ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **11** (2022), no.11, 1055–1060 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.11.11.6

A RECURRENCE RELATION FOR THE NUMBER OF REPRESENTATIONS OF A POSITIVE INTEGER AS A SUM OF SQUARES

A. Hernández-Galeana¹, M. Muniru Iddrisu, and J. López-Bonilla

ABSTRACT. We exhibit a recurrence relation for $r_k(n)$, that is, for the number of representations of a positive integer as a sum of squares, so it is possible to determine $r_k(n)$ if we know $r_k(m), m = 0, 1, 2, ..., n - 1$.

In [1] it was showed the following recurrence relation:

(1)
$$r_k(n) = -\frac{2k}{n} \sum_{j=1}^n (-1)^j j D(j) r_k(n-j), \qquad k, n \ge 1,$$

where $D(n) = \sum_{odd \ d/n} \frac{1}{d}$ and $r_k(n)$ is the number of representations of a positive integer n as a sum of k squares, such that representations with different orders and signs are counted as distinct [2-5].

Here we want exhibit certain relations that suggest the existence of (1). In fact, Jha [6, 7] obtained the expression:

(2)
$$\frac{1}{n}\sigma(n) = \sum_{k=1}^{n} \frac{(-1)^{k}}{k} \binom{n}{k} p_{k}(n), \qquad n \ge 1,$$

¹corresponding author

2020 Mathematics Subject Classification. 05A17, 05A30, 11A25, 11E35, 11P81, 11P82.

Key words and phrases. Sum of squares, Colour partitions, Sum of inverses of odd divisors of an integer, Sum of divisors function, Triangular numbers.

Submitted: 20.10.2022; Accepted: 05.11.2022; Published: 09.11.2022.

for the sum of divisors function in terms of colour partitions [8-10], verifying the Gandhi's identity [8, 11, 12]:

(3)
$$p_k(n) = -\frac{k}{n} \sum_{j=1}^n \sigma(j) p_k(n-j), \quad k, n \ge 1,$$

On the other hand, Jha [2, 13, 14] deduced the property:

(4)
$$2(-1)^n D(n) = \sum_{k=1}^n \frac{(-1)^k}{k} \binom{n}{k} r_k(n)$$

We see that (2) and (4) have a similar structure, then it is natural to ask if (4) is associated with a recurrence relation as (3); the answer is yes [1, 2] because into (2) we can realize the connections:

(5)
$$p_k(n) \rightarrow r_k(n), \qquad \sigma(j) \rightarrow 2 (-1)^j j D(j),$$

to obtain the mentioned recurrence relation (1), that is, it is possible to determine $r_k(n)$ if we know $r_k(m)$, m = 0, 1, 2, ..., n - 1; we must remember that $r_k(0) = 1$, $k \ge 1$. Furthermore, the expression (1) with n = 1, 2, 3..., implies the following formulae:

$$r_{k}(1) = 2k, \qquad r_{k}(2) = 2k(k-1), \qquad r_{k}(3) = \frac{4}{3}k(k-1)(k-2),$$

$$r_{k}(4) = \frac{2}{3}k[3(2k-1) + k(k-1)(k-5)],$$
(6)
$$r_{k}(5) = \frac{4}{15}k(k-1)[3(2k-3) + k(k-4)(k-5)],$$

$$r_{k}(6) = \frac{4}{45}k(k-1)(k-2)[45 + (k-3)(k-4)(k-5)],$$

$$r_{k}(7) = \frac{8}{315}k(k-1)(k-2)(k-3)(k^{3} - 15k^{2} + 74k - 15), \dots,$$

which can be deduced via another approach. Similarly, from (3) with $p_k(0) = 1, k \ge 1$ [15]:

$$p_{k}(1) = -k, \qquad p_{k}(2) = \frac{1}{2!} k (k-3), \qquad p_{k}(3) = -\frac{1}{3!} k (k-1) (k-8),$$
(7)
$$p_{k}(4) = \frac{1}{4!} k (k-1) (k-3) (k-14),$$

$$p_{k}(5) = -\frac{1}{5!} k (k-3) (k-6) (k^{2}-21 k+8) \dots$$

If $t_k(n)$ is the number of representations of n as the sum of k triangular numbers, such that representations with different orders are counted as unique, then it is valid the following recurrence relation [1]:

(8)
$$t_k(n) = -\frac{k}{n} \sum_{j=1}^n j T(j) t_k(n-j), \qquad T(j) = \sum_{d/j} \frac{1+2(-1)^d}{d} = \frac{1}{j} \sum_{d/j} (-1)^d d,$$

with the corresponding inversion:

(9)
$$T(n) = \sum_{k=1}^{n} \frac{(-1)^k}{k} \binom{n}{k} t_k(n).$$

Let us indicate three interesting recurrences:

(10)

$$p_{k+1}(n) = \sum_{j=0}^{n} a(j) p_k(n-j), \quad r_{k+1}(n) = \sum_{j=0}^{n} b(j) r_k(n-j),$$

$$t_{k+1}(n) = \sum_{j=0}^{n} c(j) t_k(n-j),$$

where:

$$a(j) = \begin{cases} 0, \quad j \neq \frac{m}{2} (3 m + 1), \\ m = 0, \pm 1, \pm 2 \dots, \\ (-1)^m, \quad j = \frac{m}{2} (3 m + 1), \end{cases}$$

$$b(j) = \begin{cases} 2, \quad n = m^2, \quad m \ge 1, \\ 1, \quad n = 0, \\ 0, \quad otherwise, \end{cases}$$

$$c(j) = \begin{cases} 1, \quad n = \frac{m}{2} (m + 1), \quad m \ge 0, \\ 0, \quad otherwise, \end{cases}$$

which are immediate from the following result for any analytic function F(q):

(12) "If
$$(F(q))^k = \sum_{n=0}^{\infty} f_k(n) q^n$$
 then $f_{k+1}(n) = \sum_{j=0}^n f_1(j) f_k(n-j)$ ".

In fact:

$$\sum_{n=0}^{\infty} f_{k+1}(n) q^n = F^{k+1} = F F^k = \left(\sum_{m=0}^{\infty} f_1(m) q^m\right) \left(\sum_{l=0}^{\infty} f_k(l) q^l\right),$$
$$= \sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} f_1(j) f_k(n-j)\right) q^n,$$

in accordance with (12). If $F(q) = (q; q)_{\infty}$ then $f_k(n) = p_k(n)$ and $f_1(n) = p_1(n) = a(n)$ [15], thus (12) implies the first relation in (10); for $F(q) = \prod_{j=1}^{\infty} \frac{1-q^j}{1+q^j}$ we obtain that $f_k(n) = (-1)^n r_k(n)$ and $f_1(n) = (-1)^n b(n)$, so (12) gives the second recurrence in (10); and if $F(q) = \prod_{j=1}^{\infty} (1+q^j)^2 (1-q^j)$ then $f_k(n) = t_k(n)$ and $f_1(n) = c(n)$ [16], therefore (12) generates the third identity in (10).

Remark 1. The second relation in (10) can be written in the form:

(13)
$$r_{k+1}(n) = r_k(n) + 2 \sum_{m=1}^{\left[\sqrt{n}\right]} r_k(n-m^2);$$

if p is a prime number, then [5]:

(14) "
$$p \equiv 1 \pmod{4} \iff p = sum \text{ of two squares "}$$

that is, p = 4N + 1, $N \ge 0$, then with (13) for k = 1 and (14) it is easy to prove the result:

(15)
$$r_2(p) = \begin{cases} 4, p = 1 \\ 8, p \neq 1 \end{cases}, \quad p \equiv 1 \pmod{4}.$$

Furthermore, we have [4, 5] that $r_2(p) = 0$ if $p \equiv 3 \pmod{4}$.

Remark 2. It is known the property [4, 5]:

(16)
$$r_3(n) = 0 \iff n = 4^M (8N+7), \quad M, N \ge 0,$$

which can be applied to the second expression in (10) with k = 2:

(17)
$$r_3(n) = \sum_{j=0}^n b(j) r_2(n-j),$$

to obtain the interesting result:

(18)
$$r_2(n-m^2) = r_2(4^M(8N+7)-m^2) = 0, \quad m, M, N \ge 0, \quad n-m^2 > 0,$$

that is, $r_2(q) = 0$ for q = 3, 6, 7, 11, 14, 15, 19, 22, 23, 27, 28, 30, 31, ..., hence this numbers have the same quantity of divisors $\equiv 1$ and $\equiv 3$, $(mod \ 4)$.

Remark 3. The inversion of $r_{k+1}(n) = \sum_{j=0}^{n} b(j) r_2(n-j)$ is given by:

(19)
$$r_{k}(n) = \sum_{j=0}^{n} (-1)^{j} h(j) r_{k+1}(n-j),$$
$$h(n) = -\sum_{j=1}^{n} (-1)^{j} b(j) h(n-j), \ n \ge 1, \ h(0) = 1,$$

or in terms of the incomplete exponentials Bell polynomials [17], for $m \ge 0$:

(20)
$$h(m) = \frac{1}{m!} \sum_{k=0}^{m} (-1)^k k! B_{m,k} (-b(1), 2! b(2), -3! b(3), \dots, (m-k+1)! (-1)^{m-k+1} b(m-k+1)),$$

thus $h(n) = 1, 2, 4, 8, 14, 24, 40, 64, \ldots$, for $n = 0, 1, 2, 3, 4, 5, 6, 7, \ldots$, respectively.

Remark 4. *From (10) with* k = 1:

(21)
$$r_2(n) = b(n) + \sum_{j=1}^n b(j) b(n-j),$$

which is an alternative for the known expression [4, 5]:

(22)
$$r_2(n) = 4 \left(d_1(n) - d_3(n) \right),$$

where $d_j(n)$ is the number of divisors of n with the structure 4k + j, j = 1,3; the relation (21) is very easy to apply and does not need the divisors of n. In the literature we do not find, explicitly, the results (10), (12), and (18)-(21).

REFERENCES

- [1] G.E. ANDREWS, S. KUMAR JHA, J. LÓPEZ-BONILLA: Sums of squares, triangular numbers and divisor sums, submitted.
- [2] P. LAM-ESTRADA, J. LÓPEZ-BONILLA: On the Jha's identity for the sum of inverses of odd divisors of a positive integer, Comput. Appl. Math. Sci. 6(2) (2021), 27-29.
- [3] E. GROSSWALD: Topics from the theory of numbers, Birkäuser, Boston, 1984.
- [4] E. GROSSWALD: *Representations of integers as sums of squares*, Springer-Verlag, New York, 1985.
- [5] C.J. MORENO, S.S. WAGSTAFF JR.: Sums of squares of integers, Chapman & Hall/CRC, London, 2006.

- [6] S. KUMAR JHA: A combinatorial identity for the sum of divisors function involving $p_r(n)$, Integers **20** (2020), # A97.
- [7] J. LÓPEZ-BONILLA, J. MORALES, G. OVANDO: Sum of divisors and partition functions, Studies in Nonlinear Sci. 6(3) (2021), 47-50.
- [8] J. LÓPEZ-BONILLA, J. YALJÁ MONTIEL-PÉREZ,: On the Gandhi's recurrence relation for colour partitions, Sarcouncil J. of Multidisciplinary 1(1) (2021), 24-25.
- [9] J. LÓPEZ-BONILLA, M. MORALES-GARCÍA: Sum of divisors function in terms of colour partitions, Studies in Nonlinear Sci. 7(1) (2022), 4-5.
- [10] J. LÓPEZ-BONILLA, A. LUCAS-BRAVO, O. MARÍN-MARTÍNEZ: On the colour partitions $p_r(n)$, Comput. Appl. Mat. Sci. 6(2) (2021), 35-37.
- [11] J. M. GANDHI: Congruences for $p_r(n)$ and Ramanujan's τ -function, Amer. Math. Monthly **70**(3) (1963), 265-274.
- [12] O. LAZAREV, M. MIZUHARA, B. REID: Some results in partitions, plane partitions, and multipartitions, Summer 2010 REU Program in Maths. at Oregon State University, 13th Aug., 2010.
- [13] S. KUMAR JHA: An identity for the sum of inverses of odd divisors of n in terms of the number of representations of n as a sum of squares, Rocky Mountain J. Maths. **51**(2) (2021), 581-583.
- [14] H.E. CAICEDO-ORTIZ, J. LÓPEZ-BONILLA: *Expressions of Glaisher and Jha to obtain the sum of inverses of odd divisors of an integer*, Comput. Appl. Math. Sci. 6(2) (2021), 23-24.
- [15] J.D. BULNES, T. KIM, J. LÓPEZ-BONILLA, S. VIDAL-BELTRÁN: On the partition function, Proc. Jangjeon Math. Soc. **26**(2) (2023), to be published.
- [16] K. ONO, S. ROBINS, P.T. WAHL: On the representation of integers as sums of triangular numbers, Aequationes Mathematicae 50(1) (1995), 73-94.
- [17] D. CVIJOVIC: New identities for the partial Bell polynomials, Appl. Math. Lett., 24 (2011), 1544-1547.

DEPARTAMENTO DE FÍSICA, ESFM, INSTITUTO POLITÉCNICO NACIONAL, EDIF. 9, ZACATENCO, COL. LINDAVISTA CP 07738, CDMX, MÉXICO.

Email address: ahernandez@ipn.mx

DEPARTMENT OF MATHEMATICS, FACULTY OF MATHEMATICAL SCIENCES, C. K. TEDAM UNIVER-SITY OF TECHNOLOGY AND APPLIED SCIENCES, NAVRONGO, GHANA.

Email address: middrisu@cktutas.edu.gh

ESIME-ZACATENCO, INSTITUTO POLITÉCNICO NACIONAL, EDIF. 4, COL. LINDAVISTA CP 07738, CDMX, MÉXICO.

Email address: jlopezb@ipn.mx