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MODELLING OF DYNAMIC SYSTEMS USING A NUMERICAL ALGORITHM
BASED ON AN ALGEBRAIC SUBSPACE APPROACH

Hakim Bagua

ABSTRACT. For the purpose of providing a linear model in state space form of a
dynamic system which is appropriate for control and optimization research, this
paper presents a systematic method based on algebraic notions for dynamical sys-
tems modeling from operational data using numerical methods.

1. INTRODUCTION

The following form describes the mathematical formulation of a linear discrete-
time dynamic multivariate state space model [1]]

{x(h + 1) = Az(h) + Bu(h) + w(h)

(1.1 ;
y(h) = Cz(h) + Du(h) + v(h)

with z(h) € R" denotes the states vector, u(h) € R™*! the input vector, y(h) €
R, the output vector, v(h) € R, w(h) € R™! are zero-mean unmeasurable
vector sequences, A € R™*" | B ¢ R™™  C € R>" and D € R™*™ are regular
matrices of standard dimensions.
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2. DESCRIPTION OF THE NUMERICAL ALGORITHM FOR SYSTEM IDENTIFICATION

The Hankel block matrices [15] constructed by the system operational data are
used to generate the subspaces in the numerical technique [2,|3], which has re-
cently been introduced as a potent alternative to the traditional system identifi-
cation method based on iterative techniques. Several algebraic techniques, in-
cluding SVD (Singular Value Decomposition), are used to determine the system’s
order and the Observability matrix, which contains the parameters of the predicted
model. In this study, we employ a numerical methodology based on operational
data to present the key mathematical methods used in the subspace identification
method [16]. In fact, it is typically not able to measure the system’s state com-
pletely; therefore, in order to stabilize the system, it is frequently necessary to take
into consideration the curves provided by the standard equation given by (1.1).
With the Extended Observability Matrix I'; associated with the state representation
given by equation ((1.1) is given by [[4,/5]]:

2.1) r,=| Cc4 |,

C«Ai—l

where i provide the block’s line number, the system matrices are denoted by A and
C. the inverted extended controllability matrix of A? of equation (1.1) is given
by [6] [7]:

Af:(AHB A2B ... AB B),

with A et B are the system matrices, and ¢ denotes the number of columns. The
block is set lower than the triangular Toeplitz matrix H; , determined by the follow-
ing formula, which according to it, the block is positioned beneath the triangular
Toeplitz matrix:

D 0 0 e 0
CB D 0 - 0

H—=| CAB  CB D - 0

CA™2B CA™3B CA™B --- D
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with A, B, C' and D denote the system matrices. The input and output Henckel
matrices are defined by [8,/10]:

U Ur U cee Ui
(751 U U3 cee Uy

Ui = | . . ) :
Ui—1 Ui U1 oo Uigj—2
Uy Ui41 U2 oo Ujpj—1
Ui+l Uip2 Ui43 oo Uity

Uijgi—1 = . . . . )
U2i—1 UK Uipr oo U2i45-2
Yo Y1 Yo s Yia
hn Y2 Y3 e Yy

Y6|i71 — . . . . ;
Yi—1 Y Y1 - Yitj—2
Yi Yi+1r Yi+2 - Yitj—1
Yiv1 Yit2 Y43 - Yityj

Yijpio1 = . . . . )
Y2i—1 Y20 Y2i+1 - Y2452

where Uy,_; denotes preceding input, U;9;—; the following input, and Y;;_; the
preceding output, Yj»;_; the following output, u denotes the elements of the input
vector, y denotes the output vector, to simplify more, Uy;—1 = Up, Ujj2i—1 = Us,
Yoii-1 = Yp and Yjj9;_1 = Ys The preceding and following state matrices Xp and
X are explained as:

Xp:<$0 Ty To ... .fL'j,1>€Rn><j,

»
Xg = < Ti Tiy1 Tit2 .. Tiyj—1 ) € R"Y,

Xp and Xg can be determined by applying the (SVD) and (QR) decompositions
to the data frame’s Hankel vectors. The matrix of instrumental variables Z, is
presented by [[10-12]:

T
Zp:<Up Y}J) )
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with: U, denotes the vectors of the preceding inputs, and Y} the vectors of preced-
ing outputs. The extended Observability matrix and the state matrix are obtained
using the unified method proposed by Van Overschee and Bart De Moor in [3]].
Following are definitions of the state matrix input-output equations and main pro-
jections:

Xg = A Xp + AUp,
Yp =1'Xp+ H;Up,
Yo =1 Xp + H;Us,

where Uy is the following input, Xp and Xg are the preceding and following state
matrices, I'; the extended Observability matrix and A’ is the Kalman filter’s block
matrix in a non-steady state.
The preceding and the following projections, Z; and Z,,; are expressed in the
form:
Z; =T:Xi + H;Ujppi1
Ziy1 = Fi—lXi-i-l + Hi\Uipappicr

where Ujjy;_; is the following inputs matrix, X; and XZH are the preceding and
following states figured out in the following section using the Kalman filter’s es-
timation. To estimate the extended Observability matrix, the subspace technique
uses a matrix relation that represents the system’s output as a linear function of
state and inputs. By using the recursive Kalman filter’'s many versions, this state
matrix can be constructed [3]]:

SR_1U0\2171
Uojai—1
Yop2i-1

X, = (Ai — Qi |A; — Qi H,| Qz)

with: I'; the extended Observability matrix, U;5_; is the following input, @ and R
are the matrices of the QR decomposition, A*, ; and S are the block matrices of
the Kalman filter in the unsteady state.

Hence, the matrix of future state sequences X;,; is obtained by the following
relation:

—1
Xiy1 = (APrl — Qit1 T |Aip1 — Qiy1 Hiy| Qi+1) SRT({OIQ” ;
Yoii
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with:
Qi = aif; .
Hence, a; = A" (P — SR™'S) Tt + A;and 5; = T; (P — SR™'SH) T + L; P is the
Kalman filter covariance matrix, the element d represents the fully deterministic

section., A; , ; and S are the block matrices of the Kalman filter in the unsteady
state, L denotes the SVD decomposition matrix [13}14].

3. STATE REPRESENTATION

Using only the information from a few measurements of the inputs «; and the
outputs y; that have been performed, this modeling technique aims to identify the
system’s order n and generate a realization (A, B, C, or D) of the dynamic system
under study. In this work, we also provide a numerical method for determining
these state matrices. We present the solution using the structural features of the
extended Observability matrix provided by the equation (2.I)), performed by re-
constructing a sequence of the system state under examination. The four phases
below make up the procedure.

Phase 1: Determine the projections: This step consists in determining the
projections Z; and Z;,; in order to apply singular value composition (SV D), and
are defined as following:

Ugji—1 1 2 3 (—Uoli_l )
Zi = Yipi— : = Loy | Li | Li

i|2i—1 lixmi lixmi  lixli

Zit1 = Yiqipio1/

Phase 2: Compute the (SVD) Decomposition: The (SVD) algebraic decompo-
sition method is used to simplify the calculation of the preceding and succeeding
states X; and X;,; after getting the projections by the earlier stage, we write:

Ugi— 1 0
ahi (o) = (o) (0w

with the non-singular value number is provided by:

Fi = UlE}/Q et Pi—l = EE}/Q
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Phase 3: identify the States X; and X;,;: Using the Moore-Penrose pseudo
inverse, the states X; and )A(Z-H are computed in this stage as follow:

5 Uylir
Xi=Ti (L 1} (L) ,
B Yoji-1
> Uojs
Xip1 = F;r—l (Lzl+1 | L?+1) (Y| ) :
0li

The parameters P+ and I'' denote a matrix whose row space is orthogonal to the
row space of P and the Moore-Penrose pseudo inverse, respectively.

Phase 4: Get the least-squares solutions: (p; and p, are residues): Find-
ing the least squares solution \;, Ay ,\3 and )\, is the last stage to determine the
matrices of the system approximately

Xit1 o A1 Ag ) X i (&)
Y;|i A3 Mg Uili P2
1
Uo2i-1
P = Zi

Xi

Calculating the system matrices: The system matrices A, B, C, and D are ap-
proximately calculated as follows:

A B A1 Ao
3.1
Alternatively, this algorithm is outlined in the following section, taking into ac-

count:

- The indices P and S, respectively, denote the previous or earlier state and
the subsequent or later state.

- The inputs are activated by a persistence of order 2i (rank(Upai—1) =
2mi),and scale matrices W, € R and W, € R¥*¥ realise:

rank(Z,) = rank(Z,W),
and o, such as the oblique projection:

0; =Ys/UsZp,
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and
WioiWy = [ U U, } o1 0 Vli
(3.2) 0 0 Vs
WioWs = U SiV/E
We obtain:

- Step 01: determine the projections:
0; = FlXS

- Step 02: Determine the (SVD) decomposition of system of equations (3.2)),
The quantity of singular values that differ from zero, as indicated by the
matrix 5, determines the model’s order.

- Step 03: Following are the formulas for the extended Observability matrix,
I';:

T, = WL SET.
- Step 04: Determine the state matrices:
XsWy = TU, SV,
Xg =T%0;.

The similarity transformation matrix 7" € R"*" is non-singular, the param-
1
eter S? is given for symmetry purposes.

System Order:

We create the Hankel matrices (Yp, Ys)? and (Up, Us)? to identify the system’s
order, from a finite number q of input-output data (uy, yx) after instrumental vari-
able matrix deduction, and find the equation’s oblique projection (3.3)), by mul-
tiplying o; left and right by the corresponding weight matrices, 1¥; and W, , that
are applied to enhance approximation of I'; Xy , we get the equation (3.2)), then
apply the SVD of Wj0,W, , The order of the system is n when S is a diagonal
matrix made up of n singular values that are not zero. System’s matrices iden-
tification: The matrices A and C' are identified from the Observability matrix T';
column space; after estimating I';, the matrix C is actually derived from the first
lines of I';. The matrix A is calculated from the following equation:



1092 H. Bagua

with: T; is I'; without the primary [ lines, I'; is I'; without the primary [ lines, I'f
symbolizes the pseudo inverse of Moore-Penrose. We can get the matrices B and
D by:

(3.3) I} [Ys/UJ Ul =T+ H;.
By multiplying equation (3.I)) on the left by I} an on the right by U ’T\Zi—l we

)

obtain:
THysUL = DD X UL + THHUSUL,
and by considering the product I';-T' is zero we get:
TiYsUL =T H;.
By making a change of variable as follows:
M =LH,

with: L =T = ( L Ly, - I ) and M = I'MYsUL = ( M, M, - M, )
B and D are found by solving a system of equations by the linear regression algo-

()-(e ) ()

with a single row of the input blocks and their corresponding outputs, U;; and Y
are the Hankel block matrices.
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