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MODELLING OF DYNAMIC SYSTEMS USING A NUMERICAL ALGORITHM
BASED ON AN ALGEBRAIC SUBSPACE APPROACH

Hakim Bagua

ABSTRACT. For the purpose of providing a linear model in state space form of a
dynamic system which is appropriate for control and optimization research, this
paper presents a systematic method based on algebraic notions for dynamical sys-
tems modeling from operational data using numerical methods.

1. INTRODUCTION

The following form describes the mathematical formulation of a linear discrete-
time dynamic multivariate state space model [1]

(1.1)

{
x(h+ 1) = Ax(h) +Bu(h) + w(h)

y(h) = Cx(h) +Du(h) + v(h)
,

with x(h) ∈ Rn denotes the states vector, u(h) ∈ Rm×1 the input vector, y(h) ∈
Rl×1, the output vector, v(h) ∈ Rl×1, w(h) ∈ Rn×1 are zero-mean unmeasurable
vector sequences, A ∈ Rn×n , B ∈ Rn×m , C ∈ Rl×n and D ∈ Rl×m are regular
matrices of standard dimensions.
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2. DESCRIPTION OF THE NUMERICAL ALGORITHM FOR SYSTEM IDENTIFICATION

The Hankel block matrices [15] constructed by the system operational data are
used to generate the subspaces in the numerical technique [2, 3], which has re-
cently been introduced as a potent alternative to the traditional system identifi-
cation method based on iterative techniques. Several algebraic techniques, in-
cluding SVD (Singular Value Decomposition), are used to determine the system’s
order and the Observability matrix, which contains the parameters of the predicted
model. In this study, we employ a numerical methodology based on operational
data to present the key mathematical methods used in the subspace identification
method [16]. In fact, it is typically not able to measure the system’s state com-
pletely; therefore, in order to stabilize the system, it is frequently necessary to take
into consideration the curves provided by the standard equation given by (1.1).
With the Extended Observability Matrix Γi associated with the state representation
given by equation (1.1) is given by [4,5]:

Γi =


C

CA

CA2

...
CAi−1

 ,(2.1)

where i provide the block’s line number, the system matrices are denoted by A and
C. the inverted extended controllability matrix of ∆d

i of equation (1.1) is given
by [6] [7]:

∆d
i =

(
Ai−1B Ai−2B · · · AB B

)
,

with A et B are the system matrices, and i denotes the number of columns. The
block is set lower than the triangular Toeplitz matrix Hi , determined by the follow-
ing formula, which according to it, the block is positioned beneath the triangular
Toeplitz matrix:

Hi =


D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

...
CAi−2B CAi−3B CAi−4B · · · D

 ,
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with A, B, C and D denote the system matrices. The input and output Henckel
matrices are defined by [8,10]:

U0|i−1 =


u0 u1 u2 . . . uj−1

u1 u2 u3 . . . uj

...
...

...
...

ui−1 ui ui+1 . . . ui+j−2

 ,

Ui|2i−1 =


ui ui+1 ui+2 . . . ui+j−1

ui+1 ui+2 ui+3 . . . ui+j

...
...

...
...

u2i−1 u3i ui+1 . . . u2i+j−2

 ,

Y0|i−1 =


y0 y1 y2 . . . yj−1

y1 y2 y3 . . . yj
...

...
...

...
yi−1 yi yi+1 . . . yi+j−2

 ,

Yi|2i−1 =


yi yi+1 yi+2 . . . yi+j−1

yi+1 yi+2 yi+3 . . . yi+j

...
...

...
...

y2i−1 y2i y2i+1 . . . y2i+j−2

 ,

where U0|i−1 denotes preceding input, Ui|2i−1 the following input, and Y0|i−1 the
preceding output, Yi|2i−1 the following output, u denotes the elements of the input
vector, y denotes the output vector, to simplify more, U0|i−1 = UP , Ui|2i−1 = US,
Y0|i−1 = YP and Yi|2i−1 = YS The preceding and following state matrices XP and
XS are explained as:

Xp =
(

x0 x1 x2 . . . xj−1

)
∈ Rn×j,

XS =
(

xi xi+1 xi+2 . . . xi+j−1

)
∈ Rn×j,

XP and XS can be determined by applying the (SVD) and (QR) decompositions
to the data frame’s Hankel vectors. The matrix of instrumental variables Zp is
presented by [10–12]:

Zp =
(

Up Yp

)T
,
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with: Up denotes the vectors of the preceding inputs, and YP the vectors of preced-
ing outputs. The extended Observability matrix and the state matrix are obtained
using the unified method proposed by Van Overschee and Bart De Moor in [3].
Following are definitions of the state matrix input-output equations and main pro-
jections:

XS = AiXP +∆iUP ,

YP = ΓiXP +HiUP ,

YS = ΓiXP +HiUS,

where US is the following input, XP and XS are the preceding and following state
matrices, Γi the extended Observability matrix and Ai is the Kalman filter’s block
matrix in a non-steady state.

The preceding and the following projections, Zi and Zi+1 are expressed in the
form: {

Zi = ΓiX̂i +HiUi|2i−1

Zi+1 = Γi−1X̂i+1 +Hi−1Ui+1|2i−1

,

where Ui|2i−1 is the following inputs matrix, X̂i and X̂i+1 are the preceding and
following states figured out in the following section using the Kalman filter’s es-
timation. To estimate the extended Observability matrix, the subspace technique
uses a matrix relation that represents the system’s output as a linear function of
state and inputs. By using the recursive Kalman filter’s many versions, this state
matrix can be constructed [3]:

X̂i =
(
Ai −QiΓi |∆i −QiHi|Qi

)SR−1U0|2i−1

U0|2i−1

Y0|2i−1

 ,

with: Γi the extended Observability matrix, Ui|2i−1 is the following input, Q and R

are the matrices of the QR decomposition, Ai , Qi and S are the block matrices of
the Kalman filter in the unsteady state.

Hence, the matrix of future state sequences X̂i+1 is obtained by the following
relation:

X̂i+1 =
(
Ai+1 −Qi+1Γi+1 |∆i+1 −Qi+1Hi+1|Qi+1

)SR−1U0|2i−1

U0|i
Y0|i

 ,
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with:

Qi = αiβ
−1
i .

Hence, αi = Ai (P − SR−1St) Γt
i + ∆i and βi = Γi (P − SR−1St) Γt

i + Li P is the
Kalman filter covariance matrix, the element d represents the fully deterministic
section., Ai , Qi and S are the block matrices of the Kalman filter in the unsteady
state, L denotes the SVD decomposition matrix [13,14].

3. STATE REPRESENTATION

Using only the information from a few measurements of the inputs ui and the
outputs yi that have been performed, this modeling technique aims to identify the
system’s order n and generate a realization (A, B, C, or D) of the dynamic system
under study. In this work, we also provide a numerical method for determining
these state matrices. We present the solution using the structural features of the
extended Observability matrix provided by the equation (2.1), performed by re-
constructing a sequence of the system state under examination. The four phases
below make up the procedure.

Phase 1: Determine the projections: This step consists in determining the
projections Zi and Zi+1 in order to apply singular value composition (SV D), and
are defined as following:

Zi = Yi|2i−1/

(
U0|i−1

U
Ui−1

i|2i−1

)
= (L1

0|i−1︸ ︷︷ ︸
li×mi

| L2
i︸︷︷︸

li×mi

| L3
i︸︷︷︸

li×li

)

(
U0|i−1

Ui|2i−1

)

Zi+1 = Yi+1|2i−1/

 U0|i
Ui+1|2i−1

Y0|i

 .

Phase 2: Compute the (SVD) Decomposition: The (SVD) algebraic decompo-
sition method is used to simplify the calculation of the preceding and succeeding
states X̂i and X̂i+1 after getting the projections by the earlier stage, we write:(

L1
i | L3

i

)(U0i−1

Y0|i−1

)
=
(

U1 U2

)( Σ1 0

0 0

)
V t,

with the non-singular value number is provided by:

Γi = U1Σ
1/2
1 et Γi−1 = U1Σ

1/2
1 .



1090 H. Bagua

Phase 3: identify the States X̂i and X̂i+1: Using the Moore-Penrose pseudo
inverse, the states X̂i and X̂i+1 are computed in this stage as follow:

X̃i = Γ†
i

(
L1
i | L3

i

)(U0|i−1

Y0|i−1

)
,

X̃i+1 = Γ†
i−1

(
L1
i+1 | L3

i+1

)(U0|i

Y0|i

)
.

The parameters P⊥ and Γ† denote a matrix whose row space is orthogonal to the
row space of P and the Moore-Penrose pseudo inverse, respectively.

Phase 4: Get the least-squares solutions: (ρ1 and ρ2 are residues): Find-
ing the least squares solution λ1, λ2 ,λ3 and λ4 is the last stage to determine the
matrices of the system approximately(

X̃i+1

Yi|i

)
=

(
λ1 λ2

λ3 λ4

)
·

(
X̃i

Ui|i

)
+

(
ρ1
ρ2

)

ρ =

 U0,2i−1

Zi

X̂i


⊥

Calculating the system matrices: The system matrices A, B, C, and D are ap-
proximately calculated as follows:(

A B

C D

)
←

(
λ1 λ2

λ3 λ4

)
(3.1)

Alternatively, this algorithm is outlined in the following section, taking into ac-
count:

- The indices P and S, respectively, denote the previous or earlier state and
the subsequent or later state.

- The inputs are activated by a persistence of order 2i (rank(U0,2i−1) =

2mi),and scale matrices W1 ∈ Rli×li and W2 ∈ Rli×li realise:

rank(Zp) = rank(ZpW2),

and oi such as the oblique projection:

oi = YS/USZP ,
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and

W1oiW2 =
[
U1 U2

] [ S1 0

0 0

][
V T
1

V T
2

]
W1oiW2 = U1S1V

T
1

(3.2)

We obtain:

- Step 01: determine the projections:

oi = ΓiXS.

- Step 02: Determine the (SVD) decomposition of system of equations (3.2),
The quantity of singular values that differ from zero, as indicated by the
matrix S1, determines the model’s order.

- Step 03: Following are the formulas for the extended Observability matrix,
Γi:

Γi = W−1
1 U1S

1
2
1 T.

- Step 04: Determine the state matrices:

XSW2 = T−1U1S
1
2
1 V

T
1 ,

XS = Γioi.

The similarity transformation matrix T ∈ Rn×n is non-singular, the param-
eter S

1
2
1 is given for symmetry purposes.

System Order:
We create the Hankel matrices (YP , YS)

T and (UP , US)
T to identify the system’s

order, from a finite number q of input-output data (uk, yk) after instrumental vari-
able matrix deduction, and find the equation’s oblique projection (3.3), by mul-
tiplying oi left and right by the corresponding weight matrices, W1 and W2 , that
are applied to enhance approximation of ΓiXS , we get the equation (3.2), then
apply the SVD of W1oiW2 , The order of the system is n when S1 is a diagonal
matrix made up of n singular values that are not zero. System’s matrices iden-
tification: The matrices A and C are identified from the Observability matrix Γi

column space; after estimating Γi, the matrix C is actually derived from the first l
lines of Γi. The matrix A is calculated from the following equation:

A = Γ†
i Γ̄i,
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with: Γi is Γi without the primary l lines, Γi is Γi without the primary l lines, Γ†

symbolizes the pseudo inverse of Moore-Penrose. We can get the matrices B and
D by:

Γ⊥
i [YS/Us]U

†
s = Γ⊥

i Hi.(3.3)

By multiplying equation (3.1) on the left by Γ⊥
i an on the right by U †

i|2i−1 we
obtain:

Γ⊥
i YSU

†
S = Γ⊥

i ΓiXSU
†
S + Γ⊥

i HiUSU
†
S,

and by considering the product Γ⊥
i Γ is zero we get:

Γ⊥
i YSU

†
S = Γ⊥

i Hi.

By making a change of variable as follows:

M = LH,

with: L = Γ⊥
i =

(
L1 L2 · · · Li

)
and M = Γ⊥

i YSU
†
S =

(
M1 M2 · · · Mi

)
.

B and D are found by solving a system of equations by the linear regression algo-
rithm: (

Xi+1

Yi|i

)
=

(
A B

C D

)(
Xi

Ui|i

)
,

with a single row of the input blocks and their corresponding outputs, Ui|i and Yi|i

are the Hankel block matrices.
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