = τwclose if u ≥ ugate,

w∞(u) = 1 and τw(u) = τwopen if u < ugate.

TABLE 4. Fenton-Karma Ionic Model Parameters [3,17].

Parameters Values Units
τfast 0.25 ms
τslow 127 ms
τung 130 ms
uout 0.1
τvclose 10 ms
τvopen 18 ms
τwclose 1000 ms
τwopen 80
ugate 0.13
usig 0.85
k 10

The solution (see Figure 5) of the Fenton-Karma model was obtained numer-
ically using the Scilab ode function with a stimulation current Istim(t) = 0.08

for t ∈ [100, 102], and zero everywhere else, starting from the initial condition
(u0, v0, w0)

t = (0.001, 0.99, 0.99)t. We set T = 1200 ms, and used the parameters
defined in Table 4.

The trans-membrane potential u obtained with the Fenton-Karma model resem-
bles that given by the Mitchell-Schaeffer model with the main difference being that
u is closer to 1 at the beginning of the comparative tray to the Mitchell-Schaeffer
u potential. The gate variable w behaves similarly to the gate variable v of the
Mitchell-Schaeffer model, except that w decreases linearly while the Mitchell-
Schaeffer v decreases exponentially. Note also that the amplitude of the variation
of w is less than that of the Mitchell-Schaeffer gate variable v. The Fenton-Karma
gate variable v has no equivalent in the Micthell-Schaeffer model. This variable
represents a rapid dynamic of the ion channels, that to say a sudden exponen-
tial variation during the depolarization and repolarization phases, then a constant
value throughout phase 2 of the potential action.
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(A) Trans-membrane potential, u (B) gate variable v

(C) slow gate variable w

FIGURE 5. Representation of trans-membrane potential
(a), fast gate variable (b) and slow gate variable (c) as
a function of time for the Fenton-Karma model, τFK =
[τfast, τslow, τung, uout, τvclose, τvopen, τwclose, τwopen, usig, k] according
to Table 4.

5. COMPARISON OF IONIC MODELS

In this section we will seek to develop a technique for adjusting the parameters
in order to compare the different ionic models presented in the section 4. To do
this we will consider the optimization problem defined in the section 2, that to say
the function of least squares type on the potential only:

(5.1) J(τ) =
1

2

∫ T

0

| u(s, τ)− ũ(s) |2 ds.
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The function J is approximated numerically by the trapezium method

(5.2) J(τ) ≃ ∆t

2

[
(u0 − ũ0)

2 + 2
N−1∑
i=1

(ui − ũi)
2 + (uN − ũN)

2

]
,

where u and ũ are the trans-membrane potentials obtained by two different ionic
models of section 4. For example, if we want to fit the Mitchell-Schaeffer model to
the Aliev-Panfilov model, we will take ũ as the trans-membrane potential predicted
by Aliev-Panfilov (for given values of the parameters τAP of this model) then u

as predicted by Mitchell-Schaeffer. The parameter to be identified will then be
the τ = τMS of the Mitchell-Schaeffer model. The J function only takes into
account the potential u because there is no reason to be able to adjust the gate
variables, these not being defined in the same way from one model to another. We
will still discuss the behavior of the gate variables because it will be interesting
to understand how the cell returns to equilibrium. Indeed, the gate variables
influence the duration of the recovery period at the end of the potential action.

5.1. Comparison of standard Mitchell-Schaeffer and Aliev-Panfilov ionic mod-
els. The idea here is to start with the solution obtained (see figure 6) by the
standard Mitchell-Schaeffer model, then try to identify the parameters of the
Aliev-Panfilov model by minimizing the function (5.2) in order to adjust the po-
tential predicted by Aliev-Panfilov to that predicted by the standard Mitchell-
Schaeffer model for the values of τMS = [0.3, 6, 130, 150]. Starting from τAP

0 =

[9, 0.11, 0.002, 0.02, 0.4] as the initial condition of the Nelder-Mead algorithm, we
obtained

τAP
final = [0.82578226, 0.0508103, 0.0102062, 0.1319747, 0.9004079] ,

for which
J(τAP

final) = 0.1298053.

We notice that since the value of the least-squares function J(τAP
final) is relatively

small, fitting the Aliev-Panfilov potential u to the potential ũ of Mitchell-Schaeffer
standard is good. This is confirmed by the quasi-superposition of the graphs of
potentials u for the two models, as illustrated in figure 6. Of course, the fit can-
not be as good as for the validation test where the standard Mitchell-Schaeffer
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FIGURE 6. Graph illustrating the fitting of the Aliev-Panfilov model
to the standard Mitchell-Schaeffer model.

model was fitted to a solution ũ of the standard Mitchell-Schaeffer model, and
for which J < 10−5. The fact that the solutions u and ũ of Aliev-Panfilov and
Micthell-Schaeffer, respectively, fit well on each other, allows us to affirm that
we have correctly identified parameters. It therefore seems that the dynamics of
the trans-membrane potential described by the standard Mitchell-Schaeffer model
can be reproduced with the Aliev-Panfilov model. Note however that the return
to equilibrium of the recovery variables v predicted by the Mitchell-Schaeffer and
Aliev-Panfilov models does not occur at the same speed. Indeed, the Aliev-Panfilov
model predicts a phase 4 (from the end of repolarization to the return of v to equi-
librium) between T4 = 400 ms and T5 = 700 ms (a duration ∆T4 = 300 ms) while
Mitchell-Schaeffer predicts such a phase between T4 =400 ms and T5 =1200 ms

(a duration ∆T4 = 800 ms)(in [11]).

5.2. Adjustment of the Aliev-Panfilov model in three cardiac tissues. We want
to see if it is possible to adjust the Aliev-Panfilov model to recover the shape of the
action potential in three cardiac tissues, namely the ventricle, the atrium and the
Purkinje fibers. The idea here is to start with the solutions obtained in these three
different cardiac regions (in [11]) using the standard Mitchell-Schaeffer model
and then to adjust the trans-membrane potential predicted by the Aliev-Panfilov
model to that of Mitchell-Schaeffer (see figure 7). For this, we identify the param-
eters of the Aliev-Panfilov model by minimizing the function J = J(τ) given in
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(5.2). Starting from the initial conditions τAP
0 , we obtained the results of the table

5 for the three cardiac tissues.

TABLE 5. Results of the identification problem for the three cardiac
tissues. A: ventricle; B: Purkinje fiber; C: Atrium

Tissus τAP
0 τAP

final J(τAP
final)

A [9, 0.1,
0.002,
0.02, 0.4 ]

[0.9633413, 0.0932280, 0.0078559, 0.019058,
1.5755477]

0.14932

B [8, 0.1,
0.002,
0.03, 0.4 ]

[0.8677110, 0.0375976, 0.0080940, 0.1549662,
1.0769253]

0.28845

C [6, 0.7,
0.009,
0.03, 0.3 ]

[2.0364918, 0.0744077, 0.0198289, 0.0364243,
0.4670758]

0.10828

Each line of the table 5 reads as follows, for example for the first line: starting
from τAP

0 = [9, 0.1, 0.002, 0.02, 0.4] to initialize the Nelder-Mead algorithm in the
minimization of the function (5.2), we performed 627 iterations until convergence
| τk+1 − τk |< 10−4, we got

τAP
final = [0.9633413, 0.0932280, 0.0078559, 0.019058, 1.5755477]

and J(τAP
final) = 0.14932.

As illustrated in figure 7, it can be seen that the potential u of the Aliev-Panfilov
model fits quite well to the potential ũ obtained from the Mitchell-Schaeffer model
in the three heart tissues. This allows us to affirm that we have correctly identified
the parameters of the Aliev-Panfilov model and that it can be used in these three
regions of the heart to predict the trans-membrane potential. Again, the v gate
variable fit is not as good. Indeed, phase 4 predicted by the Aliev-Panfilov and
Mitchell-Schaeffer models lasts, respectively, ∆T4 = 400 ms and ∆T4 = 700 ms

in the ventricle, ∆T4 = 200 ms and ∆T4 = 800 ms in the Purkinje fibers, ∆T4 =

150 ms and ∆T4 =550 ms in the atria. The recovery phase predicted by Aliev-
Panfilov with this parameter adjustment method is therefore 2 to 4 times too short.
The duration of phase 4 predicted by Mitchell-Schaeffer had been adjusted to the
experimental values in ( [11, 12]), so this value is considered more reliable than
for Aliev-Panfilov.



PARAMETER IDENTIFICATION PROBLEM 1009

(A) Ventricles (B) Purkinje fibers

(C) Atrium

FIGURE 7. Solutions of the Aliev-Panfilov model fitted to those of
the Mitchell-Schaeffer model in three cardiac tissues.

5.3. Comparison of Fenton-Karma and Standard Mitchell-Schaeffer Ionic Mod-
els. We want to adjust the potential u of the Fenton-Karma model to the po-
tential ũ obtained using the standard Mitchell-Schaeffer model. As the stan-
dard Mitchell-Schaeffer model derives from that of Fenton-Karma, we will also
seek to verify the adjustment of w of the Fenton-Karma model on ṽ of Mitchell-
Schaeffer since w and v of Fenton-Karma and Mitchell-Schaeffer, respectively,
admit similar behavior. To adjust the Fenton-Karma potential u to the Mitchell-
Schaeffer potential ũ, we minimized the function J = J(τ) given in (5.2) by set-
ting τFK

0 = [0.2, 120, 125, 8, 10, 9000, 80] to initialize the Nelder-Mead algorithm.
Then we got

τFK
final = [0.3371032, 106.40989, 132.45111, 2.67672, 9.6557978, 1034.8688, 46.82292] ,

for which
J(τFK

final) = 3.2422036.
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FIGURE 8. Graph illustrating the adjustment of the Fenton-Karma
model on that of Mitchell-Schaeffer.

Figure 8 illustrates that fitting the Fenton-Karma and Mitchell-Schaeffer poten-
tials u and ũ, respectively, is good for the overall aspect of the action potential.
In particular, the durations of the phases of depolarization, repolarization and, to
a lesser extent of the tray are very close for the two potentials u and ũ. How-
ever, the potential of the Fenton-Karma model is flatter at the start of phase 2
(the tray) and drops more rapidly at the start of phase 3 (the repolarization) com-
pared to the Mitchell-Schaeffer model. we will notice, however, that the return to
equilibrium of the recovery variables w and ṽ predicted by the Fenton-Karma and
Mitchell-Schaeffer models, respectively, takes place almost at the same speed.

5.4. Comparison of Standard Mitchell-Schaeffer and Beeler-Reteur Ionic Mod-
els. In this section we want to fit the potential u of the standard Mitchell-Schaeffer
model to the potential ũ obtained using the Beeler-Reuter model [2]. The solution
ũ of the Beeler-Reuter model was generated according to the numerical methods
described in [14]. The particularity of the Beeler-Reuter model compared to the
other models defined in the 4 section is that, its potential presents a slight peak be-
tween the end of the first phase (the ”depolarization” phase) and the beginning of
the second phase (tray phase). Immediately after depolarization, there is a rapid
drop in potential, which then rises slightly before completing the tray phase. To
adjust the Mitchell-Schaeffer potential u to the Beeler-Reuter potential ũ, we min-
imized the function J = J(τ) given in (5.2) by setting τMS

0 = [0.27, 5.8, 128, 129] to
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initialize the Nelder-Mead algorithm. Then we got,

τMS
final = [0.0373243, 7.7090625, 249.64664, 57.812497] ,

for which
J(τMS

final) = 3.4381449.

FIGURE 9. Graph illustrating the adjustment of the Mitchell-
Schaeffer model on that of Beeler-Reteur.

Figure 9 illustrates that fitting the Mitchell-Schaeffer and Beeler-Reuter poten-
tials u and ũ, respectively, is good for the overall aspect of the action potential.
In particular, the durations of the depolarization, repolarization and tray phases
are very close for the two potentials u and ũ. However, the potential ũ of the
Beeler-Reuter model has a more complex shape than that of the standard Mitchell-
Schaeffer potential u during phase 2. It is not possible to capture these details in
the variation of u with the standard Mitchell-Schaeffer model for which the shape
of the action potential remains quite simple. we will also notice the faster descent
of the Mitchell-Schaeffer potential u during the repolarization phase compared to
Beeler-Reuter.

5.5. Comparison of Modified Mitchell-Schaeffer and Beeler-Reteur Ionic Mod-
els. In this section we want to fit the potential u of the modified Mitchell-Schaeffer
model to the potential ũ obtained using the Beeler-Reuter model. The solution ũ
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of the Beeler-Reuter model was generated according to the numerical methods
described in [14]. The particularty of this comparison regarding to the one made
in the section 5.4 is due to the fact that the modified Mitchell-Schaeffer poten-
tial u also presents a slight peak between the end of the first phase (the phase of
”depolarization”) and the beginning of the second phase (the ”tray” phase) like
that of Beller-Reuter. Although the potentials for modified Mitchell-Schaeffer and
Beeler-Reuter show differences in the shape of this peak at the beginning of phase
2, we will still seek to adjust these two potentials. To adjust the Mitchell-Schaeffer
potential u to the Beeler-Reuter potential ũ, we minimized the function J = J(τ)

given in (5.2) by setting τMSm
0 = [0.25, 6.3, 2.2, 20, 218, 300, 0.033, 20000] to initial-

ize the Nelder-Mead algorithm. Then we got,

τMSm = [0.0822240, 2.0417859, 4.7774742, 18.648936, 222.70821, 638.26143,

0.0211528, 40584.463]

for which
J(τMSm

final ) = 0.2455316

FIGURE 10. Graph illustrating the fit of the modified Mitchell-
Schaeffer model to the Beeler-Reteur model.

Figure 10 illustrates that fitting the modified Mitchell-Schaeffer and Beeler-
Reuter potentials u and ũ, respectively, is very good for the overall aspect of the ac-
tion potential. In particular, the durations of the depolarization, repolarization and
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tray phases are very close for the two potentials u and ũ. The modified Mitchell-
Schaeffer potential u fits better the Beeler-Reuter potential ũ compared to the
standard Mitchell-Schaeffer potential, which is confirmed by J(τMSm

final ) < J(τMS
final)

by at least an order of magnitude.

6. COVER THE SHAPE OF THE WAVE OBTAINED EXPERIMENTALLY BY FLUORESCENCE

EFFECT ON PIGS

We present action potentials measured at the Medical Biophysics Laboratory of
the University of Toronto, Canada [10]. These measurements were carried out
on pigs using the technique of optical imaging by fluorescence effect [4, 5]. The
figure 11 illustrates the measured and normalized potentials (between 0 and 1)
over time t (in ms). Figure 11a shows several action potentials for a heart beating
at 70 beats per minute. We targeted one of the action potentials of the figure 11a
to define the potential ũ used to adjust the parameters (see figure 11b). Then we
isolated this portion of the graph, which constitutes our experimental potential
ũ in order to adjust the potentials u of the Mitchell-Schaeffer and Aliev-Panfilov
models using Scilab.

We fit the u potentials of the standard Mitchell-Schaeffer and Aliev-Panfilov
models to the ũ potential obtained using the experimental data in figure 11c us-
ing the function J = J(τ) given in (5.2). Starting from the conditions τMS

0 =

[0.38, 8, 135, 160] and τAP
0 = [8.5, 0.15, 0.001, 0.02, 0.4] to initialize the Nelder-Mead

algorithm for the standard Mitchell-Schaeffer and Aliev-Panfilov ionic models, re-
spectively, we obtained

τMS
final = [2.0295711, 37.794847, 607.74009, 120.62614] ,

J(τMS
final) = 0.2773095,

τAP
final = [8.5085251, 0.0938535, 0.0010674, 0.0205510, 0.4799080] ,

J(τAP
final) = 8.8515504.

As illustrated in figure 12, it can be seen that the potential u of the standard
Mitchell-Schaeffer model fits better on the potential ũ obtained by fluorescence
than that of Aliev- Panfilov. This is confirmed by the fact that J(τAP

final) > J(τMS
final),

that is to say, the adjustment error ∥ u − ũ ∥L2(0,T ) is larger for the Aliev-Panfilov
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(A) Experimentals data (B) Extraction of the wave

(C) The isolated wave

FIGURE 11. Trans-membrane potential ũ (normalized) measured by
fluorescence as a function of time t (in ms).

(A) Adjusted u from MS to ũ from pigs (B) Adjusted u of AP on ũ of pigs

FIGURE 12. Adjustments of the Mitchell-Schaeffer and Aliev-
Panfilov potentials u on an experimentally measured potential ũ.

model than the standard Mithcell-Schaeffer. Once again the gate variables v do
not behave the same way for the two models. The Aliev-Panfilov model predicts a
phase 4 (from the end of depolarization to the return of v to equilibrium) between
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T4 = 550 ms and T5 = 1200 ms, that is to say, a duration ∆T4 = 650 ms. On the
other hand, phase 4 predicted by standard Mitchell-Schaeffer model is superior to
700ms. The experimental value of the phase 4 duration is not known.

7. CONCLUSION AND PERSPECTIVES

In this article, we have defined an optimization problem allowing to directly
find the shape of the cardiac wave of some ionic models. This allowed us to com-
pare some of these ionic models via a parameter identification problem instead
of comparing them directly by plotting the graphs for given values of the param-
eters. Compared to the empirical methods used to adjust one or two parameters
at a time encountered in electrophysiology, we also believe that we are the first
to define a reliable identification problem able to simultaneously identify four to
eleven parameters of an ionic model. Finally, we adjusted the parameters of the
Mitchell-Scaheffer and Aliev-Panfilov models to find the shape of the action po-
tential obtained experimentally by fluorescence. The Aliev-Panfilov model was
manually fitted to these experimental data. Our approach has shown that the
Mitchell-Schaeffer model fits the data better than the Aliev-Panfilov model. In
order to better understand the duration of the recovery phase, it would be inter-
esting to add a term of the least squares type depending on the numerical and
experimental phase 4 durations (in the cost function making it possible to adjust
the shape of the wave) in order to adjust the gate variables v of ionic models. Fi-
nally, we have in view to define another identification problem in order to adjust
the restitution curves of certain ionic models. We also foresee the future applica-
tion of this kind of parameter identification methods to all sorts of problems (for
example, in fluid mechanics for the oil industry).
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