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A WELL-POSEDNESS RESULT FOR A STOCHASTIC CAHN-HILLIARD
EQUATION

Meryem Adja and Samira Boussaid®

ABSTRACT. This paper is about the study of the well-posedness of a stochastic
Cahn-Hilliard equation driven by white noise induced by a Q-Brownian motion.
The proof of the existence of a unique global solution relies on the Galerkin
method together with a monotonicity method.

1. INTRODUCTION

The Cahn-Hilliard equation was presented by J. W. Cahn and J. E. Hilliard [3]]
in 1958, describing spinodal decomposition of binary mixtures that apears, for
example, in cooling process of alloys, glasses or polymer mixtures. The unknown
is the concentration v which satisfies the equation

ou
The function f is the derivative of the homogeneous free energy F'. In its original
form, F' contains a logarithmic term with singularities, which makes the study
of this equation delicate. In some circumstances, F' can be approximated by a
polynomial of even degree with a strictly positive dominant coefficient. Equation
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has been studied by a number of researchers and the reader is refered to
[2,7,/9H11,18,(19,[23].

In 1996 G. DaPrato and A. Debussche [|6]] considered a stochastic version of the
Cahn-Hilliard equation

(1.2) du + (A% — Af(u))dt = dW,

defined in a domain G = 11", |0, L;[C R™ with a polynomial free energy. This equa-
tion was associated with a Neumann boundary condition or a periodic boundary
condition and supplemented with an initial condition u(0, z) = ug(z).

The existence results for Problem was given by the Galerkin method in two
cases: the first one was when W is a cylindrical white noise process, then for any
initial data ug, Fy measurable with values in H'(G), u € C ([0, T]; H'(G)) a.s. The
second result of existence was given when the Weiner process has a covariance
matrix () satifying

(1.3) Tr(A°7'Q) < +o0,

for some 6 > 0, where A is the realization of the Laplace operator on L?(G) with
Neumann boundary condition.
In this work we study the former problem

v+ A% —Af(v) =W, x€D,t>0

(P) 4 %285’:0, r€dD,t>0

v(x,0) = vo(x), reD

where D is an open bounded set of R” with a smooth boundary 9D. The function
f is such that f(s) = s* — s and the function W = W (z,t) is a Q-Brownian
motion. More precisely, let Q be a nonnegative definite symmetric operator on
L*(D), {e};>1 be an orthonormal basis in L*(D) diagonalizing Q and {)\ };>; be
the corresponding eigenvalues, so that

Qer = Ney,
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for all [ > 1. Since Q is of trace-class, it follows that

(1.4) TrQ =3 Qe e 2py = Do M < A,

for some positive constant Ay. We suppose furthermore that ¢; € H'(D) N L>(D),
for [ =1,2,... and that there exist positive constants A; and A, such that

(1.5) Yo )‘lHGZH%OO(D) <A
and
(1.6) Yo >\1HV61H%2(D) < As.

Let (2, F, P) be a probability space equipped with a filtration (F;) and {B;(t) };>1
be a sequence of independent (F;)-Brownian motions on ({2, F, P). The Q-Wiener
process W is defined by

(1.7) W(a,t) = Y55, B)QY2a(2) = Y55, VAB(te(w),

in L?(D). We recall that a Brownian motion B(t) is called an (F;) Brownian motion
if it is F;—adapted and the increment B(t) — B(s) is independent of F; for every
0 < s < t. where v is the outer normal vector to 9D.

The initial function vy is such that vy € L*(D).

We denote by m(v) = ﬁ [, v(x)dz and define the following spaces H = {v €

L*(Q x D),m(v) =0}, V ={v € HQ(D),% =0ondD} and Z = V n L*(D),
where ||.|| is the norm corresponding to the space H. We also define (.,.)z- 7 as
the duality product between Z and its dual space Z* = V* + L3 (D). The proof of
the existence and uniqueness of the solution of Problem (P) is based on a Galerkin
method together with a monotonicity argument simillar to that used in [16].

The rest of this paper is organized as follows: In section 2 a stochastic aux-
iliary problem is introduced with a change of function to obtain an equation
without the noise term, which simplifies later the use of the Galerkin method.
Then the existence and uniqueness of the solution of the auxiliary problem is
proved. In section 3, uniform bounds are obtained for the approximate solution in
L>(0,T; H) N L3 x (0, 7); V)N LY x D x (0,7T)), to deduce that the approx-
imate weak solution converges weakly along a subsequence to a limit. After that
the limit of the reaction term should be identified by the monotonicity method.
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Finally the uniqueness of the weak solution which in turn implies the convergence
of the whole sequence is proved.
2. A PRELIMINARY CHANGE OF FUNCTIONS
Define the linear unbounded operator on H by
Av=—-Av, ve DA =V,

and consider the linear equation

(
agAJrA?WA:Wt, v €D,t>0
(P) aWA:MWA:O, z€dD,t>0
ov ov
Wa(z,0) =0, xeD

\
Definition 2.1. We say that W, is a strong solution of Problem (P,) if
(i) Wy € L0, T; L*(2 x D)) N L*(Q x (0,T); H*(D));
(i1) Wa € L*(Q; C([0,T); L*(D)));
(131) W4 satisfies a.s. for all t € (0,T) the problem

(2.1) Wy(t) = — /t AW a(s)ds + W (t),in L*(D),

oWy 0AW,
o  Ov
The unique solution W, of Problem (P;) exists strongly, more precisely

= 0, in suitable sense of trace on 0D.

(2.2) W, € L0, T; L*(Q x D)).

A result of existence and uniqueness of the solution W, of Problem (F;) will be
proved in this section. To that puropose some a priori estimates for a Galerkin
approximation in L>(0,T; L*(2x D))NL*(Qx (0, T); H(D))NL*(Qx(0,T); H*(D))
as in [[13](p.2363 (2.13)) will be used.

Theorem 2.1. There exists a unique solution to Problem (Py).

Proof. We use a Galerkin approximation. Let m € N and define P,, as the orthog-
onal projection on H,, = span{wi,...,wn}, where Pna := Y77 ([}, aw;)w; for
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a € L*(D). The Galerkin approximation of W, is given by W4 = P,,1W 4, such that

(2.3) Wi(t) = — /Ot P [A*W3(s)]ds + Xm: Po(v/Ne)Bi(t) a.s.

Note that (cf. [4] p.193)

(2.4) | Prallir o) < llalli o)

and that (cf. [13]] Remark 2.3)

(2.5) Pna — a,in H*(D) as m — oo.
This implies in particular that

(2.6) Pna — a, in L*(D) as m —> oo.
In addition

(2.7) P Au, = Auy,.

The next Lemma gives a priori estimates for a Galerkin approximation.

Lemma 2.1. There exists a positive constant K such that

(2.8) sup ]E/(W;,”)zdx <K,
te(0,T) D
T
(2.9) E (Wi 2drdt < K,
0 D
T
(2.10) E/ /]AW2”|2dxdt§K,
0 D
T
@11) B[ IR AWE) ) < K

Proof. Recall that It6’s formula is established, as in [20]] p 16-17, which is based
on [[14] (p 153, Theorem 3.6). It is applicable to systems of stochastic ordinary dif-
ferential equations (S.0.D.E), presented in the following Lemma, which is equiva-
lent to Lemma 1.5.3 of [8].
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Lemma 2.2. For a smooth vector function h and an adapted process (g(t),t > 0)
with fo lg(t)|dt < 00 a.s., set

t t
X(t) = / g(s)ds —|—/ hdW(s), 0<t<T, forallT >0,
0 0

where h is a vector of components h;, | = 1,..,m and dW is a vector of components
dg;, 1 = 1,..,m with (5, a one-dimensional Brownian motion. Then, for F twice
continuously differentiable in X and continuously differentiable in t, one has

(2.12) F(t,X(t)) = F(0,X(0)) + /t Fi(s, X (s))ds + /Ot F.(X(s))g(s)ds

0

+ [ R %i [ Eetxteptas.

Next we apply Lemma (2.2) to equation (2.3)) with hdW = >_7" | PV NedBi(s)
and h; = P,,v/\ie;. Supposing that ' does not depend on time and setting

X(t) =Wi),

F(X(t) =(X ()",

Fo(X (1) =2X(1),

Fra(X (1)) =2,

g(s) = = Pu(A*WJ(s)),

where in this case F' does not depend on ¢. We integrate on D and we obtain
almost surely, for all ¢ € [0, T

t
/ W (2, ) 2ds = —2 / / W B, A2 (5| dads
D 0 D
mo ot
(2.13) +2) / / Wi P (v/ Nier)dzdBy(s)
=1 0 D

t m
0 =1

Substituting (2.7) into (2.13) and taking the expectation with the relation
2E[>"", fo [, Wi/ Aedzdpy(s)) = 0 ([15] Theorem (2.3.4) p 11), we obtain
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t
]EHW,T(t)”%?(D)"‘QE/O /D(AWXL(S)fd:cds

t m
=E [ D I1Pul(v/Ne)) |12y dads.

0 =1

Using (2.4), (1.4) and (1.6) yields
(2.15) D> | Pu(v/ M)l < Z IV Nell 720+ IV (VA 120)) < (AotAs).
=1

Taking the supremum of equation (2.14) and substituting (2.15) into ( we
obtain

(2.14)

sup E|W'()]72p) < T(Ao + Az) < K.

te(0,T)
This completes the proof of (2.8)).
From equation (2.3), we have for x € D

(2.16)  AWD(t / A{ P, (AW }dHZ / A{ P [V NeYdBi(s)

Fix © € D and apply again It&’s formula in Lemma (2.2) to the integral equation
|| for hdW = — Z?il A{Pm\//\_lel}dﬁl(s) and hl = —A{Pmmel}

X(t) = —AWY (z,1),
()%,

FX (X
2X (1),
2,

(t
F(X(
Fra(X(

)
)
t)
g(s

After integrating over D, we obtain almost surely, for all ¢ € [0, T

)
)
)
) =

A{ P (AW (2, 5))}-

t
/(AWX‘(x,t))de: —2/ /AQWA”(x,s)PmAZWXL(x,s)dde
D 0o Jbp

“212_:/0 /DV(AW/T(%3))V{Pm(\/)\_161)}dxdﬁl(s)
3 [ BT R s,
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In view of (2.7 and (2.4])) we have that
t
/ (AW ()2 de < —2 / | P APV (5)] 20 s
D 0
mo ot
2.17) 23 [ [ AW ) TR N o)
=1 70 D
m t
3 [ [ 9o e Paas.
=1 Y0 D
Thus, taking the expectation of (2.17) and using knowing that
mo
B [ [ VWS @) TP e Ydadi(s)] = 0
1=1 /0 /D

we obtain

t
E / (AW™(1))2dz + E / | P A2 (5) 22 s
D 0

m t
<M B [ IV e s
=1

Adding (2.14) to (2.18)), using again (2.4) and (1.6) yields

E [ (AW 0)de + EIWE O

(2.18)

D
t t
R / / (AW™(5))2dwds + 2E / | P A2V (5) 22 s
0 D 0

t m m t
SE/ ZHpm(\/xel)uig(p)dms+A22E/ IV (V' Ne)l[32(pyds
U =1 0

t m m
< COE/D (Z )\l”@lH%Q(D) + Z)‘luvelH%z(D))ds
1=1 1=1

S C()T(A[) + Ag),

where ¢y = max(1; Ay). Which completes the proof of (2.9)-(2.11) and ends the

proof of Lemma (2.1)).
O
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Hence there exists a subsequence which we denote again by W} and a function
Wa e L*(Q x (0,T); H*(D))( L>=(0,T; L*(Q2 x D)) such that as m — oo

(2.19) W4 — Wa, weakly in L*(Q x (0,T); H*(D)),
(2.20) W4 — W, weakly star in L>(0,T; L*(Q x D)),
(2.21) P, A*W75 — A*W,, weakly in L*(Q x (0,7T); L*(D)).

In addition, we have the following result.

Lemma 2.3. [8]

222) ) Pu(VAe)i(t) — Z Vasi(t), in L((0,T); L*(9; L*(D))),
as m — oQ.

Let y be an arbitrary bounded random variable and let ¢) be an arbitrary bounded
function on (0,7"). We multiply equation (2.3) by the product yv, integrate on D
between 0 and T and take the expectation to obtain

E /OT [ W et - /0 e / (D), ) ds bt
v [ w0 30 Pt/ A Ousdrar

D=

Passing to the limit when m — oo, using (2.19)-(2.22) (where the linear combi-
nitions of w; are dense in H?(D)), yields

E /0 ' /D ()W yibdzdt — — /0 ey / AW @) ds)t
+E/O y(t){ Z \/_el )5i(t)wdx }dt,

Dy

for all w € H*(D). Therefore, we deduce that
t o0
(2.23) Wal(t) = —/ AW y(s)ds + Z VeBi(t), on Qx (0,T) x D.
0 =1

One finally concludes that 1/, satisfies Definition (2.1]).
We prove bellow that Wy is in L°°(0,T; L*(Q x D)) (this result is based on [1]
and [8]).
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Theorem 2.2. Let W 4 be a solution of Problem (P;) then W4 € L>(0,T; L*(2x D)).

Proof. We define the function ¢, : R — R for all positive constant k, by

Dily) = ly|*, if 0 <[yl <k
K 6k2y? — SK3|y| + 3k%,  ifk<l|yl

where ®;, is a convex C? function and @), is a Lipschitz-continuous function with
@7 (0) = 0. The function &, satisfies

Yy
0< ®(y) < (b and 0 < 0u(y) = [ (e < Uypforally e v
0
Then, we deduce from the Definition (2.1)) (¢) that

E/ O (Wa(z,t))dz < / W3(z,t)dr < &(k), fora.e.tc[0,T].
D

Lemma 2.4.

(i) One has 0 < ®Y(y) < c(k) forally € R where ¢ is a positive constant
depending on k.
(ii) Forany y € R, one has 0 < ®}(y) < 12(1 + ®x(y)).

Proof. (i) We have
12)y|?, ifo<|yl <k
Py(y) = , :
12k2, if £ <y
Thus &} (y) < 12k* =: ¢.

(i) If |y| < k, ®{(y) = 12[y|*. Butif 1 < |y| < k, |y|* < |y|* which gives the result
and if 0 < [y| < 1, [y|* < [y|* < 1then |y[> < 1+ [y[* If |y| > &, ®}(y) — 12(1 +
Pi(y)) < 0. O

Lemma 2.5. Let h be an L*(D)-valued progressively measurable Bochner integrable
process. Consider the following well defined process

X(t)z/Jh(s)ds%—W(t), t €[0,7T].
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Assume that a function F : [0,T] x L*(D) — R and its partial derivatives Fj,
F,, F,, are uniformly continuous on bounded subsets of [0,T] x L*(D) and that
F(X(0),0) = 0. Then, a.s. forall t € [0, T

F(t,X(t)):/O Ft(S,X(S))dS+/O<Fx(S,X(8)),h(S)>L2(D)dS

—i—/o <Fx(s,X(s)),dW(s)>L2(D)ds—|—%/O Tr(F..(s, X(s))Q]ds,

where -
TrF.(X(s))Q] = Z(FM(S? X(s))Qer, €l>L2(D)
and

() = [ ulaolald,

where TrA =Y ,°,(Ae;, ) 12(p) is a bounded linear operator on L*(D).

Applying Lemma to equation (2.1), with the supposition that F' does not
depend on time and setting

X(t) = Wa(b),
FIX(t) = /D (X (1))de,
FLX (1) = 94X (1),

h = —A*W,,

Froa(X (1)) = QE(X(2)).

Taking the expectation, applying Green’s formula and considering the fact that
E [7 [, ®,(Wa)dW (s) = 0 (see [15] Theorem (2.3.4) p 11), gives

1 t
E/ Op(Wa(t))dx < —AlE/ /(I)Z(WA(t))dxds.
D 2 0 JD
Using Lemma (2.4) (i) and the Gronwall’s Lemma we obtain
E / B (Wa(t))dx < 6A1|D] exp(6Ar).
D

Since @, (W4(x,t)) converges to |W4(z,t)|* for a.e.  and ¢ when k goes to infinity,
it follows from Fatou’s Lemma for all ¢ > 0 that
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]E/ (Wa(z,t)|*dz = lim infE/ O (Wa(x,t))dr < 6A1t|D|exp(6A1t).
D D

k—o0

Therefore, W4 € L>((0,7); L*(Q x D)). O

To prove the uniqueness of the solution W, of Problem (P;), suppose the exis-
tence of two solutions of Problem (P;), W} = W}(w,x,t) and W3 = W3(w, z,1)
satisfying

Wi(w,.,.) € L=(0,T; L*(D)) N L*(0,T; H*(D)), for i = 1,2.

Soin L*(D x (0,T))
t
(2.24) Wi—-Wji=— / {A*W(s) — A2W3(s)}ds.
0

Taking the duality product of this equation with W} — W3 € L?((0,7T); H*(D))
gives

t
(2.25) W3 = Wil < = [ A0V = WDlRaqo,
0

which implies that
Wi=W3 ae. inDx(0,7T).
This completes the proof of Theorem (2.1)). O

We perform the change of functions u(t) := v(t) — Wx(t), then v is a solution of
(P) if and only if u satisfies

(0
8—?+A2U—Af(u+WA)=o, reDt>0

8(u + WA) . 8A(u + WA)
ov - v

| u(,0) = vo(2), reD

(P)

=0, x€0dD,t>0.

This model is mass conserved, namely

i), i),
— [ w(z,t)dr = — | vo(z)dz, a.s. for a.e. t € RT.
D1 Jp, "0 = iy
The function f satisfies the following hypotheses
(Hl) —0384 — C4 S —f(S)S S —0184 + CQ,
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forC; >0,Vi=1,--- ,6and C} > 0,Vj=1,--- 5.

Definition 2.2. We say that u is a solution of Problem (P,) if
() we L0, T; H)N L2 (2 x (0,7); V)N LYQ x (0,T) x D);
(ii) w satisfies almost surely the problem, for all t € (0,T):

(

t t
u(t) = vy — / A*uds + / Af(u+Wy)ds,
0 0

in the sense of distributions,

8(U + WA) _ 8A(U + WA)
v B ov

in a suitable sense of trace on 0D.

(2.26)

=0,

3. EXISTENCE AND UNIQUENESS OF A SOLUTION OF PROBLEM (P»)

3.1. Existence of a solution to Problem (/).
The following theorem contains the main result of this paper.

Theorem 3.1. There exists a unique solution of Problem ().

Proof. We apply the Galerkin method to prove the existence of a solution to Prob-
lem (P).

Denote by 0 < v < 72 < ... < ;3 < ... the eignvalues of the operator —A
with homogenous boundary conditions and by w;, k = 0,... the corresponding
unit eigenfunctions in L?(D). Note that they are smooth functions.

We look for an approximate solution of the form

=1

such that the function w,, satisfies the equations

(3.1) / &Lm—wwidx + / A%y, w;dr — / Af(ty + Wa)w;dz = 0,
D ot D D
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foralli = 1,...,m. Remark that u,,(z,0) = >, (vo, w;)w; converges strongly to
v in L?(D) as m — oo.

Problem (3.1)) is an initial value problem for a system of m ordinary differential
equations. So that, it has a unique solution on some interval (0,7,,),T,, > 0. We
multiply by diy, = dim(t) and sum on i = 1,...,m to obtain

(3.2) /aum—(x’t)umdx—l—/ AQumumdx—/ Af(tpy + Wa)upde,
D 8t D D

an integration by parts yields

1
1d ufndx%—/(Aum)de :/ f (U + Wa)Auy,de.

Using the Green’s formula and by the Neumann boundary condition we have

(3.3)

/ [ + Wa)Aupyde = — / I (U + W4) | Vi,)?
D D

—/ I (U + Wa)Vu,, VW sdx
D
- [1 + [2.

For I, an application of (H;) and the Poincare’s inequality: {3C" = Cq > 0 :
[pude <C" [, |Vun,|*} yields

/

/ 2 ! !
I < 4 ut dr + %/ up, Widz +/ |(£/1WA)“m + gﬂ“?ndx
C D D C C

" Jp
and by Cauchy Shwartz’s inequality and Young’s inequality it will be
C, 3 1.C
I < —= 1 d = L dr + =[(=5)?
<o [ubdes G o) [ ubde+50E
e

+2A) [ Wit +(Co+ (DD

Moreover by (Hj), Green’s formula and Young’s inequality I, satifies

2, . (C5)* 4
I, <e | (Auy)*de + —— [ Wydx + C|D|.
D 2 Jp
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Thus

]1 —|—]2 :/ f(um—l—WA)Aum
D

S—(————a)/u dx—l—e/D(Aum)de—i—[@—i—%(—,)z

/ WAdCC +

where ¢ > 0 is glven such that (£

clt
@' 1@ +2AD) . G= K

) +2C.]| D],

2)* 4+ 2C., to conclude that

QL@\QL %

/D i+ Wa)u, < ~C. [

D

ut do + 5/ (Auy,)?da
(3.4) b
+ Cl/ Widl‘ + OQ’D‘,

D

then (3.3)) will be

1d
(3.5) o7 u dx—l—C/ (Auyy,)?dz + C. /u d:c<Cl/WAdx+C’2\D|

with ¢ > 0issuch that C. =1 —¢,(¢ <1 and g<%—%).

(i) A priori estimates
In what follows, we derive a priori estimates for the function w,,.

Lemma 3.1. There exists a positive constant o such that
(3.6) sup E (/ (um)de) <o,
t€[0,T] D
T
(3.7) E (/ / ]Aum\zdajdt) < p,
o Jb
T
(3.8) E (/ /(um)4dxdt) < o,
o Jb
T 4
(3.9) E (/ /(Af(um + WA))Sd:Edt) <o
o Jb
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Proof. Integrating in time (3.5) and taking the expectation, we deduce thanks to
2.2) that for all ¢ € [0, T

E(/ (dx)+CIE(//AqudmdS>+C’E<//udxds)

1 -
< Zluol72(p dx+CQ|D\T+clT <K,

</ dx) <9K, Ve[0T,
(/ /Aum dxdt)
(/ /u d:pds) <K

Therefore u,, is bounded independently of m in L>((0,7); H)NL*(Q x (0,T); V)N
LA x D x (0,7)).
By hypothesis (H5) we deduce that

(\V]

thus

mjw

4 T . 4 -
E (||f(um + WA)HE%(DX(O T))) < 2K (/0 /DC5 [(|um| + |WA|)3] 3 dxdt) + Cs|D|T,

where Cs = C2/* and Cg = 25 x 2. By Minkowski’s inequality for c5 = 25 x Cs

4 T
E <Hf(um * WA)Hz%(Dx(o T))> = ol (/o /D \um\4dxdt>
T ~
+ csE (/ / |WA\4d:vdt> + Cs|D|T.
0 D

In view of (3.8) and (2.2)) we have
E (7 + W,

4

3

L3 (DX(O,T))) -
Then

Af ( + W) < K.
B (187 + Wl o) < B

L3(Dx
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Hence there exists a subsequence which we denote again by {u,,} and a function
uwe L2(Qx (0,T); V)N LY x D x (0,T)) N L>(0,T; H) such that as m — oo

(3.10) U, — uweakly in L*(Q x (0,T); V) and L*(Q x (0,T) x D),
(3.11) u, — uweakly star in L>°(0,7; H),
(3.12) Af(um + Wa) = Ay in LF(Q x (0,T) x D).

Integrating in time equation (3.1)) yields
t
(3.13) /um(a:,t)wj:/ um(O)wjdx—/ (A%, w;)
D D 0

t
—i—/ /Af(um—l—WA)wjdxds,
0 Jp

forall j =1,...,m. Let y = y(w) be an arbitrary bounded random variable and let
) be an arbitrary bounded function on (0,7"). We multiply equation (3.13) by the
product y, integrate between 0 and T and take the expectation to deduce that

E /0 ' /D YO (Y (Ot
_E /0 ' /D YO (£t (0)10; it
(3.14) _E /0 Y /0 (A2 w;)dsht

+E /0 ey /0 t /D Af( + Wa)w;dads)dt.

forall j = 1,..., m. Next we pass to the limit in (3.14]) (we only give the proof of
convergence for the last term using the a priori estimates and Holder’s inequality)
to get

B(t)E / /D A (1t + Wa)yw;dads|

s|ryumm|w<t>|(1@ I/ \Af<um+wA>yédxd5) <E [ ;wj|4dxds>

< Cllyll @9 os 0.1-
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This shows that |¢(¢)E fo Jp Af(um + Wa)yw;dzds| is uniformly bounded by a
function belonging to L'(0,T'). In addition using (3.12)) we have that

t t
E/ / Af(up + Wa)yw;drds — @/J(t)E/ / Axyw;dxds
o Jp o Jp

for a.e. t € (0,T). Applying Lebesgue’s dominated convergence gives

lim / W(t th/ /Af (U, + Wa)yw;dzds

m—>—+00

:/ lim  (t) //Af U, + Wa)yw;dzdsdt
0

m—>+00

—E /0 yib(t)dt] /0 /D Axw;dwds}.

Performing a similar proof for each term in (3.14)), passing to the limit by using
Lebesgue’s dominated convergence Theorem, yields

/ / yib(H)u(t)w;dadt

(3.15) :]E/ /yw(t)vgwjdxdt
o Jp

T t
_E / oL / (A2u, w,)ds)dt
T t
E t Axw,drdsydt, forall j—=1,... .,
; /wao{/o/D vwydrdsydt, forall j m

We remark that the linear combinations of w; are dense in V' N L*(D), so that

/ / Y (t)u(t)bdodt = /O ' /D yip(t)vodrdt
—E/O yw(t){/o <A2u,w>ds}dt+E/OTyw(t){/Ot/DAxwd:cds}dt,

forallw € VN LY(D),y € L>~(Q) and ¢ € L>(0,T). This implies that for a.e.
(w,t) € Q@ x(0,7T)

(3.16) (u(t), w) = (vg,w) — /0t<A2u,zb>d$ + /Ot<Ax,zD>ds

forall we VnLYD).
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Lemma 3.2. [22]] The function v is such that v € C([0,T]; L*(D)) a.s.

It remains to prove that (Ax,w) = (Af(u+ Wa(t)),w), for all w € V N L*(D);
which is by the monotonicity method.

(ii) The monotonicity argument
Let w be such thatw € L?(2 x (0,7); V)N LY (2 x (0,T) x D) and let ¢ be a positive
constant which will be fixed later. We define

T
O, = E[/ exp(—c){2(— A2u, — (—A20), Uy — ) 7+
0
+ 2(Af (U, + Wa) = Af(w+Wa), U, —w)z+ 2

— cllum — w[|*}ds]

=Ji1+ Jo+ Js,
where
T
= E/ exp(—cs){2(— - (—Azw),um — W)z ztds,
0
T
= E/ exp(—cs){2(Af (U + Wa) — Af(w+ Wa), upm — w) 2+ 2 }ds,
T
= E/ exp(—es){—c||tm — w||*}ds.
0
Lemma 3.3.

O, <0.

Proof. First we estimate .J;
t
Jp = ]E/ exp(—cs){—2(Au,, — Aw, Auy,
0
T
—Aw)z+z} = —ZE/ exp(—cs)|| A, —w)|* < 0.
0
To estimate J,, we use the Green’s formula and (H5), where

Jy = —QE/O exp(—cs) (f (tm + Wa)V (Up, + Wa)

— w4+ W)V (w+ Wa), Vu, — Vw) z+ zds

T
< —QC;E/ exp(—c8)||V (1t — w)|[2ds < 0.
0
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Finally,
T
J3 = —CE/ exp(—cs) [ty — w|*ds < 0.
0

[
We integrate in time equation (3.1 to obtain
T
(3.17) / U (2, Twjdr = / U (0)w;de — / (A%, w;)
D D 0
T
+ / / Af (U + Wa)w;dzdt,
o Jbp
forall j = 1,...,m. Next we recall a chain rule formula, which can be viewed as a

simplified It6’s formula.

Proposition 3.1. Let X be a real valued function such that
t
X(t) = X(0) —I—/ h(s)ds, 0<s<t
0

and suppose that h is measurable in time such that h € L'(0,T). Suppose that the

function F' : [0,7] x R — R and its partial derivatives o and ax ore continuous
on [0,7] x R. Then for all t € [0,T]

(3.18) F(t,X(t)):F(O,X(O))+/O %—f(s,x<s))ds+/o §—§<3,X(s))h(s)ds.

Applying (3.18)) to the m equations in (3.17) with
X, = / Unw;, j=1,...,m, F(s,q) = exp(—cs)q*
D

and
h(S) = <—A2Um + f(um + WA), wj)Z*’Z,

gives

eXp(—cT)(/ U (2, T)w;)?

D

(3.19) —( /D (0w — ¢ /0 " exp(es)( /D ;) ds—
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T
— 2/ exp(—es){ [ wmw; }{A%uy,, w;)+
0 D

+ 2/0 exp(—cs){ Dumwj}<f(um + Wa), w;),

forallj=1,...,m
In what follows, we will use the identity

Lemma 3.4. Let I € Z* and By, = 37" | (B, wj)w;. Then

m

(3.20) > (F,w;){B,wj) = (F, By).

=1

Summing each term of (3.19) on j = 1,...,m and applying (3.20) yields

exp(—cT) Y _{um(x, T), w){um(x, T), w;) = exp(—cT)|Ju(z, T)|*.

J=1

Doing the same to obtain ||u,,(0)||* and —c fOT exp(—cs)||un,(s)]|*ds. Also

2 /0 Texp(—cs)Zj;(um,ijAQum,wj) ) /0 Texp(—cs)<A2um,um>

and
T m
2/ exp(— Z U, Wi ) (A f (U, + Wa), wj)
0 =1
. j
2/ exp(—cs) (U, Af (U, + Wa)).
Then
T
E(exp(—cT)||um(T)*) = E(|lum(0)[*) — CE(/O exp(—cs)||um(s)|*ds)
T
(3.21) - QE(/ exp(—cs) (A% Uy, , Uy ) 7+ 7dS)
0

+ 2E(/0 exp(—cs)(Af (um + Wa), um) z+ 2).

1135
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Set O,, in the form O,, = O}, + O? where

T
(3.22) Opz'z' = E[/ exp(—cs){2(— Ay, Um) 2+ 7
0
(3.23) + 2(Af (U + Wa), um) 2« z — cHumH2}ds )
It follows from (3.23)) and ([3.21) that
(3.24) limsup O}, = E[exp(—cT)||u(T)|*] — E[||w(0)||*] + d exp(—cT),
m—00
where

0 = limy, o0 sUp Ef ||t (T)||?] = E[[|u(T)|1?] = 0.
On the other hand, equation (3.16) implies that

t t
(3.25) u(t) = vy — / A*uds —|—/ Axds, Vt € [0, T
0 0

a.s. in Z2* = V* + L3(D).

Next we recall a second variant of the chain rule formula, which can be viewed
as a simplifide It6’s formula as in [21](p 75 Theorem (4.2.5)). Consider the
Gefland triple

Z CHCZ,

where Z =V N L*(D) and Z* are defined in the introduction.

Proposition 3.2. Let X € L*(0,7;V) N L*0,T;L*D)) and Y € L*(0,T;V*) +
L3(0,T; L3 (D)) be such that

X(t) == Xo+ /tY(S)ds, t € [0,T7.

: : . . .. _OF oF
Suppose that the function F : [0,T] x Z — R and its partial derivatives — and —

: ot 0X
are continuous on [0,7] x Z. Then for all t € [0,T]

(3.26)

F(t, X(t)) :F(O,X(O))—i—/o %—f(s,X(s))ds—i—/O (Y(s),g—)F((s,X(s)»Z*’st.

Applying Proposition [3.2] to equation (3.25]) and seting
X(t) = u(t), F(s,q) = exp(—cs)lq||* and Y (s) = —A%u + Ay,
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in to deduce that
Elexp(—cT)|[u(T)|*] = E[||vl|*] ~ CE[/O exp(—cs)||u(s)|*ds]
- QE[/O exp(—cs)(A%u, u) 7+ zds]

T
+ QE[/ exp(—cs)(Ax, u) z« zds],
0

which we combine with (3.24) to deduce that
(3.27)

T T
lim sup O} = —2]E[/ exp(—cs){A%u, u) 7 zds] + QE[/ exp(—es)(Ax, u) z« zds]
0 0

m—00

- CE[/O exp(—cs)||u(s)||*ds] + 6 exp(—cT).

It remains to compute the limit of O2,. For this reason, we first simplify O,,

T T
QE/ exp(—c8) (A% Uy, Uy — W) 77 + ZE/ exp(—cs) (A%w, Uy, — W) z+ 7
0 0

+
~

QJE/ exp(—cs) (A f (um + Wa), upm — w) 2+ 2
0

N

T
ZE/ exp(—cs)(Af(w+ Wa),u w}Z*7Z—cE/ exp(—cs) ||t — w]|?
0

[e=]

T T
Z]E/ exp(—c8) (A% Uy, U ) 7+ 7 + 2E/ exp(—c8) (A% Uy, w) 7+ 7
0 0

T

T
+ QE/ exp(—cs)(A%w, Up) 7.7 — QE/ exp(—cs)(A%w, w) 7+ »
0 0

+
[\
~

]E/ exp(—cs) (A f (um + Wa), um) 2+ z
0

S

ZE/ exp(—CcS)(Af (U + Wa),w) z+ 2
0

T
2E/ exp(—es)(Af(w+ Wa), um) 2 z
0
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!

+ ZE/ exp(—cs)(Af(w+ Wa),w) z+ z
T T
cIE/ exp(—cs) ||| ds—cE/ exp(—cs)Hszds
0 0

T
CE/ exp(—cs) (U, w) z« zds.

T T
o QE/ exp(—cs) (A2, Um)z+7 — QE/ exp(—es) (A f (U + Wa), um) 2+ 2
0 0

T
+ CIE/ exp(—cs) ||t ||*ds.
0

Then
T
O?n =0,, — O,ln = E/ exp(—cs){Q(Azum,cu}Z*,Z + Q(Azw,umﬁ*,z
0

— 2<A2w,w>z*7z — Q(Af(um + WA)7W>Z*,Z
—2(Af(w+Wa),um)zez + 2(Af(w + Wa),w)z« 7
— cl|w|?ds + 2¢(tp, w) 7+ 2 }ds.

Thus

O = E/OT exp(—cs){2(A%w, Up) 7+ 7 + 2{A%u,, — AW, W) 7+ 2
—2{Af(w+ Wa), tum)zez — 2(Af (tn + Wa) = Af(w + Wa),w)z+ 2
— cl|lw||Pds + 2¢(tiy, W)z 7 }ds.
In view of (3.10) and (3.12), we deduce that
(3.28) lim 02 =E /T exp(—cs){2(A%, u) 7+ 7 + 2{A%u — A’w, W) 7+ 4
m=reo 0

— 2Af(w+Wa),u)ze z = 2(Ax = Af(w+ Wa),w)z+ 2
— cljw|?ds + 2¢(u, w) 7+ 7 }ds.
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Combining and (3.28), (where O,, < 0), yields
E/OT exp(—cs){—2(A% — A’w,u— W)z 4
+2{Ax — Af(w+Wa),u — w)ze 7z — cllu — w|]*} + Jexp(—cT) < 0.

Letv € L*(Q x (0,T); V)N L*(Q2 x D x (0,T)) be arbitrary and set
w=u— v, with A\ € R,.

We obtain

]E/OT exp(—cs){ — 2(0ANA*0, M) ze 7 + 2(Ax — Af(u— Av + Wa), Av) 2+ 2
— i} <o.

Dividing by \ and letting A — 0, we find that

T
E/ exp(—es)(Ax — Af(u+ Wa),v) z+ zdt < 0.
0
Thus, for all v € L*(Q x (0,7); V)N LY (2 x D x (0,T))
(3.29) Ax =Af(u+Wy)+0(w,t),

a.s. a.e. in D x (0, 7). Taking the duality product of (3.29) with & € V N L*(D), to
obtain

(3.30) (Ax, @) z+.z = (Af(u+ Wa) +0(w, 1), 0) 2+ 2
= <Af(u + WA), (:J>Z*,Z-
Substituting (3.30) in (3.16) we deduce that for a.e. (w,t) € Q2 x (0,7,

(3.31)  (u(t),@) :<u0,@>—/0 <A2u,®)z*,zds—|—/o (Af(u+Wa),@)z= zds,

forallw € VN LY(D).

This completes the identification of the limit reaction term by the monotonicity
method.

Next, we prove that u satisfies equation (2.26) in Definition (2.2). Set V =
H%(D) N L*(D). Equation (3.31) implies that a.s. in V* = (H2(D)) + L3 (D)
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t t
(3.32) u(t) = vy — / APuds + / Af(u+ Wy)ds,
0 0

forall te[0,7].

3.2. Uniqueness of the solution to Problem (7).
Let w be given such that there exists two pathwise solutions of Problem ( /),
w; = u;(w, z,t) for i = 1,2, satisfying

wiw, .,.) € L®(0,T; L*(D)) N L2((0,T); H*(D)) N L*(D x (0,T)),

Af(ui +Wa) € L3((0,T) x D),
where u;(.,0) = us(.,0) = vo. Then, fori = 1,2

t t
ui(x,t):ui(x,O)—/ A2ui+/ Af(u; + Why).
0 0
Thus,

t
(3.33) ur(t) — us(t) = —/ [A2u1 — Ang]ds
0

+ /Ot[Af(ul + Wa) — Af(us + Wa)lds

in L2((0,T); V*) + L3((0,T) x D).
Next we recall a simplified It6’s formula as in [17]] (Theorem (4.2.5)).

Theorem 3.2. Let X € L*(0,T;V) N LYD x (0,T)) and Y € L*(0,T;V*)
+ L3(D x (0,T)), s € L2(D x (0,T)), both progressively measurable, such that

X@yzxmyhfywm&+/2@mng te0.7].

Then the following It6’s formula holds for the square of its H-norm P-a.s.

t
(3.34) ll)((t)H?1i==!IJ(oHﬁf-%'/g (2(Y (s), X(5)) 22,2 + [[s()|[22 (D (0.1y)) 5

+QA(X@Lq$ﬂV@»H
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Applying to equation with
X(t) =u(t) — ua(?),
Y(s) = — [A%u; — A%up] + [Af(up + Wa) — Af(uy + W),
<(s) =0,
yields for all t € (0, 7))

||U1 — u2||%2(D) = —2/ / u1 — UQ dxds — 2/ <f/(u1 + WA)V(Ul + WA)
— f'(ug + Wa)V(ug + Wa), Vuy — Vuy)ds

(3.35) < 2/ 1A Gy — )| ydls — 2C, / 19t — )2
By the Poincare’s inequality
t
(336) —20;/ ||V(U1—U2)||%2( < ——/ ||U1—U2||L2
0
with o = |— (3-35) will be

t
/ (uy — u2)2(z, )z < 0 / / (uy — up)2(z, t)dzds forall t € (0,T),
D 0 D

which in turn implies by Gronwall’s Lemma that vy = uy a.e. in D x (0,7). O
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