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A RECURRENCE RELATION FOR THE NUMBER OF REPRESENTATIONS OF
A POSITIVE INTEGER AS A SUM OF SQUARES

A. Hernández-Galeana1, M. Muniru Iddrisu, and J. López-Bonilla

ABSTRACT. We exhibit a recurrence relation for rk(n), that is, for the number
of representations of a positive integer as a sum of squares, so it is possible to
determine rk(n) if we know rk(m),m = 0, 1, 2, . . . , n− 1.

In [1] it was showed the following recurrence relation:

(1) rk(n) = −2 k

n

n∑
j=1

(−1)j j D(j) rk(n− j), k, n ≥ 1,

where D(n) =
∑

odd d/n
1
d

and rk(n) is the number of representations of a positive
integer n as a sum of k squares, such that representations with different orders
and signs are counted as distinct [2-5].

Here we want exhibit certain relations that suggest the existence of (1). In fact,
Jha [6, 7] obtained the expression:

(2)
1

n
σ(n) =

n∑
k=1

(−1)k

k

(
n

k

)
pk(n), n ≥ 1,
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for the sum of divisors function in terms of colour partitions [8-10], verifying the
Gandhi’s identity [8, 11, 12]:

(3) pk(n) = −k

n

n∑
j=1

σ(j) pk(n− j), k, n ≥ 1,

On the other hand, Jha [2, 13, 14] deduced the property:

(4) 2 (−1)nD(n) =
n∑

k=1

(−1)k

k

(
n

k

)
rk(n),

We see that (2) and (4) have a similar structure, then it is natural to ask if (4) is
associated with a recurrence relation as (3); the answer is yes [1, 2] because into
(2) we can realize the connections:

(5) pk(n) → rk(n), σ(j) → 2 (−1)j j D(j),

to obtain the mentioned recurrence relation (1), that is, it is possible to determine
rk(n) if we know rk(m) ,m = 0, 1, 2, . . . , n − 1 ; we must remember that rk(0) =
1, k ≥ 1 . Furthermore, the expression (1) with n = 1, 2, 3 . . . , implies the
following formulae:

rk(1) = 2 k , rk(2) = 2 k (k − 1) , rk(3) =
4

3
k (k − 1) (k − 2),

rk(4) =
2

3
k [3 (2 k − 1) + k (k − 1) (k − 5)] ,

rk(5) =
4

15
k (k − 1) [3 (2 k − 3) + k (k − 4) (k − 5)] ,

rk(6) =
4

45
k (k − 1) (k − 2) [45 + (k − 3) (k − 4) (k − 5)] ,

rk(7) =
8

315
k (k − 1) (k − 2) (k − 3) (k3 − 15 k2 + 74 k − 15) , . . . ,

(6)

which can be deduced via another approach. Similarly, from (3) with pk(0) =

1, k ≥ 1 [15]:

pk(1) = −k , pk(2) =
1

2!
k (k − 3) , pk(3) = − 1

3!
k (k − 1) (k − 8),

pk(4) =
1

4!
k (k − 1) (k − 3)(k − 14) ,

pk(5) = − 1

5!
k (k − 3) (k − 6)(k2 − 21 k + 8) . . .

(7)
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If tk(n) is the number of representations of n as the sum of k triangular numbers,
such that representations with different orders are counted as unique, then it is
valid the following recurrence relation [1]:

(8) tk(n) = −k

n

n∑
j=1

j T (j) tk(n− j), T (j) =
∑
d/j

1 + 2(−1)d

d
=

1

j

∑
d/j

(−1)d d,

with the corresponding inversion:

(9) T (n) =
n∑

k=1

(−1)k

k

(
n

k

)
tk(n) .

Let us indicate three interesting recurrences:

pk+1(n) =
n∑

j=0

a(j) pk(n− j), rk+1(n) =
n∑

j=0

b(j) rk(n− j),

tk+1(n) =
n∑

j=0

c(j) tk(n− j),

(10)

where:

a(j) =


0, j ̸= m

2
(3m+ 1) ,

m = 0 ,±1 ,±2 . . .

(−1)m, j = m
2
(3m+ 1) ,

,

b(j) =


2, n = m2 , m ≥ 1,

1, n = 0,

0, otherwise,
,

c(j) =

{
1, n = m

2
(m+ 1) , m ≥ 0,

0, otherwise,

(11)

which are immediate from the following result for any analytic function F (q):

(12) ” If (F (q))k =
∞∑
n=0

fk(n) q
n then fk+1(n) =

n∑
j=0

f1(j) fk(n− j) ”.

In fact:∑∞
n=0 fk+1(n) q

n = F k+1 = F F k = (
∑∞

m=0 f1(m) qm)(
∑∞

l=0 fk(l) q
l),

=
∑∞

n=0 (
∑n

j=0 f1(j) fk(n− j) ) qn,
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in accordance with (12). If F (q) = (q; q)∞ then fk(n) = pk(n) and f1(n) = p1(n) =

a(n) [15], thus (12) implies the first relation in (10); for F (q) =
∏∞

j=1
1−qj

1+qj
we

obtain that fk(n) = (−1)n rk(n) and f1(n) = (−1)n b(n), so (12) gives the second
recurrence in (10); and if F (q) =

∏∞
j=1 (1 + qj)2 (1 − qj) then fk(n) = tk(n) and

f1(n) = c(n) [16], therefore (12) generates the third identity in (10).

Remark 1. The second relation in (10) can be written in the form:

(13) rk+1(n) = rk(n) + 2

[
√
n]∑

m=1

rk(n−m2) ;

if p is a prime number, then [5]:

(14) ” p ≡ 1 (mod 4) ⇐⇒ p = sum of two squares ”,

that is, p = 4N + 1, N ≥ 0, then with (13) for k = 1 and (14) it is easy to prove the
result:

(15) r2(p) =

{
4, p = 1

8, p ̸= 1
, p ≡ 1 (mod 4) .

Furthermore, we have [4, 5] that r2(p) = 0 if p ≡ 3 (mod 4).

Remark 2. It is known the property [4, 5]:

(16) r3(n) = 0 ⇐⇒ n = 4M (8N + 7), M, N ≥ 0,

which can be applied to the second expression in (10) with k = 2:

(17) r3(n) =
n∑

j=0

b(j) r2(n− j),

to obtain the interesting result:

(18) r2(n−m2) = r2(4
M (8N + 7)−m2) = 0, m, M, N ≥ 0, n−m2 > 0,

that is, r2(q) = 0 for q = 3, 6, 7, 11, 14, 15, 19, 22, 23, 27, 28, 30, 31, . . . , hence this
numbers have the same quantity of divisors ≡ 1 and ≡ 3, (mod 4).
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Remark 3. The inversion of rk+1(n) =
∑n

j=0 b(j) r2(n− j) is given by:

rk(n) =
n∑

j=0

(−1)j h(j) rk+1(n− j),

h(n) = −
n∑

j=1

(−1)j b(j)h(n− j), n ≥ 1, h(0) = 1,

(19)

or in terms of the incomplete exponentials Bell polynomials [17], for m ≥ 0:

h(m) =
1

m!

m∑
k=0

(−1)k k! Bm,k (−b(1), 2! b(2), −3! b(3), . . . ,

(m− k + 1)! (−1)m−k+1 b(m− k + 1)
)
,

(20)

thus h(n) = 1, 2, 4, 8, 14, 24, 40, 64, . . . , for n = 0, 1, 2, 3, 4, 5, 6, 7, . . . , respec-
tively.

Remark 4. From (10) with k = 1:

(21) r2(n) = b(n) +
n∑

j=1

b(j) b(n− j),

which is an alternative for the known expression [4, 5]:

(22) r2(n) = 4 ( d1(n)− d3(n) ) ,

where dj(n) is the number of divisors of n with the structure 4k + j, j = 1, 3; the
relation (21) is very easy to apply and does not need the divisors of n . In the literature
we do not find, explicitly, the results (10), (12), and (18)-(21).
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