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GENERALIZED REED-MULLER CODES OVER GALOIS RINGS

Harinaivo Andriatahiny1, Desiré Arsène Ratahirinjatovo, and Sanni José Andrianalisefa

ABSTRACT. A Galois ring may be considered as a common generalization of a
finite field and a prime power integer residue ring. The generalized Reed-Muller
codes over finite fields were introduced by Kasami et al. and the generalized
Reed-Muller codes over prime power integer residue rings were constructed by M.
Bhaintwal and S. K. Wasan. In this paper, we give an unifying approach for these
constructions.

1. INTRODUCTION

In the following, let GR(ps, r) denote the Galois ring of characteristic ps and
rank r, where p is a prime number and s, r are integers ≥ 1. GR(ps, r) is defined
as the quotient Zps [x]/(f(x)) where f is a monic basic irreducible polynomial of
degree r in Zps [x]. In particular, GR(ps, 1) is the ring Zps of integers modulo ps and
GR(p, r) is the finite field Fpr of pr elements. GR(ps, r) is a Galois extension of Zps

of degree r ( [13]).
Codes over finite fields have been investigated by many authors (see e.g. [5,

14]). In [9], Hammons et al. showed that some non-linear binary codes with very
good parameters are images under the Gray map of some linear codes over Z4.
This has led to the active study of codes over rings (see e.g. [3,4,8,12,15]).
1corresponding author
2020 Mathematics Subject Classification. 94B05, 94B15, 12E05, 13MXX.
Key words and phrases. Reed-Muller code, Galois ring, code over ring.
Submitted: 04.10.2022; Accepted: 20.10.2022; Published: 04.11.2022.

1033



1034 H. Andriatahiny, D.A. Ratahirinjatovo, and S.J. Andrianalisefa

Generalized Reed-Muller (GRM) codes over finite fields have been studied by
several authors (see [5, 7, 14]). They have many applications in both theory and
practice.

Reed-Muller codes over Z4 and over Galois rings of characteristic 2s have been
defined and studied in [6,11].

The GRM codes over Zps and the GRM codes over Fpr are constructed in [2]
and [10] respectively. Our purpose is to present a common generalization of these
codes to GRM codes over GR(ps, r). The standard generator matrix, the rank, the
dual, and the minimum distance are determined. We prove that the images of the
GRM codes over GR(ps, r) under the projection map are the GRM codes over Fpr .
We examine the trace descriptions of the Kerdock codes over GR(ps, r) and the
GRM codes over GR(ps, r). We study also some properties of the shortened GRM
codes over GR(ps, r).

2. MULTIVARIATE FORMULATION

Throughout this paper, we put L := GR(ps, r). L is a local ring with maximal
ideal pL and residue field L/pL = Fq, where q = pr.

Let h(x) ∈ L[x] be a monic basic primitive polynomial of degree m ≥ 1 dividing
xqm−1 − 1 and having ξ as a root of order qm − 1 in L[x]/(h(x)) = GR(ps, rm). We
denote R := GR(ps, rm). R is a Galois extension of L of degree m. ξ is called a
primitive element of R. Let n = qm − 1 and

Tm = {0, 1, ξ, ξ2, . . . , ξn−1}.

{1, ξ, ξ2, . . . , ξm−1} is a basis of the free module R of rank m over L, and we have
R = L[ξ]. Each element ξi ∈ Tm can uniquely be expressed as

(2.1) ξi = b1i + b2iξ + b3iξ
2 + . . .+ bmiξ

m−1,

where bji ∈ L, 0 ≤ i ≤ n− 1, 1 ≤ j ≤ m. We adopt the convention ξ∞ = 0. Let

bi = (b1i, b2i, b3i, . . . , bmi) , 0 ≤ i ≤ n− 1,

and b∞ = (0, 0, . . . , 0).
Let X be the set of variables x1, x2, . . . , xm and let L[X] be the set of all polyno-

mials in these variables with coefficients in L. The degree of a nonzero monomial
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xi1
1 x

i2
2 . . . xim

m is
∑m

k=1 ik and the degree of a polynomial P (X) of L[X] denoted
deg(P (X)) is the largest degree of a monomial in P (X). We define deg(0) = −∞.

We define the evaluation map

(2.2)
ev : L[X] −→ Lqm

P (X) 7−→ (P (b∞), P (b0), P (b1), . . . , P (bn−1)).

Consider the L-submodule of L[X]

S = {P (X) ∈ L[X] | degxi
(P (X)) ≤ q − 1 , 1 ≤ i ≤ m}.

Let ν be an integer such that 0 ≤ ν ≤ m(q − 1). Then the νth order Generalized
Reed-Muller code of length qm over L is defined by

RML(ν,m) = {ev(P (X)) | P (X) ∈ S , deg(P (X)) ≤ ν}.

The shortened Generalized Reed-Muller code of length qm − 1 and order ν over
L denoted by RML(ν,m)− is the code obtained from RML(ν,m) by puncturing at
the first position.

3. STANDARD GENERATOR MATRIX

The component-wise product of any two elements u = (u0, u1, . . . , un) and v =

(v0, v1, . . . , vn) of Ln+1 is defined by

(3.1) uv = (u0v0, u1v1, . . . , unvn).

By (2.1), let us consider the (m+ 1)× qm matrix

G :=

(
1 1 1 1 . . . 1

0 1 ξ ξ2 . . . ξn−1

)
.

G can be expressed as

(3.2) G :=


1 1 1 1 . . . 1

0 b10 b11 b12 . . . b1n−1

0 b20 b21 b22 . . . b2n−1

. . . . . . . . . . . . . . . . . .

0 bm0 bm1 bm2 . . . bmn−1

 .
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The ith row of G is denoted by vi , 0 ≤ i ≤ m. Thus, the vi are qm-tuples over L.
In particular, v0 is the all one tuple 1q

m.
From section 2, each P (X) ∈ S can be expressed as

P (X) =
∑

0≤ij≤q−1

ai1,...,imx
i1
1 x

i2
2 . . . xim

m ,

where ai1,...,im ∈ L. By (2.2), (3.1) and (3.2), we have

ev(xi1
1 x

i2
2 . . . xim

m ) = vi1
1 vi2

2 . . . vim
m .

And since the map ev is linear, we have

ev(P (X)) =
∑

0≤ij≤q−1

ai1,...,imvi1
1 vi2

2 . . . vim
m .

Let ν be an integer such that 0 ≤ ν ≤ m(q − 1). Then, the νth order General-
ized Reed-Muller code RML(ν,m) of length qm over L is defined to be the code
generated by all tuples of the form

(3.3) vi1
1 vi2

2 . . . vim
m , 0 ≤ ij ≤ q − 1 , 1 ≤ j ≤ m ,

m∑
j=1

ij ≤ ν.

RML(0,m) is the repetition code of length qm over L.
Let Gν be the matrix whose rows consist of all tuples in (3.3). Gν is called the

standard generator matrix of RML(ν,m). The coordinates of any tulpe in Gν are
numbered ∞, 0, 1, . . . , n− 1.

4. PROJECTION MAP

Recall that q = pr, n = qm− 1 and L = GR(ps, r). Since L/pL = Fq, consider the
projection map which is defined by reduction modulo p

α : L −→ Fq

a 7−→ ā = a+ pL.

This map is extended to

α : L[x] −→ Fq[x]

f(x) =
∑
i

aix
i 7−→ f̄(x) =

∑
i

āix
i
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and

(4.1)
α : Lqm −→ (Fq)

qm

v = (a0, a1, . . . , an) 7−→ v̄ = (ā0, ā1, . . . , ān).

Proposition 4.1. We have

α(RML(ν,m)) = RMFq(ν,m),

where RMFq(ν,m) is the usual GRM code of order ν (0 ≤ ν ≤ m(q−1)) and of length
qm over the finite field Fq (see [5]).

Proof. By (4.1) and (3.3), we have

α(vi1
1 vi2

2 . . . vim
m ) = v̄i1

1 v̄i2
2 . . . v̄im

m

and the qm-tuples
v̄i1
1 v̄i2

2 . . . v̄im
m ,

where 0 ≤ ij ≤ q − 1, 1 ≤ j ≤ m,
∑m

j=1 ij ≤ ν form a basis for the GRM code
RMFq(ν,m). □

5. RANK

Consider the qm-tuples

(5.1) vi1
1 vi2

2 . . . vim
m , 0 ≤ ij ≤ q − 1 , 1 ≤ j ≤ m.

Proposition 5.1. The qm-tuples in (5.1) form a basis for the free L-module Lqm

where L = GR(ps, r).

Proof. Let v̄i be the image of vi in (Fq)
qm , 0 ≤ i ≤ m. From the theory of GRM

codes over finite fields, we know that the vectors

v̄i1
1 v̄i2

2 . . . v̄im
m , 0 ≤ ij ≤ q − 1 , 1 ≤ j ≤ m

form a basis for (Fq)
qm over Fq.

Let v ∈ Lqm. Then v̄ ∈ (Fq)
qm, and there exist constants a(0)i1,...,im

∈ Fq such that

v̄ =
∑

0≤ij≤q−1

a
(0)
i1,...,im

v̄i1
1 v̄i2

2 . . . v̄im
m .
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Then we have
v =

∑
0≤ij≤q−1

a
′(0)
i1,...,im

vi1
1 vi2

2 . . . vim
m + pu1

for some u1 ∈ Lqm and a
′(0)
i1,...,im

∈ L. There exist constants a
′(1)
i1,...,im

∈ L such that

u1 =
∑

0≤ij≤q−1

a
′(1)
i1,...,im

vi1
1 vi2

2 . . . vim
m + pu2

for some u2 ∈ Lqm. Continuing in this way and noting that ps = 0 in L, we get
constants a

′(2)
i1,...,im

, . . . , a
′(s−1)
i1,...,im

∈ L such that

v =
∑

0≤ij≤q−1

(a
′(0)
i1,...,im

+ pa
′(1)
i1,...,im

+ . . .+ ps−1a
′(s−1)
i1,...,im

)vi1
1 vi2

2 . . . vim
m .

Hence, each v ∈ Lqm can be expressed as a linear combination of the tuples
vi1
1 vi2

2 . . . vim
m , 0 ≤ ij ≤ q − 1 , 1 ≤ j ≤ m. Since these tuples are qm in number

and Lqm is a free module of rank qm over L, they must form a basis for Lqm. □

Theorem 5.1. Let m be a positive integer such that rm ≥ s and q = pr. Then, for
0 ≤ ν ≤ m(q − 1), the GRM code RML(ν,m) is a free L-module of rank k, where

k =
ν∑

i=0

m∑
j=0

(−1)j
(
m

j

)(
i− jq +m− 1

i− jq

)
.

Proof. By (3.3), the elements of the set

B = {vi1
1 vi2

2 . . . vim
m | 0 ≤ it ≤ q − 1 ,

m∑
t=1

it ≤ ν}

span the GRM code RML(ν,m). Since B is a subset of the set {vi1
1 vi2

2 . . . vim
m |

0 ≤ it ≤ q − 1} which forms a basis for the free L-module Lqm, then B must be
linearly independent. Thus, B is a basis for RML(ν,m) and hence RML(ν,m) is a
free module over L. The images of the elements in B under the map α generate
the GRM code RMFq(ν,m) over Fq. Also, these images are linearly independent
over Fq. Therefore, the elements v̄, where v ∈ B, form a basis for RMFq(ν,m) =

α(RML(ν,m)), and we have rankRML(ν,m) = rankRMFq(ν,m). It is known from
the theory of GRM codes over finite fields that

rankRMFq(ν,m) =
ν∑

i=0

m∑
j=0

(−1)j
(
m

j

)(
i− jq +m− 1

i− jq

)
.
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□

Notice that the rank of the GRM code RML(ν,m) is just the number of ways we
can place ν or fewer objects in m cells where no cell is to contain more than q − 1

objects.

6. TRACE DESCRIPTIONS

Each element c ∈ R = GR(ps, rm) has a unique p-adic representation

c = ϵ0 + pϵ1 + p2ϵ2 + . . .+ ps−1ϵs−1,

where ϵ0, ϵ1, ϵ2, . . . , ϵs−1 ∈ Tm = {0, 1, ξ, ξ2, . . . , ξn−1}. Under this representation,
the Frobenius automorphism is defined by

f : R −→ R,

c = ϵ0 + pϵ1 + . . .+ ps−1ϵs−1 7−→ cf = ϵq0 + pϵq1 + . . .+ ps−1ϵqs−1,

where q = pr. f is an automorphism of R, fixes only elements of L = GR(ps, r),
and generates the group of automorphisms of R, which is cyclic of order m. Note
that when s = 1, f is the usual Frobenius automorphism for Fqm.

The relative trace map is defined by

T : R −→ L

c 7−→ T (c) = c+ cf + cf
2

+ . . .+ cf
m−1

.

T is a linear transformation over L.

6.1. Kerdock codes over GR(ps, r). Let m be a positive integer such that rm ≥ s

and n = qm − 1 with q = pr. Let h(x) ∈ L[x] be a monic basic primitive polynomial
of degree m dividing xn − 1 and having ξ as a root of order n in R. Let g(x) be
the reciprocal polynomial of xn−1

(x−1)h(x)
. The shortened Kerdock code K− is the cyclic

code of length n over L = GR(ps, r) with generator polynomial g(x).
Since g(x) | xn − 1, K− is a free cyclic code of rank n− deg g(x) = m+ 1 over L.

A generator matrix of K− is

G− :=

(
1 1 1 . . . 1

1 ξ ξ2 . . . ξn−1

)
.
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The Kerdock code K of length n+1 over L is obtained by adding an overall parity-
check to K−.

Since rm ≥ s and
∑n−1

i=0 ξi = 0, the zero-sum check for the first row of G− is 1

and for the second row, it is 0. Thus, a generator matrix for K is

G :=

(
1 1 1 1 . . . 1

0 1 ξ ξ2 . . . ξn−1

)
where the elements in the second row of G are considered to be m-tuples over L.
Thus we have K = RML(1,m).

Theorem 6.1. Let m be a positive integer such that rm ≥ s and n = qm − 1 with
q = pr. Let ξ be a primitive element of R = GR(ps, rm). Then K− and K have the
following trace descriptions over R

(i) K− = {ϵ1n + v(λ) | ϵ ∈ L , λ ∈ R}, where 1n is the all one tuple of length n

and
v(λ) = (T (λ), T (λξ), T (λξ2), . . . , T (λξn−1)),

(ii) K = {ϵ1n+1 + u(λ) | ϵ ∈ L , λ ∈ R}, where

u(λ) = (0, T (λ), T (λξ), T (λξ2), . . . , T (λξn−1)).

Proof.

(i) Let C = {ϵ1n + v(λ) | ϵ ∈ L , λ ∈ R}. Let h(x) be the monic basic primitive
polynomial of degree m in L(x) dividing xn − 1 such that h(ξ) = 0. Let
h∗(x) be the reciprocal polynomial of h(x), i.e. h∗(x) = xmh( 1

x
). From

the definition of K−, the check polynomial of K− is (1 − x)h∗(x). Clearly,
1−x annihilates the tuple ϵ1n and h∗(x) annihilates v(λ). Thus (1−x)h∗(x)

annihilates C. It follows that C ⊆ K−. On the other hand, we have card C =

cardK− = (psr)m+1.
(ii) K is a parity check extension of K− and the zero-sum check for ϵ1n is ϵ and

the zero-sum check for v(λ) is 0. Thus, the result follows from (i).

□
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6.2. GRM codes over GR(ps, r). Let j be any integer such that 0 ≤ j ≤ qm − 1,
where q = pr. Then, j can uniquely be expressed as

j =
m−1∑
d=0

jdq
d , 0 ≤ jd ≤ q − 1 , 0 ≤ d ≤ m− 1.

The q-weight of j is defined by

wq(j) =
m−1∑
d=0

jd.

According to Section 5, we have

rankRML(ν,m) = card({j | 0 ≤ j ≤ qm − 2 , wq(j) ≤ ν}).

Theorem 6.2. Let m be a positive integer such that rm ≥ s and n = qm − 1 with
q = pr. Let 1 ≤ ν ≤ m(q − 1). Then, RML(ν,m) is generated by the repetition code
RML(0,m) together with all qm-tuples of the form

(6.1) (0, T (λj), T (λjξ
j), T (λjξ

2j), . . . , T (λjξ
(n−1)j)),

where j ranges over a system of representatives of those cyclotomic cosets modulo
qm − 1 for which wq(j) ≤ ν and λj ranges over R = GR(ps, rm).

Proof. Let C be the code generated by the repetition code RML(0,m) together with
all tuples in (6.1). Since the matrix G in (3.2) is a generator matrix for the Kerdock
code K, then from Theorem 6.1, for each row vj, j = 1, 2, . . . ,m of G, there exists
a unique λj ∈ R such that

vj = (0, T (λj), T (λjξ), T (λjξ
2), . . . , T (λjξ

n−1)).

Thus, the lth coordinate of a tuple

vi1
1 vi2

2 . . . vim
m , 0 ≤ id ≤ q − 1 , 1 ≤ d ≤ m ,

m∑
d=1

id ≤ ν

in the standard generator matrix of the GRM code RML(ν,m) is of the form

T (λ1z)
i1T (λ2z)

i2 . . . T (λmz)
im ,

where 0 ≤ id ≤ q− 1 ,
∑m

d=1 id ≤ ν, z = ξl with ξ∞ = 0. Now for some i and j, we
have



1042 H. Andriatahiny, D.A. Ratahirinjatovo, and S.J. Andrianalisefa

T (λiz)T (λjz) =
m−1∑
u=0

(λiz)
fu

m−1∑
v=0

(λjz)
fv

=
m−1∑
u=0

λfu

i zq
u
m−1∑
v=0

λfv

j zq
v

= T (λiλjz
2) + T (λiλ

f
j z

1+q) + . . .+ T (λiλ
fm−1

j z1+qm−1

)

=
m−1∑
u=0

T (λiλ
fu

j z1+qu).

We have wq(1 + qu) ≤ 2, ∀u = 0, 1, . . . ,m− 1. For some i, j and k, we have

T (λiz)T (λjz)T (λkz) =
m−1∑
u=0

m−1∑
v=0

T (λiλ
fu

j λfv

k z1+qu+qv).

Since zq
m
= z, for some u and v, we have 1 + qu + qv = e mod qm − 1 for some

integer e ∈ [0, qm − 2] with wq(e) ≤ 3. In general, if
∑m

d=1 id = a ≥ 1, then

T (λ1z)
i1T (λ2z)

i2 . . . T (λmz)
im =

∑
t

T (µtz
t),

where t = 1 + qj1 + qj2 + . . .+ qja−1 , 0 ≤ jδ ≤ m− 1 , 1 ≤ δ ≤ a− 1, and µt is the
corresponding product of the powers of λ1, λ2, . . . , λm.

It is easy to see that in this expansion of any T (λ1z)
i1 . . . T (λmz)

im, the cor-
responding powers t of z are some representatives of cyclotomic cosets modulo
qm−1 and wq(t) ≤

∑m
d=1 id. It follows that each tuple vi1

1 vi2
2 . . . vim

m in the generator
matrix of the GRM code RML(ν,m) is a linear combination of the all one tuple 1q

m

and the tuples (0, T (λj), T (λjξ
j), T (λjξ

2j), . . . , T (λjξ
(n−1)j)), where j ranges over a

set of coset representatives modulo qm−1 with wq(j) ≤
∑m

d=1 id ≤ ν and λj ranges
over R. Hence RML(ν,m) ⊆ C.

Conversely, let C− be the code obtained from C by puncturing at the first posi-
tion. That is, C− is generated by the all one tuple 1n together with all tuples of the
form (T (λj), T (λjξ

j), T (λjξ
2j), . . . , T (λjξ

(n−1)j)), where j and λj are as in (6.1).
Since wq(j) ≤ ν, it is easy to verify that all these generators are annihilated by

the polynomial
f ∗
ν (x) = (1− x)

∏
1≤j≤qm−2

wq(j)≤ν

(1− ξjx),
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where f ∗
ν (x) is the reciprocal polynomial of

fν(x) = (x− 1)
∏

1≤j≤qm−2

wq(j)≤ν

(x− ξj) =
∏

0≤j≤qm−2

wq(j)≤ν

(x− ξj).

Let gν(x) be the reciprocal polynomial to the polynomial

g∗ν(x) =
xqm−1 − 1

fν(x)
=

∏
1≤j≤qm−2

wq(j)>ν

(x− ξj)

and denote by Cν = (gν(x)) the L-cyclic code generated by gν(x). Then, f ∗
ν (x) is

the check polynomial of Cν . Therefore, C− ⊆ Cν . Thus, RML(ν,m)− ⊆ C− ⊆ Cν .
Clearly,

gν(x) =
∏

1≤j≤qm−2

wq(j)>ν

(1− ξjx).

We have
rank Cν = qm − 1− deg gν(x)

= card({j | 0 ≤ j ≤ qm − 2 , wq(j) ≤ ν})

= rankRML(ν,m)

= rankRML(ν,m)−.

It follows that RML(ν,m)− = C− = Cν . □

Corollary 6.1. RML(ν,m)− is a L-cyclic code generated by the polynomial

(6.2) gν(x) =
∏

1≤j≤qm−2

wq(j)≤m(q−1)−ν−1

(x− ξj).

Proof. By the proof of Theorem 6.2, we have RML(ν,m)− = (gν(x)) with

gν(x) =
∏

1≤j≤qm−2

wq(j)>ν

(1− ξjx).

The zeros of gν(x) are all ξ−j with wq(j) > ν. Since ξ−j = ξq
m−1−j and wq(q

m − 1−
j) = m(q − 1)− wq(j), we have

gν(x) =
∏

1≤j≤qm−2

wq(j)>ν

(x− ξ−j) =
∏

1≤j≤qm−2

wq(j)>ν

(x− ξq
m−1−j).
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Let J = qm − 1 − j. We have J ̸= 0 and wq(J) = m(q − 1) − wq(j). Thus,
wq(j) = m(q − 1)− wq(J) > ν. This implies that wq(J) < m(q − 1)− ν. Then

gν(x) =
∏

0<wq(J)≤m(q−1)−ν−1

(x− ξJ).

Finally, we have
gν(x) =

∏
1≤j≤qm−2

wq(j)≤m(q−1)−ν−1

(x− ξj).

□

7. DUAL CODE

We have the following property.

Proposition 7.1. Let m be a positive integer such that rm ≥ s and n = qm − 1

with q = pr. Let ν be an integer such that 0 ≤ ν < m(q − 1). Then, for any
c = (c∞, c0, c1, . . . , cn−1) ∈ RML(ν,m), we have c∞ + c0 + c1 + . . .+ cn−1 = 0.

Proof. It is enough to prove our Proposition for all generators of the GRM code
RML(ν,m) given in Theorem 6.2. First, since rm ≥ s, then for 1q

m , we have
1 + 1 + . . .+ 1︸ ︷︷ ︸

qmterms

= qm = prm = 0. Second, for the qm-tuples (6.1), we have

n−1∑
i=0

T (λjξ
ij) =

n−1∑
i=0

m−1∑
k=0

(λjξ
ij)f

k

=
m−1∑
k=0

λfk

j

n−1∑
i=0

ξijq
k

=
m−1∑
k=0

λfk

j

1− ξjnq
k

1− ξjqk
= 0

because ξn = 1. □

Theorem 7.1. Let m be a positive integer such that rm ≥ s and 0 ≤ ν < m(q − 1)

with q = pr. Then
RML(ν,m)⊥ = RML(µ,m),

where µ = m(q − 1)− ν − 1.
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Proof. First, we prove that the all one qm-tuple 1q
m ∈ RML(ν,m) belongs to

RML(ν,m)⊥. Since rm ≥ s, then 1q
m · 1qm = 0. Moreover, we have to prove

that 1qm is orthogonal to all qm-tuples of the form (6.1), where wq(j) ≤ ν. By the
proof of Proposition 7.1, we have

n−1∑
i=0

T (λjξ
ij) = 0.

Therefore, 1qm ∈ RML(ν,m)⊥.
Next, we prove that any c = (c∞, c0, c1, . . . , cn−1) ∈ RML(µ,m) belongs to

RML(ν,m)⊥. Clearly, c ∈ RML(µ,m) if and only if c − c∞1q
m ∈ RML(µ,m), and

c ∈ RML(ν,m)⊥ if and only if c− c∞1q
m ∈ RML(ν,m)⊥. Therefore, it is sufficient

to show that for c with c∞ = 0, c ∈ RML(µ,m) implies c ∈ RML(ν,m)⊥.
Let c = (0, c′) ∈ RML(µ,m), where c′ = (c0, c1, . . . , cn−1). Then c′ ∈ RML(µ,m)−.

By Corollary 6.1, RML(µ,m)− is a L-cyclic code with generator polynomial

gµ(x) =
∏

1≤j≤qm−2

wq(j)≤ν

(x− ξj).

So, c′(x) = c0 + c1x + . . . + cn−1x
n−1 is a multiple of gµ(x). By Proposition 7.1,

c′(1) = c0 + c1 + . . .+ cn−1 = 0. Then c′(x) is also a multiple of x− 1.
Since ḡµ(1) ̸= 0, gµ(1) is an invertible element of L. It follows that c′(x) is a

multiple of (x− 1)gµ(x). Then, c′(x) is annihilated by the polynomial

fµ(x) =
xn − 1

(x− 1)gµ(x)
=

∏
1≤j≤qm−2

wq(j)>ν

(x− ξj)

i.e. c′(x)fµ(x) = 0. Therefore c′(x) belongs to the dual code of the L-cyclic code
with generator polynomial

f ∗
µ(x) =

∏
1≤j≤qm−2

wq(j)>ν

(1− ξjx) =
∏

1≤j≤qm−2

wq(j)≤m(q−1)−ν−1

(x− ξj)

= gν(x).

By Corollary 6.1, RML(ν,m)− = (gν(x)). Thus c′(x) ∈ (RML(ν,m)−)⊥. Since c∞ =

0, c ∈ RML(ν,m)⊥. Therefore, we have proved that RML(µ,m) ⊆ RML(ν,m)⊥.
To check the ranks, we note that rankRML(ν,m) = rankRML(ν,m)− as RML(ν,m)

is a parity check extension of RML(ν,m)−. According to Corollary 6.1, RML(ν,m)−
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has the generator polynomial gν(x) as given in (6.2), and RML(µ,m)− has the gen-
erator polynomial gµ(x). gµ(x) is the reciprocal polynomial of xn−1

(x−1)gν(x)
. Therefore,

we have
rankRML(ν,m)−+rankRML(µ,m)−

= (n− deg gν(x)) + (n− deg gµ(x))

= n+ 1 = qm.

It follows that rankRML(ν,m) + rankRML(µ,m) = qm. Thus, rankRML(µ,m) =

rankRML(ν,m)⊥. And we have RML(µ,m) = RML(ν,m)⊥. □

8. MINIMUM DISTANCE

We have the following result.

Theorem 8.1. The shortened GRM code RML(ν,m)− is a subcode of a BCH code of
length qm − 1 over L whose roots include

ξ, ξ2, . . . , ξ(R+1)qQ−2

where ξ is a primitive element of R = GR(ps, rm), and Q and R are the quotient and
remainder respectively, resulting from dividing µ+ 1 = m(q − 1)− ν by q − 1.

Proof. Let d be the smallest integer such that wq(d) = m(q − 1) − ν = (q − 1)Q +

R , 0 ≤ R < q− 1. Therefore, we must have d = RqQ+(q− 1)qQ−1+(q− 1)qQ−2+

. . .+ (q − 1)q + (q − 1) = (R + 1)qQ − 1.
Also, every integer less than d has q-weight less than or equal to m(q−1)−ν−1. It

follows from (6.2) that all elements ξ, ξ2, . . . , ξ(R+1)qQ−2 are roots of RML(ν,m)−.
Thus, RML(ν,m)− is a subcode of a primitive BCH code of length qm − 1 over
L. □

Consequently, from BCH bound on codes over Galois rings [1], RML(ν,m)− has
minimum distance at least (R + 1)qQ − 1, where Q and R are the quotient and
remainder respectively, resulting from dividing µ + 1 = m(q − 1) − ν by q − 1. It
can be easily seen from the structure of RML(ν,m) that the minimum distance of
RML(ν,m) is equal to the minimum distance of RML(ν,m)−. Hence the minimum
distance of RML(ν,m) is at least (R + 1)qQ − 1.
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Theorem 8.2. The GRM code RML(ν,m) has minimum distance (R + 1)qQ − 1,
where Q and R are the quotient and remainder respectively, resulting from dividing
µ+ 1 = m(q − 1)− ν by q − 1.

Proof. Since the minimum distance of RML(ν,m) is at least (R + 1)qQ − 1, we
only need to show a tuple of weight (R + 1)qQ − 1 in RML(ν,m). The image
α(RML(ν,m)) = RMFq(ν,m) has minimum distance exactly (R + 1)qQ − 1. Let
u = (u∞, u0, u1, . . . , un−1) be a vector of weight (R + 1)qQ − 1 in RMFq(ν,m). Let
I = supp(u) = {i | ui ̸= 0} the support of u. Thus, card(I) = (R + 1)qQ − 1. Then,
there exists a vector v = (v∞, v0, v1, . . . , vn−1) ∈ RML(ν,m) such that α(v) = v̄ = u
i.e. (v̄∞, v̄0, v̄1, . . . , v̄n−1) = (u∞, u0, u1, . . . , un−1). Thus, v̄i = ui for all i.

If i /∈ I, then ui = 0. Thus, vi is in pL, and ps−1vi = 0.
If i ∈ I, then ui ̸= 0 and vi /∈ pL, i.e. vi is an invertible element of L, and

ps−1vi ̸= 0. Therefore, ps−1v ∈ RML(ν,m) and ps−1v is of weight (R + 1)qQ − 1.
Hence, RML(ν,m) has minimum distance (R + 1)qQ − 1. □
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