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A NOTE ON NONDEGENERATE POISSON STRUCTURE
Ange Maloko Mavambou!, Norbert Mahoungou Moukala, and Vann Borhen Nkou

ABSTRACT. The Schouten-Nijenhuis bracket on the module of Kihler differentials
is introduced. We recover Lichnerowicz’s notion of Poisson manifold by using the
universal property of derivations. We prove using the Schouten-Nijenhuis bracket
that a nondegenerate Poisson structure corresponds exactly to a symplectic struc-
ture. Finally, we explore the notion of Hamiltonian vector fields on a nondegener-
ate Poisson manifold in terms of derivations.

1. INTRODUCTION

Poisson algebras were introduced by Lichnerowicz [6] as the algebraic structure
on the ring of C'*° functions on a certain kind of smooth manifolds, called Pois-
son manifolds. Poisson algebras are a generalization of symplectic algebras. The
Poisson bracket is a derivation on the commutative algebra endowed with a Lie
bracket.

All the objects that we consider are assumed to be C'*°-smooth and we follow
the usual notation of differential geometric literature [4]. Let M be a smooth
manifold, C*°(M) the commutative algebra of smooth functions on M and E a
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certain C*°(M)-module. A derivation on C*°(M ) with coeffcients in R is a R-linear
map ¢ : C°(M) — E such that

o(f-g9)=v(f) g+ [ ¢(9)

for any f,g € C*(M). We denote by Derg [C*(M), E] the C*(M)-module of
derivations on C*° (M) with coeffcients in R and Derg [C*°(M)] the C°°(M)-module
of derivations on C*°(M). Let X(M) be the well-known C*°(M)-module and vec-
tor fields act as derivations on smooth functions, the map

D : X(M) x C®°(M) — C®°(M), (X, f) — Dx(f) == X(f)

satisfies the equation Dx(f - g) = Dx(f) -9+ f - Dx(g), for any f,g € C*°(M).

The aim of this paper is to study the nondegenerate Poisson structures by using
the universal property of derivations.

The paper is organized as follows. Section [2| contains some generalities about
the universal property of derivations and the Schouten-Nijenhuis bracket on the
module of Kahler differentials. In section |3} we recall the notion of Poisson struc-
ture and we recover Lichnerowicz’s notion of Poisson manifold by using the uni-
versal property of derivations. In section |4, we introduce the Koszul bracket asso-
ciated with a Kahler 2-form and we give the relation between Schouten-Nijenhuis
bracket and Koszul bracket associated with a Kéhler 2-form. In section 5] we prove
using the Schouten-Nijenhuis bracket that a nondegenerate Poisson structure cor-
responds exactly to a symplectic structure. Finally, in section [6], we explore the
notion of hamiltonian vector fields on a Poisson manifold defined by the symplec-
tic manifold in terms of derivations.

2. PRELIMINARIES

Let M be a smooth manifold and denote by Qr[C*(M)] the module of Kahler
differentials of commutative algebra C°(M), that is, the quotient space Qg[C*° (M )]
= I/I?, where [ is the C°°(M)-submodule of C*°(M) Q) C>(M) generated by the

R
elements of the form f ® Lo (i) — Lo (any @ f with f € C°(M) (see [1], [9]). The
linear map 05, : C°(M) — Qg[C*(M)] defined by

o (f) = f® losry — Lowpn ® f
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is the canonical derivation which the image of §,, generates the C*°(M)-module
Qgr[C>(M)], that is, for a € Qg[C*(M)]|, we have o = > f; - dp(9:), with

i€1: finite
fi,gi c COO(M>

Theorem 2.1. [|I] The pair (Qx[C*(M )], dr) satisfies the following universal prop-
erty: for every C*°(M)-module E and for every derivation D : C*°(M) — E, there
exists a unique C>(M)-linear map D : Qg[C*°(M)] — E such that D o 6y, = D.
Moreover, the linear mapping

Homce ) (Qe[C™(M)], E) — Derg(C™ (M), E), 1 — ¢ 0 0y
is an isomorphism of C'*°(M )-modules. In particular,

(QR[COO(M)])* ~ Derg[C™(M)].

Forany p € N, AP(Qg[C>*(M)]) = £°

s (Qr[C(M)],C>(M)) denotes the C>(M)-
module of skew-symmetric multilinear forms of degree p from Qg[C>(M)] into
C>(M) and

AQR[C=(M)]) = @D A7(Qa[C(M),
peEN

the exterior C*°(M)-algebra of Qr[C°°(M)]. Denote by Der?, [C>°(M)] the C>(M)-

sks

module of the skew-symmetric p-derivations of C* (M), thatis, D € Der?, [C*°(M)]

sks

if the map
Dizp(fl,...,ﬁ,...,fp> L O®(M) —s C=(M)
fir— D (f1, far .-, ficrs fis fiva, - - 7fp)

is a derivation [9].

Theorem 2.2. [9] For any D € Der?, [C>(M)], there exists a unique skew-symmetric
C>(M)-multilinear map of degree p, D : [Qr[C>(M)]]P — C>(M) such that

(2.1) DO (f1), 00 (fo)) =D (frv-o's fo)
and there exists a unique C*(M)-linear map D : AP (Qg[C=(M)]) — E such that
(2.2) D (8ar (f1) Noar (fa) Aeo o NS (F0) = D (f1s fas s fo)

forany fi,..., f, € C®(M).
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When we denote D = P € A? (Qg[C>°(M)]) and ip = D, then forany f,,..., f, €
(M),
ip (0ar(f1) N on(f2) Ao Ao (fp)) = P (0 (f1), 0ne(f2), -5 00 ()
=D(f1,--, [p)-
For m € A% (Qg[C>(M)]) and f, g,h € C=(M), we have
i (00 (f) A Onr(g) A du(h))
= 1r (O (f) AN On(9)) - Oni(h) — in (6as(f) A Srr(R)) - Gr(g)
+ix (Oar(g) A O () - 0na(f)
= (on(f): 0nr(g)) - Onr(h) — 7 (6as (f), Oar(h)) - Oas(g)
+ 7 (0n(9), 00 (h)) - o0 (f)

Definition 2.1. For P € AP (Qg[C*(M)]) and Q € A? (Qg[C*(M)]), the Schouten-
Nijenhuis bracket of P and () is a mapping

[, s+ A7 (QR[C(M)]) x AT (Qr[C(M)]) — APFH(QR[C™(M)))
such that
(2.3) [P,Ql¢g=PoQ — (_1)(p—1)(q—1) QoP,
where

(Qo P) (dar(f1)s 0ns(f2)s -+ -5 0ns(forg—1))
= Z (—1)UQ[15 (fo)s fo@)s - fo)) s forn)s - - o fopra—1) | »

0€Sp q—1

and P = D € Derk[C>=(M)] is a unique skew-symmetric p-derivation such that

D(fl,7fp):P(6M<fl>775M(fp>>

Throughout this section, we denote [.,.]¢ by an unadorned bracket [,]. The
description of interior product P € A (Qg[C>°(M)]) with the Schouten bracket is
similar to the interior product defined in [5] and [8]]. Then, if P and ) are two
elements of the A (Qr[C*°(M)]), then

(2.4 ipq = [[ir, dm] ,iq] -
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If P e AP (Qg[C>*(M)]), then ip is of degree —p. So,
(25) [’Lp,aM] :Zp05M—<—1)_p(5MOZP

Now, assuming @ € A? (Qg[C*°(M)]), we have

lip,n]ig) = [ip,dn]oig— (—1) " igolip,du]

= ipodyoig— (—1)"dyoipng
(2.6) — (1)1 pag 0 b + (—1) T PP 0 8y 0ip.
Proposition 2.1. For any m € A? (Qg[C>=(M)]) and n € [Qr[C>*(M)]]*, we have
2.7) i m)?] = 2070 p1in).
Proof. When we use equations (2.4) and (2.6) with P = Q = 7, we get

i = ixOarian) + (1) Snrinnnt)
—(=1)" 2(1-2) R,y iy g 1)—2(1—2)_2 i Oasinn
= 0O 4+ (—1)* 2 i Oarian
— 20 SpginT).

Proposition 2.2. If 7 € A? (Qr[C*°(M)]) and f,g,h € C*(M), then

(2.8) % [0, 7] (Oar(f), 00e(9), Ons (h)) = fﬂ (Onr (m (001 (f); 0a1(9))) , 901 ()

where the symbol § means the cyclic sum in f, g, h.
Proof. For n = 0p(f) A 0ar(g) A dar(h), we have
ixt) =7 (O (f),000(9)) - ora(h) — 7 (O (f), Oni(h)) - Onr(g)
+ 7 (ar(9), 6ar(R)) - e (),
Onrinn) = O (m (Oas(f), 000(9))) A Oar(h) — Ons (m (901(f), 001 (R))) A Gaa(g)
+ 0 (m (021(9), 0ar(h))) A oas(f),

and

ixOninn = 7 (Oar (7 (0ar(f),00e(9))) , Oar(h)) + 7 (Sas (7 (Sas(h), 6as(f))) , 6ar(g))
+7 (0 (7 (6n1(g), 60 (R))) , 6na(f)) -
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Since
7;[71',71']77 = Q,L.TI'(SMiﬂ'n)
then

1

5 [m ] (0ae(f), 0ar(9), 0ar () = ]{W@M (m (0ar(f),011(9))) > 601 (R)) -

3. POISSON STRUCTURES

We recall that a Poisson bracket on a manifold M is a Lie bracket {, } on C*>°(M)
satisfying the Leibniz identity

(3.1 {frg-hy=A{f.9} -h+g-{f h}

for any f,g,h € C*°(M). A Poisson manifold is a manifold equipped with a Ja-
cobi bracket (see []3]], [6]]). The Leibniz identity means that, for a given function
f € C*(M) on a Poisson manifold M, the inner derivation ad(f) : C*(M) —
C>*(M), g+ {f, g} is a derivation of a commutative algebra C*°(M).

If M is a Poisson manifold, the bracket {, } is a skew-symmetric 2-derivation. By
the Theorem [2.2] there exists 7 € A% (Qr [C>(M))]) such that

(3.2) {f.9} =70 (f),0n(9)),

for any f and g in C*°(M).
Consider the Jacobiator J (., .,.) defined as

J(f,9.h) = gk + o b} £+ {0 f1 9}
for f,g,h € C°(M).

Lemma 3.1. Forall f,g,h € C*(M), we have

70900 = (17 s (7). (0 s (1)

Proof. Using the equation (3.2), for any f, g,h € C*°(M), we have
{{fa g}a h} = 7T(5M({f> g})> On (h))

Using the skew-symmetry of 7 and grouping relevant terms together, we get
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J(f.9.h) = 75 7 (ar (7 (0 (£), 821(9))) B3 ()
= (et} Gur (1)1 (5 8 1)

Theorem 3.1. For all f,g € C*°(M), the bracket
{f.9} = (0 (f), 00e(g))

satisfies the Jacobi identity if and only if

(3.3) [, 7] = 0.

Proof. Assume that the bracket {,} satisfies the Jacobi identity, then from the

Lemma 3.1} [r, 7] = 0.

Conversely, assume the equations (3.3]), then from the Lemma (3.1, we have,

{{5.9b hy +{{g,n}, f1 +{{h. f}, 9} = 0.
U

The skew-symmetric 2-form 7 on Qg[C>°(M)] is called Poisson 2-form of the
Poisson manifold M and the pair (M, 7) is called Poisson manifold.
4. KOSZUL BRACKET
If (M, ) is a Poisson manifold, then the map
ad : C*°(M) — Derg[C>*(M)], f —— ad(f)

is a derivation. Thus, by the Theorem there exists a unique C*°(M)-linear
map
ad : Qr[C*°(M)] — Derg[C™(M))]
such that,
Then, from (3.2)), we have, for any f € C*(M) and «a, § € Q[C*(M)]

(4.2) [ad ()] (f) =7 (@, 00 (f))
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(4.3) [ad ()] (B) = 7 (e, B) .

For any derivation D : C*°(M) — C*°(M), the Lie derivative with respect to D

is the map
Lp : A (Qg[C*(M)]) — AP (Qe[C™(M))])
such that for n € AP(Qr[C*(M)]) and x4, ..., z, € Qr[C>®(M)],

(Coyn) (@1, ..., xp) = D (a1, ..., anl,.. [z, 2], i1, - Tp).

Let M be a manifold. The 2-form 7 induces on Qg[C> (/)] a bracket |, ] called
the Koszul bracket:

(44) [Oé, ﬁ]ﬂ- = £@(a)ﬁ - S@(B)Oé - (SM(T('(OJ, ﬂ)),
for all a, B € Qg [C(M)]. Let
dag L0 (R[C™(M)], C(M)) — L35 (Q[CZ(M)],C*(M)),  Q — dgQ

sks

be the operator associated to ad such that, for any o, ..., agy; € Qr[C®(M),

k+1

d—=Q(an, ..., Qpyy) = Z(—ni—%(ai) Qlov, ... Gy, ., Qg

Z+j A A
+ g Qev, ajlrsar, ooy Gy GGy e Q)
1<Z<]<k+1

For any m € £2,,(Qr[C(M)],C>(M)) and Q € £F,(Qr[C(M)],C>(M)), we
have

(4.5) d@@ = _[ﬂ-a Q]
In particular, if Q = 7, then for any «, 5, € Qg[C*(M)],
(4.6 m.l B = = fad(a) 7(5.2) + § wlla Bl )

where the symbol § means the cyclic sum in a, 3, 7.
For any «, 67 Y€ QR[COO(M)]:

(4.7) T (Om (7 (e, B)),7) = —ad(v) - 7 (e, B),

4.8) 7 (La7) = ad(a) - 7(8,7) — ([ad(7), ad(@)] ) (8) .
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Proposition 4.1. For any «, 3,y € Qg[C*>(M)],

(4.9 ([0, Bl ) — ([l ad(8)]) () = 5. 70 ,7),

Proof. For a, 3, € Q[C™(M)], by (4.4), we have
7T([Oé7 /B]Wv ’Y) =7 (SE(a)ﬁ’ 7) -7 <2@(B)a7 7) - T (6M(7T(a7 6))7 ’7)) .
Put
(4.10) ola 8.7) = ([adlo, 81| = ([ad(a),ad(3)] ) ) ()
for a, 3,7 € Q[C*>(M)]. From and (4.8), the formula becomes
ola, 8,7) = 7([o Ble, 1) — ([ad(e), ad(A)] ) (1)
ad(B) - (v, @) + ad(v) - 7(, )

ie.,

From (4.6), we have
B, 8,7) = [ 7] @ 5.7) + m([a, Ble, ) + 7([. 7. @) + ([, . )
— ([ed(9), ad()] ) (@) - ([ad(v), ad(e)] ) (5)
~ (ad(a),ad()]) ()
= —[m,7)(e, B,7) + (8,7, @) + (7, ¢, B) + d(ev, B, 7).

Hence, since ¢ is an alternating map,we get

[m, 7, B,7) = 2¢(a, B, 7).

Thus,

1079
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5. NONDEGENERATE POISSON STRUCTURE

A smooth manifold M is called a symplectic manifold, if there is defined on M
a closed nondegenerate 2-form 7, that is, an n € A% (M) such that
@ dn =0,
(i) the map " : X (M) — (A'(M))",X +— ixn is an isomorphism of
C*>°(M)-modules, where (ixn)(Y) = n(X,Y) pour any Y € X (M) (see
[2]], [71) for more details.
We denote (M, n) a symplectic manifold.
A Poisson structure is nondegenerate if the Poisson 2-form 7 is nondegenerate
i.e., the map
7 Qg[C(M)] — Qr[C¥(M)]*, a — igm
is an isomorphism of C*°(M )-modules, where (i,7) (5) = 7 (o, B).
If the Poisson 2-form 7 is nondegenerate, then the map ad is an isomorphism of
C>(M)-modules. Indeed, the map

ad = K o W), : Qg[C®(M)] — Derg|[C*(M)]
is an isomorphism of C*°(M )-modules, where
K : Qr[C®(M)]" — Derg[C*(M)], o — podn
is an isomorphism of C*°(M)-modules defined by the Theorem and for any
frg € C=(M),
(K on”) (63 () (9) = [isy, ()7 © ona] (9) = ad (as(£)) (9)-

Proposition 5.1. If (M, ) is a Poisson manifold and if 7 is nondegenerate, then
there exists n € A* (M) such that for any X,Y € X(M) and «, 3 € Qr[C>(M)],

(5.1) n(X,Y)=n(a, B).

Proof. If m : Qr[C>®°(M)] x Qr[C>*(M)] — C*°(M) is nondegenerate, then the
map

ad : Qr[C™°(M)] — Qr[C*°(M)]* = Derg[C*>(M)]
is an isomorphism. Let ad ' be the inverse isomorphism of ad. Thus, for any
X,Y € X(M), there exists a, 8 € Qp[C=(M)] such that o = ad (X), 3 =ad (Y).
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The map
n=mo(ad ' xad '): Derg[C™(M)] x Derg[C*(M)] — C(M)
satisfies
(X, Y)=mo(ad  xad )X,Y)=n(ad (X),ad (V))=7r(a,B).
0

Proposition 5.2. For any X,Y,Z € X (M) and for any «, 3,y € Qr[C>*(M)], we
have

52 WX, Y1, 2) = =3, wl(@, ,7) + (e Bl ).

Proof. For X,Y,Z € X (M) and for a, 8, € Qr[C*(M)],
n([X,Y),Z)=mo(ad ' xad )(X,Y],Z)=n(ad ([ad(a),ad(5)]),7)

From (4.3]), we have

0(1X,Y], 2) = (ad [ad " ([ad(e), ad(A)])] ) (1) = (ad(e), ad(F)]) (7)-
By (4.9), it follows that

WX, Y1, 2) = =5l m(, 6.7) + w(la Bl ).

Lemma 5.1. For any X,Y,Z € X (M) and for any «, 5, € Qg[C*(M)], we have

53) (@n)(X,v.2) = (3l 7] 0.5

Proof. For X,Y,7Z € X (M),
dn(X,Y, Z2) = X - [n(Y, 2)] =Y - [n(X, Z2)] + Z - [n(X, V)]
- n([Xv Y],Z) + n([Xa Z]7Y> - U([Ya Z]aX)
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From expressions and (5.2), we have
dn(X,Y, Z) = ad(a) - 7 (8,7) — ad(B) - n(a,y) + ad(y) - 7(a, B)

+ 5[ (@, 8,7) — (e Bl )

= L] (0,7 8) + 7oA B)

2
+ 5lm 7] (8,7, @) = w((8,21s, @),
that is,
n(X.Y,2) = fadle) - 7(5.7) - § a(la,Bn)
+ 5l 8,7) = 5 1m7) (@7, 8) + 5l 18,7, 0)
From (4.6), we get
(5.4) dn(X,Y,Z) = %[Ww](a,ﬁ,v)-

O

Theorem 5.1. The pair (M, ) is a nondegenerate Poisson manifold if and only if the
pair (M,n) is a symplectic structure.

Proof. From the Lemma we deduce that the identity |7, 7] = 0 is satisfied if
and only if the identity dn = 0 is. O

6. HAMILTONIAN VECTOR FIELDS
When (M, 7) is a Poisson manifold, then the map 6, : C®°(M) — Qg[C>(M)]
is a Lie algebras homomorphism, that is
(6.1) o ({f,93) = 108 (), 0ar(9)] 7 »
for any f,g € C°°(M). From (5.2), since [r, 7| = 0, then

(6.2) (X, Y], 2) = n(la, Bz, 7),

for any X = ad(a),Y = ad(B) and Z = ad(y) in Derg[C>(M)).
When (M, n) is a symplectic manifold, we recall that a vector field X on M is
locally hamiltonian if the form iy 7 is closed for the de Rham cohomology. A vector
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field X € X(M) is globally hamiltonian if the 1-form ixn is d-exact that is there
exists f € C*°(M) such that iyw = —df [2] and [7].

Proposition 6.1. A locally hamiltonian vector field on M is a derivation of the Lie
algebra C*°(M) induced by the structure of Poisson defined by the symplectic manifold

(M, n).

Proof. Let X be a locally hamiltonian vector field, then d (ix7n) = 0. Thus, for any
Y and Z in X(M) ~ Derg[C>®(M)], (dixn) (Y, Z) =01i.e.,

n (X7 [Y> Z]) =Y [77(X> Z)] -7 [77(X7 Y)] .
From and (6.2), we have
m (@, [8,7],) = ad(B) [7(a, )] — ad(v) [n(a, B)].
Since 3 = 0x(f), v = 0n(g) with f, g € C°(M) and by and (6.1)), we get
[ad(e)] ({f.9}) = ad(f) ([ad(@)] (9)) — ad(g) ([ad(e)] (f)) -

Thus,
X({f.9}) = ad(f) (X(g)) — ad(g) (X (f)) = {f, X(9)} — {9, X ()}
={X(N), g} +{f. X(9)}-
for any f,g € C*°(M). O

Proposition 6.2. A globally hamiltonian vector field on M is a derivation interior of
the Lie algebra C*° (M) induced by the structure of Poisson defined by the symplectic
manifold (M, n).

Proof. Let X be a globally hamiltonian vector field, there exists f € C*°(M) such
that iyw = —df. For any Y € X(M) =~ Derg[C*(M)], n(X,Y) = =Y (f) =
— [ad(B)] (f). Since B = 61 (g) with g € C*°(M ), we have

n(X,Y) = — [ad(6x(9))] (f) = —ad(g)(f) = —{g, [} = ad () (9) .
On the other hand, from (5.1)),
N (X,Y) = (e, 00(9)) = [ad(c)] (9)-

Thus, [ad(c)] (9) = ad (f) (g), for any g € C>(M), that is X = ad (f). Thus, X is
the derivation interior of the Poisson algebra C*>°(M). O
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