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BLOW UP FOR POSITIVE-INITIAL ENERGY AND DECAY OF A BIHARMONIC
SYSTEM WITH VARIABLE-EXPONENT NONLINEARITIES

Oulia Bouhoufani1, Mohammad M. Al-Gharabli, and Salim A. Messaoudi

ABSTRACT. This work is concerned with a coupled system of two biharmonic
equations with variable exponents in the damping and source terms. Using the
energy approach and for certain solution with positive initial data, we prove the
blow-up theorem. Then, we establish the global existence as well as energy de-
cay results of solutions, under appropriate conditions on the parameters of the
problem, using the stable-set and the multiplier methods.

1. INTRODUCTION

Problems with biharmonic operator appear in several physical phenomena such
as micro-electro-mechanical systems [26], radar imaging [3], the study of travel-
ling waves in suspnssion bridges [17], bending behaviour of thin elastic rectangu-
lar plates [28], geometric and functional designs [8].

In the other hand, the progress of sciences and technology brought many new
real-world problems such as flows of electro-rheological fluids, fluids with tem-
perature dependent viscocity, filtration processes through a porous media, image
processing and thermorheological fluids and others, which required modeling with
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non-standard mathematical functional spaces. The Lebesgue and Sobolev spaces
with variable exponents have manifested to be very important and most suitable
tools to tackle such models. See [4,5,27] for more details.

Motivated by the importance and the applications of biharmonic systems and
the variable exponents nonlinearity, we are interested in the following initial-
boundary-value problem:

(1.1)


utt +∆2u+ |ut|m(x)−2 ut = f1 (x, u, v) in Ω× (0, T ) ,

vtt +∆2v + |vt|r(x)−2 vt = f2 (x, u, v) in Ω× (0, T ) ,

u = v = 0 = ∂u
∂η

= ∂v
∂η

= 0 on ∂Ω× (0, T ) ,

(u(0), v(0)) = (u0, v0) and (ut(0), vt(0)) = (u1, v1) in Ω× Ω,

where T > 0,Ω is a smooth and bounded domain of Rn,
(
n = 1, 6

)
, m and r

are continuous functions on Ω satisfying some conditions, (∂u
∂η
, ∂v
∂η
) denotes the

external normal derivative of (u, v), on the boundary ∂Ω and the terms f1 and f2

are defined, for all x ∈ Ω and (u, v) ∈ R2, by

(1.2) f1 (x, u, v) =
∂

∂u
F (x, u, v) and f2 (x, u, v) =

∂

∂v
F (x, u, v) ,

with

(1.3) F (x, u, v) = a |u+ v|p(x)+1 + 2b |uv|
p(x)+1

2 ,

where a, b > 0 are two positive constants and p is a given continuous function on
Ω satisfying certain conditions.

Our aim in this work is to prove a blow-up theorem for certain solutions with
positive initial data, use the stable-set approach to establish the global existence
of solutions, and exploit the multiplier method to obtain the long time behavior
of the energy, under suitable conditions on the variable exponents and the initial
data.

2. LITERATURE REVIEW

For problems with biharmonic operator, Komornik [15] considered the following
Petrovsky equation

utt +∆2u− g(∆u) = 0,
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proved, by using the nonlinear semigroup theory, the well-posedness and estab-
lished the energy decay estimates for weak solutions. Guesmia [13] discussed the
well-posedness of a damped nonlinear coupled system of two Petrovsky equations
and established various stability results. Using Komornik’s Lemma, Aassila and
Guesmia [7] established an exponential decay estimate for the following problem

utt + k1∆
2u+ k2∆

2ut +∆g(∆u) = 0 in Ω× R+,

u = ∂ηu = 0 on ∂Ω× R+,

u(0) = u0 and ut(0) = u1 on Ω.

Messaoudi [20] investigated the following Petrovsky problem with nonlinear source
term 

utt +∆2u+ aut |ut|m−2 = bu |u|ρ−2 in Ω× R+,

u = ∂ηu = 0 on ∂Ω× R+,

u(0) = u0 and ut(0) = u1 on Ω,

where a, b are positive constants and m > 2. He proved an existence result and
showed that the solution blows up, in finite time, if m < p and exists globally
otherwise.

In recent years, problems with variable-exponent nonlinearity had received a
considerable amount of attention. Antontsev et al. [6] studied the following Petro-
vsky equation

utt +∆2u−∆ut + |ut|m(x)−2 ut = |u|p(x)−2 u.

They proved the existence of local weak solutions by using the Banach fixed-point
theorem, and gave a blow-up result for negative-initial-energy solutions, under
suitable assumptions on m, p and initial data. In [19], Liao and Tan treated the
following nonlinear problem

utt +∆2u−M
(
∥∇u∥22

)
−∆ut + |ut|m(x)−2 ut = |u|p(x)−2 u,

where M(s) = a + bsγ is a C1-function, a > 0, b > 0, γ ≥ 1, and m, p are given
measurable functions. They established some uniform decay estimates and the
upper and lower bounds of the blow-up time.

Concerning coupled systems with variable-exponent nonlinearity, we have only
few works. In [9], Bouhoufani and Hamchi considered the following coupled
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system of two nonlinear hyperbolic equations with variable-exponents{
utt − div(A∇u) + |ut|m(x)−2 ut = f1 (x, u, v) in Ω× (0, T ) ,

vtt − div(B∇v) + |vt|r(x)−2 vt = f2 (x, u, v) in Ω× (0, T ) .

They obtained, in a dounded domain, the global existence of a weak solution and
established decay rates of the solution. In [23], Messaoudi et al. considered the
following system{

utt −∆u+ |ut|m(x)−2ut + f1(u, v) = 0 in Ω× (0, T ) ,

vtt −∆v + |vt|r(x)−2vt + f2(u, v) = 0 in Ω× (0, T ) ,

with initial and Dirichlet-boundary conditions (here f1 and f2 are the coupling
terms introduced in (1.2). The authors proved the existence of global solutions,
obtained explicit decay rate estimates, under suitable assumptions on the variable
exponents m, r and p and presented some numerical tests. For more results in the
subject of variable-exponent nonlineaity, we refer to [12,14,18,21,24,25].

This paper consists of three sections, in addition to the introduction and litera-
ture review. In Section 3, we define the variable-exponent Lebesgue and Sobolev
spaces, and give some of their important properties. We also state (without proof)
the local-existence theorem of [10]. The blow-up result in finite time and for
positive-initial data, will be established in Section 4. The last section is devoted to
the study of the global existence and the stability results.

3. PRELIMINARIES

Let q : Ω −→ [1,∞) be a measurable function. We define the Lebesgue space
with a variable exponent by

Lq(.)(Ω) =
{
f : Ω −→ R measurable in Ω : ϱq(.)(λf) < +∞, for some λ > 0

}
,

where
ϱq(.)(f) =

∫
Ω

|f(x)|q(x)dx.

Lq(.)(Ω) is a Banach space with respect to the following Luxembourg-type norm

∥f∥q(.) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣f(x)λ

∣∣∣∣q(x) dx ≤ 1

}
.
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For k ∈ N, we define the variable-exponent Sobolev space W k,p(.)(Ω) as follows:

W k,q(.)(Ω) =
{
u ∈ Lq(.)(Ω) : ∂|α|u ∈ Lq(.)(Ω), with |α| ≤ k

}
.

W k,q(.)(Ω) is a Banach space equipped with the following norm

∥u∥Wk,q(.)(Ω) :=
∑

0≤|α|≤k

∥∂αu∥q(.) ,

where |α| = α1 + ...+ αn.

In addition, we set W k,q(.)
0 (Ω) to be the closure of W k,q(.)(Ω)-functions with com-

pact support in W k,q(.)(Ω) and we denote by H
k,q(.)
0 (Ω) the closure of C∞

0 (Ω) in
W k,q(.)(Ω).

Lemma 3.1. (Young’s Inequality [5, 16]) Let r, q, s ≥ 1 be measurable functions
defined on Ω, such that

1

s(y)
=

1

r(y)
+

1

q(y)
, for a.e y ∈ Ω.

Then, for all a, b ≥ 0, we have

(ab)s(.)

s(.)
≤ (a)r(.)

r(.)
+

(b)q(.)

q(.)
.

Lemma 3.2. (Hölder’s Inequality [5,16]) Let r, q, s : Ω −→ [1,∞) be measurable
functions, such that

1

s(y)
=

1

r(y)
+

1

q(y)
, for a.e. y ∈ Ω.

If f ∈ Lr(.)(Ω) and g ∈ Lq(.)(Ω), then fg ∈ Ls(.)(Ω), with

∥fg∥s(.) ≤ 2∥f∥r(.)∥g∥q(.).

Lemma 3.3. [5,16] If 1 < q− ≤ q(x) ≤ q+ < +∞ holds then, for any f ∈ Lq(.)(Ω),

min
{
∥f∥q

−

q(.), ∥f∥
q+

q(.)

}
≤ ϱq(.)(f) ≤ max

{
∥f∥q

−

q(.), ∥f∥
q+

q(.)

}
,

where
q− = ess inf

x∈Ω
q(x) and q+ = ess sup

x∈Ω
q(x).

Definition 3.1. We say that a function q : Ω −→ R is log-Hölder continuous on Ω, if
there exists a constant θ > 0 such that for all 0 < δ < 1 and for a.e. x, y ∈ Ω, with
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|x− y| < δ, we have

|q(x)− q(y)| ≤ − θ

log|x− y|
.

Lemma 3.4. (Poincaré’s Inequality [16]) Let Ω be a bounded domain of Rn and q

be a log-Hölder continuous function on Ω. Then,

∥f∥q(.) ≤ C∥∆f∥q(.), for all f ∈ W
2,q(.)
0 (Ω),

where C is a positive constant depending on q−, q+ and Ω only. In particular, the
space W

2,q(.)
0 (Ω) has an equivalent norm given by ∥.∥

W
2,q(.)
0 (Ω)

= ∥∆.∥q(.).

Lemma 3.5. (Embedding Property [11]) Let q : Ω −→ [1,∞) be a measurable
function such that, for a.e x ∈ Ω, we have{

2 ≤ q− ≤ q+ < ∞, if n ≤ 4,

2 ≤ q− ≤ q(x) ≤ q+ < 4n
n−4

, if n > 4.

Then, there exists a continuous and compact embedding H2
0 (Ω) ↪→ Lq(.)(Ω).

For the existence of the local (weak) solution of problem (1.1), we recall our
resut in [ [10], Theorem 3.3, p. 10], which is given as follows.

Theorem 3.1. Let n = 1, 6. Assume that m, r, p ∈ C(Ω) such that, for all x ∈ Ω, we
have ∣∣∣∣∣∣∣

2 ≤ m−, if n ≤ 4,

2 ≤ m− ≤ m(x) ≤ m+ ≤ 10, if n = 5,

2 ≤ m− ≤ m(x) ≤ m+ ≤ 6, if n = 6,

(H.1)

∣∣∣∣∣∣∣
2 ≤ r−, if n ≤ 4,

2 ≤ r− ≤ r(x) ≤ r+ ≤ 10, if n = 5,

2 ≤ r− ≤ r(x) ≤ r+ ≤ 6, if n = 6

(H.2)

and ∣∣∣∣∣∣∣
3 ≤ p−, if n ≤ 4,

3 ≤ p− ≤ p(x) ≤ p+ ≤ 5, if n = 5,

p(x) = 3, if n = 6.

(H.3)
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Then, for any (u0, u1) and (v0, v1) in H2
0 (Ω)×L2(Ω), the problem (1.1) has a unique

local weak solution (u, v) on [0, T ), for T small enough, with∣∣∣∣∣∣∣
u, v ∈ L∞ ([0, T );H2

0 (Ω)) ,

ut ∈ L∞ ([0, T );L2(Ω)) ∩ Lm(.) (Ω× (0, T )) ,

vt ∈ L∞ ([0, T );L2(Ω)) ∩ Lr(.) (Ω× (0, T )) .

(3.1)

Here,
m− = inf

x∈Ω
m (x) m+ = sup

x∈Ω
m (x) .

r− = inf
x∈Ω

r (x) r+ = sup
x∈Ω

r (x) .

p− = inf
x∈Ω

p (x) and p+ = sup
x∈Ω

p (x) .

From the expressions (1.2) and (1.3), one can easily see that, for all (u, v) ∈ R2,

(3.2) u f1(x, u, v) + vf2(x, u, v) = (p(x) + 1)F (x, u, v).

We, also, have the following results.

Lemma 3.6. [1] There exist C1, C2 > 0 such that, for all x ∈ Ω and (u, v) ∈ R2, we
have

(3.3) C1

(
|u|p(x)+1 + |v|p(x)+1

)
≤ F (x, u, v) ≤ C2(|u|p(x)+1 + |v|p(x)+1).

Corollary 3.1. For all x ∈ Ω and (u, v) ∈ R2, we have

(3.4) C1

(
ζ (u) + ζ (v)

)
≤
∫
Ω

F (x, u, v)dx ≤ C2

(
ζ (u) + ζ (v)

)
,

where
ζ (u) =

∫
Ω

|u |
p(x)+1

dx and ζ (v) =

∫
Ω

|v |
p(x)+1

dx.

The energy functional associated to our problem is

(3.5) E(t) =
1

2

(
∥ut∥22 + ∥vt∥22 + ∥∆u∥22 + ∥∆v∥22

)
−
∫
Ω

F (x, u, v) dx,

for all t ∈ [0, T ). A direct computation implies, for a.e. t ∈ (0, T ),

E
′
(t) = −

∫
Ω

|ut|m(x) dx−
∫
Ω

|vt|r(x) dx ≤ 0.(3.6)
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4. BLOW UP RESULT

In this section, our goal is to show that any solution of problem (1.1) blows up
in some finite time T ∗ ∈ (0, T ), if

max{m+, r+} < p− and 0 < E(0) < E1,(4.1)

where

(4.2) E1 =

(
1

2
− 1

p− + 1

)
γ2
1 , γ1 =

(
d∗
(
p− + 1

)) 1
1−p− ,

d∗ =
(√

2(p−+1)a+ 2b
)
cp

−+1
∗

and c∗ is a positive constant which comes from the Sobolev embedding H2
0 (Ω) ↪→

L
p(.)+1

(Ω).

Remark 4.1. The following well-known inequalities are needed for the proof of our
subsequent lemmas.

1. For A,B ≥ 0 and d ≥ 1, we have

(4.3) (A+B)d ≤ 2d−1
(
Ad +Bd

)
.

2. For z ≥ 0, 0 < δ ≤ 1 and a > 0, we have

(4.4) zδ ≤ z + 1 ≤
(
1 +

1

a

)
(z + a) .

3. For X, Y ≥ 0, δ > 0 and 1
λ
+ 1

β
= 1, Young’s inequality gives

(4.5) XY ≤ δλ

λ
Xλ +

δ−β

β
Y β.

4. The embedding result (Lemma 3.5), Hölder’s and Young’s inequalities and
(4.3) imply that

(4.6) ∥u+ v∥
p(.)+1

≤
√
2c∗

(
∥∆u∥

2

2
+ ∥∆v∥22

)1/2
and

(4.7) ∥uv∥
p(.)+1

2

≤ c2∗
(
∥∆u∥22 + ∥∆v∥22

)
.

Lemma 4.1. For any solution (u, v) of the system (1.1), with initial energy

(4.8) E (0) < E1
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and initial data satisfying

(4.9) γ1 <
(
∥∆u0∥22 + ∥∆v0∥22

)1/2 ≤ 1√
2c∗

,

there exists γ2 > γ1 such that

(4.10) γ2 ≤
(
∥∆u∥22 + ∥∆v∥22

)1/2
, ∀t ∈ [0, T ) .

Proof. Let γ = (∥∆u∥22 + ∥∆v∥22)
1/2

. Then, by (3.5), we have

(4.11) E (t) ≥ 1

2
γ2 −

∫
Ω

F (x, u, v) dx.

The use of Lemma 3.3, (4.6) and (4.7) leads to

(4.12)

∫
Ω

F (x, u, v) dx = a

∫
Ω

|u+ v|p(x)+1 dx+ 2b

∫
Ω

|uv|
p(x)+1

2 dx

≤ amax

{
∥u+ v∥

p−+1

p(.)+1
, ∥u+ v∥

p++1

p(.)+1

}
+ 2bmax

{
∥uv∥

p−+1
2

p(.)+1
2

, ∥uv∥
p++1

2

p(.)+1
2

}
≤ amax

{(√
2c∗γ

)p−+1

,
(√

2c∗γ
)p++1

}
+ 2bmax

{
(c∗γ)

p−+1 , (c∗γ)
p++1

}
.

Combining (4.11) and (4.12), we obtain

(4.13)
E(t) ≥1

2
γ2 − amax

{(√
2c∗γ

)p−+1

,
(√

2c∗γ
)p++1

}
− 2bmax

{
(c∗γ)

p−+1 , (c∗γ)
p++1

}
.

For γ in
[
0, 1√

2c∗

]
, one can easily check that

c2∗γ
2 ≤ 2c2∗γ

2 ≤ 1.

Consequently, we have(√
2c∗γ

)p−+1

≥
(√

2c∗γ
)p++1

and (c∗γ)
p−+1 ≥

(√
2c∗γ

)p++1

.

Thus, 4.13 reduces to

E (t) ≥ 1

2
γ2 −

(√
2(p−+1)a+ 2b

)
cp

−+1
∗ γp−+1.
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If we set
h (γ) =

1

2
γ2 − d∗γ

p−+1

,

then

(4.14) E (t) ≥ h (γ) , for all γ ∈
[
0,

1√
2c∗

]
.

It is clear that h is strictly increasing on [0, γ1) and strictly decreasing on [γ1,+∞).
Since E (0) < E1 and E1 = h (γ1) , then, we can find γ2 > γ1 such that h (γ2) =

E (0). But,

γ0 =
(
∥∆u0∥22 + ∥∆v0∥22

)1/2 ∈ (γ1, 1√
2c∗

]
,

therefore, by (4.14), we get

h (γ2) = E (0) ≥ h (γ0) .

This implies that γ0 ≥ γ2. Hence, γ2 ∈
(
γ1,

1√
2c∗

]
.

To prove (4.10), we assume on the contrary that there is a t0 ∈ [0, T ) such that(
∥∆u(., t0)∥22 + ∥∆v(., t0)∥22

)1/2
< γ2.

Since the function t 7−→ (∥∆u∥22 + ∥∆v∥22)
1/2 is continuous and γ2 > γ1, t0 can be

selected so that [
∥∆u(., t0)∥22 + ∥∆v(., t0)∥22

]1/2
> γ1.

Using (4.14) and the fact that h is decreasing on
[
γ1,

1√
2c∗

]
, we obtain

E (t0) ≥ h
((

∥∆u(., t0)∥22 + ∥∆v(., t0)∥22
)1/2)

> h (γ2) = E (0) ,

which contradicts the fact that E (t) ≤ E (0), for all t ∈ [0.T ). Thus, (4.10) is
established. □

Lemma 4.2. Let H (t) = E1 − E (t) , for all t ∈ [0, T ) . Then, we have

(4.15) 0 < H (0) ≤ H (t) ≤
∫
Ω

F (x, u, v) dx, for all t ∈ [0, T )

and

(4.16)
∫
Ω

F (x, u, v) dx ≥ d∗γ
p−+1

2 .
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Proof. Using (3.6), (4.8) and (4.11), it follows that

(4.17) 0 < E1 − E (0) = H (0) ≤ H (t) ≤ E1 −
1

2
γ2 +

∫
Ω

F (x, u, v) dx.

From the fact that h(γ1) = 1
2
γ2
1 − d∗γ

p−+1

1 = E1, we have

E1 −
1

2
γ2
1 = −d∗γ

p−+1
1 ,

then since γ ≥ γ2 > γ1, we obtain

H (t) ≤ −d∗γ
p−+1
1 +

∫
Ω

F (x, u, v) dx ≤
∫
Ω

F (x, u, v) dx.

Thus, (4.15) is established.
To prove (4.16), we use (4.15), to obtain

E (0) ≥ 1

2
γ2 −

∫
Ω

F (x, u, v) dx.

which implies that ∫
Ω

F (x, u, v) dx ≥ 1

2
γ2 − E (0) .

But E (0) = h (γ2) and γ ≥ γ2, so∫
Ω

F (x, u, v) dx ≥ 1

2
γ2
2 − h (γ2) = d∗γ

p−+1
2 .

□

Lemma 4.3. [22] There exist C3, C4, C5 > 0 such that any solution of (1.1) satisfies

(4.18) ∥u∥
p−+1

p−+1
+ ∥v∥

p−+1

p−+1
≤ C3 (ζ (u) + ζ (v)) ,

(4.19)
∫
Ω

|u|m(x) dx ≤ C4

[
(ζ (u) + ζ (v))

m+

p−+1 + (ζ (u) + ζ (v))
m−

p−+1

]
and

(4.20)
∫
Ω

|v|r(x) dx ≤ C5

[
(ζ (u) + ζ (v))

r+

p−+1 + (ζ (u) + ζ (v))
r−

p−+1

]
,

where ζ(u) and ζ(v) are defined in Corollary 3.1.
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Lemma 4.4. Let G (t) = H1−σ (t)+ ε
∫
Ω
(uut + vvt) dx, t > 0, where ε > 0 to be fixed

later and

(4.21) 0 < σ ≤ min

{
p− −m+ + 1

(p− + 1) (m+ − 1)
,

p− − r+ + 1

(p− + 1) (r+ − 1)
,

p− − 1

2 (p− + 1)

}
.

Then, there exists ρ > 0, such that

(4.22) G ′ (t) ≥ ερ
(
H (t) + ∥ut∥22 + ∥vt∥22 + ζ (u) + ζ (v)

)
and, hence,

G (t) ≥ G (0) > 0, for all t > 0.

Proof. Differentiate G and use (1.1) to have

G ′ (t) = (1− σ)H−σ (t)H′ (t) + ε
(
∥ut∥22 + ∥vt∥22

)
+ ε

∫
Ω

(uf1 (x, u, v) + vf2 (x, u, v)) dx− ε
(
∥∆u∥22 + ∥∆v∥22

)
− ε

∫
Ω

(
|ut|m(x)−2 utu+ |vt|r(x)−2 vtv

)
dx.(4.23)

By the definition of H and E, we get

(4.24) ∥∆u∥22 + ∥∆v∥22 = 2

∫
Ω

F (x, u, v) dx− ∥ut∥22 − ∥vt∥22 + 2E1 − 2H (t) .

Combining (3.2), (4.23) and (4.24), we obtain

G ′ (t) ≥ (1− σ)H−σ (t)H′ (t) + 2ε
(
∥ut∥22 + ∥vt∥22

)
+ 2εH (t)

− 2εE1 + ε
(
p− − 1

) ∫
Ω

F (x, u, v) dx

− ε

∫
Ω

(
|u| |ut|m(x)−1 + |v| |vt|r(x)−1

)
dx.(4.25)

Then, (4.16) and (4.25) lead to

G ′ (t) ≥ (1− σ)H−σ (t)H′ (t) + 2ε
(
∥ut∥22 + ∥vt∥22

)
+ εR

∫
Ω

F (x, u, v) dx

+ 2εH (t)− ε

∫
Ω

(
|u| |ut|m(x)−1 + |v| |vt|r(x)−1

)
dx,(4.26)

where R = p− − 1− 2
(
d∗γ

p−+1
2

)−1

E1 > 0, since γ2 > γ1.
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Now, we estimate the last two terms of (4.26). Apply (4.5) with

X = |u| , Y = |ut|m(x)−1 , λ = m (x) , β =
m (x)

m (x)− 1
,

to get

(4.27)

∫
Ω

|u| |ut|m(x)−1 dx ≤
∫
Ω

δm(x)

m (x)
|u|m(x) dx

+

∫
Ω

m (x)− 1

m (x)
δ−m(x)/(m(x)−1) |ut|m(x) dx.

Let k̃ be a positive constant, to be selected later, and take δ =
[
k̃H−σ (t)

] 1−m(x)
m(x)

to
obtain

(4.28)

∫
Ω

|u| |ut|m(x)−1 dx ≤ k̃1−m−

m−

∫
Ω

[H (t)]σ(m(x)−1) |u|m(x) dx

+
m+ − 1

m− k̃H−σ (t)

∫
Ω

|ut|m(x) dx.

Similarly, one can have

(4.29)

∫
Ω

|v| |vt|r(x)−1 dx ≤ k̃1−r−

r−

∫
Ω

[H (t)]σ(r(x)−1) |v|r(x) dx

+
r+ − 1

r−
k̃H−σ (t)

∫
Ω

|vt|r(x) dx.

The properties of m(x) and H(t) give∫
Ω

[H (t)]σ(m(x)−1) |u|m(x) dx =

∫
Ω

[
H (t)

H (0)

]σ(m(x)−1)

[H (0)]σ(m(x)−1) |u|m(x) dx

≤ c1 [H (t)]σ(m
+−1)

∫
Ω

[H (0)]σ(m(x)−1) |u|m(x) dx,

where c1 = 1/ [H (0)]σ(m
+−1) . But [H (0)]σ(m(x)−1) ≤ c2, for all x ∈ Ω, where c2 > 0.

So, for some c3 > 0, we get

(4.30)
∫
Ω

[H (t)]
σ(m(x)−1)

|u|m(x) dx ≤ c3 [H (t)]σ(m
+−1)

∫
Ω

|u|m(x) dx.
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Recalling (3.4), (4.15) and (4.19), inequality (4.30) turns into∫
Ω

[H (t)]
σ(m(x)−1)

|u|m(x) dx ≤ c4 (ζ (u) + ζ (v))
σ(m+−1)+ m+

p−+1

+ c4 (ζ (u) + ζ (v))
σ(m+−1)+ m−

p−+1

,(4.31)

for some c4 > 0. Apply (4.4) with z = ζ(u)+ζ(v), a = H(0), δ = σ (m+ − 1)+ m+

p−+1

and then with δ = σ (m+ − 1) + m−

p−+1
, respectively, we get

(ζ(u) + ζ(v))
σ(m+−1)+ m+

p−+1 ≤
[
1 +

1

H(0)

]
(ζ(u) + ζ(v) +H(0))

≤ R̃ (ζ(u) + ζ(v) +H(t))(4.32)

and

(4.33) (ζ (u) + ζ (v))
σ(m+−1)+ m−

p−+1 ≤ R̃ (ζ(u) + ζ(v) +H(t))

where R̃ = 1 + 1
H(0)

. By substituting (4.32) and (4.33) into (4.31), we obtain∫
Ω

[H (t)]
σ(m(x)−1)

|u|m(x) dx ≤ c5 (ζ(u) + ζ(v) +H(t)) ,(4.34)

for some c5 > 0. Repeating similar calculations, we arrive at∫
Ω

[H (t)]
σ(r(x)−1)

|v|r(x) dx ≤ c6 (ζ(u) + ζ(v) +H(t)) ,(4.35)

for some c6 > 0. Now, inserting (4.34) and (4.35) into (4.28) and (4.29), respec-
tively, we infer, for some c7, c8 > 0, that

(4.36)

∫
Ω

|u| |ut|m(x)−1 dx ≤ k̃1−m−

m− c7 (ζ(u) + ζ(v) +H(t))

+
m+ − 1

m− k̃H−σ (t)

∫
Ω

|ut|m(x) dx

and

(4.37)

∫
Ω

|v| |vt|r(x)−1 vdx ≤ k̃1−r−

r−
c8 (ζ(u) + ζ(v) +H(t))

+
r+ − 1

r−
k̃H−σ (t)

∫
Ω

|vt|r(x) dx.
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Adding (4.36) and (4.37), it yields

(4.38)

∫
Ω

(
|u| |ut|m(x)−1 + |v| |vt|r(x)−1

)
dx ≤ k̃1−m−

m− c7 (ζ(u) + ζ(v) +H(t))

+
k̃1−r−

r−
c8 (ζ(u) + ζ(v) +H(t))

+MH−σ (t)H ′(t),

for M = k̃max {m+−1
m− , r

+−1
r−

}, since

H ′(t) =

∫
Ω

|ut|m(x) dx+

∫
Ω

|vt|r(x) dx.

Substituting (4.38) into (4.26), we obtain, for some c9 > 0,

G ′ (t) ≥ (1− σ − εM)H−σ (t)H′ (t) + 2ε
(
∥ut∥22 + ∥vt∥22

)
+ ε

(
2− k̃1−m−

m− c7 −
k̃1−r−

r−
c8

)
H (t)

+ ε

(
c9 −

k̃1−m−

m− c7 −
k̃1−r−

r−
c8

)
(ζ (u) + ζ (v)) .

Now, we select k̃ large enough so that

G ′ (t) ≥ (1− σ − εM)H−σ (t)H′ (t)

+ εc10
(
H (t) + ∥ut∥22 + ∥vt∥22 + ζ (u) + ζ (v)

)
,

for some c10 > 0. Once k̃ is fixed, we select ε small enough so that

1− σ − εM ≥ 0 and G (0) = H1−σ (0) + ε

∫
Ω

(u0u1 + v0v1) dx > 0.

Thus, using the fact that H is non-decreasing function, we establish (4.22). □

Now, we present our blow-up result.

Theorem 4.1. Under the assumptions (4.1) and (4.9), any solution of the system
(1.1)) blows up in finite time.

Proof. Using (4.3) and the definition of G, we have
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(4.39)

G1/(1−σ)

(t) ≤
(
H1−σ

(t) + ε

∫
Ω

|uut + vvt| dx
)1/(1−σ)

≤ 2
σ/(1−σ)

(
H (t) +

(
ε

∫
Ω

(|uut|+ |vvt|) dx
)1/(1−σ)

)

≤ c11

(
H (t) +

(∫
Ω

(|u| |ut|+ |v| |vt|) dx
)1/(1−σ)

)
,

where c11 = 2
σ/(1−σ)

max
{
1, ε1/(1−σ)

}
. The Sobolev embedding, Lemma 4.3 and

Hölder’s and Young’s inequalities give

(4.40)

(∫
Ω

(|u| |ut|+ |v| |vt|) dx
)1/(1−σ)

≤ 2
σ/(1−σ)

(∫
Ω

|u| |ut| dx
)1/(1−σ)

+ 2
σ/(1−σ)

(∫
Ω

|v| |vt| dx
)1/(1−σ)

≤ 2
σ/(1−σ)

(
∥u∥1/(1−σ)

2 ∥ut∥1/(1−σ)
2 + ∥v∥1/(1−σ)

2 ∥vt∥1/(1−σ)
2

)
≤ c12

(
∥u∥1/(1−σ)

p−+1 ∥ut∥1/(1−σ)
2 + ∥v∥1/(1−σ)

p−+1 ∥vt∥1/(1−σ)
2

)
≤ c13

(
∥u∥

2/(1−2σ)

p−+1 + ∥ut∥
2

2 + ∥v∥
2/(1−2σ)

p−+1 + ∥vt∥
2

2

)
≤ c13

(
(ζ (u) + ζ (v))τ + ∥ut∥22 + ∥vt∥22

)
,

where τ = 2/ (p− + 1) (1− 2σ) , c12, c13 > 0. Using (4.15), (3.4) and since τ ≤ 1,
we get, for some c14 > 0,(∫

Ω

(|u| |ut|+ |v| |vt|) dx
)1/(1−σ)

≤ c14

(
ζ (u) + ζ (v) + ∥ut∥

2

2 + ∥vt∥
2

2 +H (t)
)
.

Inserting the last estimate into (4.39), we obtain, for some c15 > 0,

(4.41) G1/(1−σ)

(t) ≤ c15

(
H (t) + ∥ut∥

2

2 + ∥vt∥
2

2 + ζ (u) + ζ (v)
)
.

Combining (4.22) and (4.41), we deduce that

G ′ (t) ≥ c̃G1/(1−σ)

(t) , for all t > 0,



BLOW UP AND DECAY IN A BIHARMONIC SYSTEM WITH VARIABLE EXPONENTS 1161

where c̃ = ερ
c15

. A simple integration over (0, t) yields

Gσ/(1−σ) (t) ≥ 1

G
−σ
1−σ (0)− σc̃t

1−σ

,

consequently, G(t) −→ +∞, as t −→ T ∗ ≤ 1−σ

σc̃

[
G

σ
(1−σ) (0)

] .
This shows that the solution of problem (P ) blows up in finite time. □

5. GLOBAL EXISTENCE AND DECAY-RATE ETIMATES

In this section, we establish the existence of global solutions, for initial data in a
certain stable set. Then, we show that the decay estimates of the solution energy
are exponential or polynomial, depending on the exponents m and r.

5.1. Global Existence. To state and prove our first result, we introduce the two
functionals defined for all t ∈ (0, T ) by

(5.1) I (t) = I (u(t)) = ∥∆u∥22 + ∥∆v∥22 −
(
p+ + 1

) ∫
Ω

F (x, u, v) dx,

(5.2) J (t) = J (u(t)) =
1

2

(
∥∆u∥22 + ∥∆v∥22

)
−
∫
Ω

F (x, u, v) dx

and give the following Lemma.

Lemma 5.1. Under the assumptions of Theorem 3.1 and if

I(0) > 0 and β < 1,

where

β = C2(p
+ + 1)max

cp
−+1

∗

(
2 (p+ + 1)

p+ − 1
E (0)

) p−−1
2

, cp
++1

∗

(
2 (p+ + 1)

p+ − 1
E (0)

) p+−1
2

 .

Then,

(5.3) I (t) > 0, for all t ∈ (0, T ) .

Proof. From the continuity of I and the fact that I(0) > 0, there exists tk in (0, T )

such that

(5.4) I (t) ≥ 0, ∀t ∈ (0, tk) .
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Recalling (5.1) and (5.2), we have

J (t) =
p+ − 1

2 (p+ + 1)

(
∥∆u∥22 + ∥∆v∥22

)
+

1

p+ + 1
I (t) .

Combining with (5.4), we get

(5.5) J (t) ≥ p+ − 1

2 (p+ + 1)

(
∥∆u∥22 + ∥∆u∥22

)
,∀t ∈ (0, tk) .

From the definition of the energy, we easily check that

(5.6) E (t) = J (t) +
1

2

(
∥ut∥22 + ∥vt∥22

)
,

for all t ∈ (0, T ) . Consequently,

∥∆u∥22 + ∥∆v∥22 ≤
2 (p+ + 1)

(p+ − 1)
E (t) .

Thus, the decreasingness of E leads to

(5.7) max
{
∥∆u∥22 , ∥∆v∥22

}
≤ 2 (p+ + 1)

(p+ − 1)
E (0) ,∀t ∈ (0, tk) .

On the other hand, from Lemma 3.3 and the Sobolev embedding H2
0 (Ω) ↪→

Lp(·)+1(Ω), we obtain∫
Ω

|u|p(x)+1 dx ≤ max{cp−+1
∗ ∥∆u∥p

−+1
2 , cp

++1
∗ ∥∆u∥p

++1
2 }

≤ max {cp−+1
∗ ∥∆u∥p

−−1
2 , cp

++1
∗ ∥∆u∥p

+−1
2 } ∥∆u∥22 .

Combining with (5.7), this yields, for all t ∈ (0, tk) ,∫
Ω

|u|p(x)+1 dx

≤ max

cp
−+1

∗

(
2 (p+ + 1)

(p+ − 1)
E (0)

) p−−1
2

, cp
++1

∗

(
2 (p+ + 1)

(p+ − 1)
E (0)

) p+−1
2

 ∥∆u∥22 .

Therefore,

(5.8)
∫
Ω

|u|p(x)+1 dx ≤ β

C2 (p+ + 1)
∥∆u∥22 .
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In a similar way, one can show that

(5.9)
∫
Ω

|v|p(x)+1 dx ≤ β

C2 (p+ + 1)
∥∆v∥22 .

The addition of (5.8) and (5.9)) gives

(5.10)
∫
Ω

(
|u|

p(x)+1

+ |v|
p(x)+1

)
dx ≤ β

C2 (p+ + 1)

(
∥∆u∥22 + ∥∆v∥22

)
.

Combining (5.10) with (3.4), we infer that∫
Ω

F (x, u, v) dx ≤ β

p+ + 1

(
∥∆u∥22 + ∥∆v∥22

)
(5.11)

<
1

p+ + 1

(
∥∆u∥22 + ∥∆v∥22

)
,

for all t ∈ (0, tk] . From the definition of I, this leads to

I (t) > 0. ∀t ∈ (0, tk] .

By repeating the above procedure and using the decreasingness of E, we can ex-
tend tk to T and obtain (5.3). □

Theorem 5.1. Assume that all assumptions of Lemma 5.1 are fulfilling. Then, the
local solution (u, v) of system (1.1) is global.

Proof. Substituting (5.5) into (5.6) and thanks to (5.3), it yields

E (t) ≥ p+ − 1

2 (p+ + 1)

(
∥∆u∥22 + ∥∆v∥22

)
+

1

2

(
∥ut∥22 + ∥vt∥22

)
,

for all t ∈ (0, T ) . Thus, we have

∥∆u∥22 + ∥∆v∥22 + ∥ut∥22 + ∥vt∥22 ≤ C3E (t) ≤ C3E(0),(5.12)

for C3 = max{2, 2(p
++1)

p+−1
}, which means that the norm in (5.12) is bounded inde-

pendently of t. Therefore, the solution (u, v) exists globally. □

5.2. Decay-rate Etimates. To prove the decay result, we need the following Lemma.

Lemma 5.2. Let the assumptions of Lemma 5.1 hold. Then, there exists a positive
constant C4, such that the global solution (u, v) satisfies

(5.13)
∫
Ω

(
|u (t)|m(x) + |v(t)|r(x)

)
dx ≤ C4E(t) for all t ≥ 0.
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Proof. The result is immediate by replacing p by m and r in (5.8) and (5.9), re-
spectively, and by recalling (5.12). □

Theorem 5.2. Under the assumptions of Lemma 5.1, the solution of (1.1) satisfies
the following decay estimates, for all t ≥ 0,

(5.14) E (t) ≤

{
k

(1+t)2/(α−2) , if α > 2,

ke−ωt, if α = 2,

where α = max {m+, r+} and k, w > 0 are two positive constants.

Proof. Multiplying (1.1)1 by u (t)Eη (t) and (1.1)2 by v (t)Eη (t) and, then, inte-
grating each result over Ω × (s, T ), for 0 < s < T and η ≥ 0 to be specified later,
we get ∫ T

s

∫
Ω

Eη (t)
[
u (t)utt(t) + u(t)∆2u(t) + u(t) |ut|m(x)−2 ut(t)

]
dxdt

=

∫ T

s

∫
Ω

Eη (t)u (t) f1 (x, u, v) dxdt

and ∫ T

s

∫
Ω

Eη (t)
[
v (t) vtt (t) + v(t)∆2v(t) + v (t) |vt (t)|r(x)−2 vt(t)

]
dxdt

=

∫ T

s

∫
Ω

Eη (t) v (t) f2 (x, u, v) dxdt.

Green’s formula and the boundary conditions lead to∫ T

s

∫
Ω

Eη (t)
[
(u (t)ut (t))t − |ut (t)|2 + |∆u (t)|2(5.15)

+u (t)ut (t) |ut (t)|m(x)−2
]
dxdt =

∫ T

s

∫
Ω

Eη (t)u (t) f1 (x, u, v) dxdt

and ∫ T

s

∫
Ω

Eη (t)
[
(v (t) vt (t))t − |vt (t)|2 + |∆v(t)|2 + v (t) vt (t) |vt (t)|r(x)−2

]
dxdt

=

∫ T

s

∫
Ω

Eη (t) v (t) f2 (x, u, v) dxdt.(5.16)
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Adding and subtracting the following two terms∫ T

s

∫
Ω

Eη (t)
[
β |∆u(t)|2 + (1 + β) |ut (t)|2

]
dxdt

and ∫ T

s

∫
Ω

Eη (t)
[
β |∆v(t)|2 + (1 + β) |vt (t)|2

]
dxdt,

to (5.15) and (5.16), respectively, and recalling (5.11), we arrive at

(1− β)

∫ T

s

Eη (t)

∫
Ω

(
|∆u(t)|2 + |∆v(t)|2 + |ut (t)|2 + |vt (t)|2

)
dxdt

+

∫ T

s

Eη (t)

∫
Ω

[(u (t)ut (t) + v (t) vt (t))t

− (2− β)
(
|ut (t)|2 + |vt (t)|2

)]
dxdt

+

∫ T

s

Eη (t)

∫
Ω

(
u (t)ut (t) |ut (t)|m(x)−2(5.17)

+v (t) vt (t) |vt (t)|r(x)−2
)
dxdt

= −
∫ T

s

Eη (t)

∫
Ω

[
β
(
|∆u(t)|2 + |∆v(t)|2

)
− (p (x) + 1)F (x, u, v)] dxdt ≤ 0.

Now, by exploiting the formula:

Eη (t)

∫
Ω

(u (t)ut (t) + v (t) vt (t))t dx

=
d

dt

(
Eη (t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dx

)
− ηEη−1 (t)E

′
(t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dx,

estimate (5.17) yields

2 (1− β)

∫ T

s

Eη+1 (t) dt ≤ η

∫ T

s

Eη−1 (t)E
′
(t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dxdt

−
∫ T

s

d

dt

(
Eη (t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dx

)
dt
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−
∫ T

s

Eη (t)

∫
Ω

(
u (t)ut (t) |ut (t)|m(x)−2 + v (t) vt (t) |vt (t)|r(x)−2

)
dxdt

+ (2− β)

∫ T

s

Eη (t)

∫
Ω

(
|ut (t)|2 + |vt (t)|2

)
dxdt

= I1 + I2 + I3 + I4.(5.18)

Next, we handle the terms Ii, i = 1, 4 and denote by C a positive generic constant.
First, applying Young’s and Poincaré’s inequalities, we obtain

I1 = η

∫ T

s

Eη−1 (t)E
′
(t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dxdt

≤ η

2

∫ T

s

Eη−1 (t)
(
−E

′
(t)
) [

∥u (t)∥22 + ∥ut (t)∥22 + ∥v (t)∥22 + ∥vt (t)∥22
]
dt

≤ C

∫ T

s

Eη−1 (t)
(
−E

′
(t)
) [

∥∆u (t)∥22 + ∥∆v (t)∥22 + ∥ut (t)∥22 + ∥vt (t)∥22
]
dt.

By (5.12), this gives

I1 ≤ C

∫ T

s

Eη (t)
(
−E

′
(t)
)
dt

≤ CEη+1 (s)− CEη+1 (T ) ≤ CEη (0)E (s) ≤ CE (s) .(5.19)

Concerning the second term, we have

I2 = −
∫ T

s

d

dt

(
Eη (t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dx

)
dt

= Eη (s)

(∫
Ω

(u (x, s)ut (x, s) + v (x, s) vt (x, s)) dx

)
− Eη (T )

(∫
Ω

(u (x, T )ut (x, T ) + v (x, T ) vt (x, T )) dx

)
.

Again, by (5.12) and Young’s and Poincaré’s inequalities, we get∣∣∣∣∫
Ω

u (x, s)ut (x, s) dx

∣∣∣∣ ≤ C
(
∥∆u (s)∥22 + ∥ut (s)∥22

)
≤ CE (s) ,∣∣∣∣∫

Ω

u (x, T )ut (x, T ) dx

∣∣∣∣ ≤ C
(
∥∆u (T )∥22 + ∥ut (T )∥22

)
≤ CE (T )
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and, likewise,∣∣∣∣∫
Ω

v (x, s) vt (x, s) dx

∣∣∣∣ ≤ C
(
∥∆v (s)∥22 + ∥vt (s)∥22

)
≤ CE (s)∣∣∣∣∫

Ω

v (x, T ) vt (x, T ) dx

∣∣∣∣ ≤ C
(
∥∆v (T )∥22 + ∥vt (T )∥22

)
≤ CE (T ) .

Therefore,

I2 ≤ CEη+1 (s) ≤ CEη (0)E (s) ≤ CE (s) .(5.20)

For the third term, we apply Young’s inequality (as in (4.27)) to obtain, for some
ε > 0,

I3 = −
∫ T

s

Eη (t)

∫
Ω

(
u (t)ut (t) |ut (t)|m(x)−2 + v (t) vt (t) |vt (t)|r(x)−2

)
dxdt

≤
∫ T

s

Eη (t)

(
ε

2

∫
Ω

|u (t)|m(x) dx+
1

ε

∫
Ω

|ut (t)|m(x) dx

)
dt

+

∫ T

s

Eη (t)

(
ε

2

∫
Ω

|v (t)|r(x) dx+
1

ε

∫
Ω

|vt (t)|r(x) dx
)
dt.

Invoking Lemma 5.2 and recalling (3.6), it yields

I3 ≤
ε

2

∫ T

s

Eη (t)

∫
Ω

(
|u (t)|m(x) + |v (t)|r(x)

)
dxdt(5.21)

+
1

ε

∫ T

s

Eη (t)
(
−E

′
(t)
)
dt

≤ εC

∫ T

s

Eη+1 (t) dt+ CεE (s) .(5.22)

Finally, we handle I4, as follows:

I4 = (2− β)

∫ T

s

Eη (t)

∫
Ω

(
|ut (t)|2 + |vt (t)|2

)
dxdt

= (2− β)

[∫ T

s

Eη (t)

∫
Ω

|ut (t)|2 dxdt+
∫ T

s

Eη (t)

∫
Ω

|vt (t)|2 dxdt
]

= (2− β)(J1 + J2).

We claim that

J1, J2 ≤ εC

∫ T

s

Eη+1 (t) dt+ CεE (s) .(5.23)
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Indeed, by taking

α = max
{
m+, r+

}
, α̃ = min

{
m−, r−

}
,

Ω+ = {x ∈ Ω / |u (x, t)| ≥ 1} and Ω− = {x ∈ Ω / |u (x, t)| < 1} ,

we obtain

J1 =

∫ T

s

Eη (t)

∫
Ω

|ut (t)|2 dxdt

=

∫ T

s

Eη (t)

[∫
Ω−

|ut (t)|2 dx+

∫
Ω+

|ut (t)|2 dx
]
dt

≤ C

∫ T

s

Eη (t)

[(∫
Ω−

|ut (t)|α dx
)2/α

+

(∫
Ω+

|ut (t)|α̃ dx
)2/α̃

]
dt

≤ C

∫ T

s

Eη (t)

[(∫
Ω−

|ut (t)|m(x) dx

)2/α

+

(∫
Ω+

|ut (t)|m(x) dx

)2/α̃
]
dt.

Therefore,

J1 ≤ C

∫ T

s

Eη (t) (−E ′ (t))
2/α

dt+ C

∫ T

s

Eη (t) (−E ′ (t))
2/α̃

dt

= C(Jα + Jα̃).(5.24)

Three cases are possible:
(1) if α = α̃ = 2 (m(x) = r(x) = 2, on Ω), then

J1, J2 ≤ C

∫ T

s

Eη (t)
(
−E

′
(t)
)
dt ≤ CEη+1 (s)− CEη+1 (T ) ≤ CE (s) .

Therefore, inequality (5.23) is satisfied, for any ε > 0.

(2) if α > 2 and α̃ = 2, we exploit Young’s inequality with

δ = (η + 1) /η and δ′ = η + 1

to find

Jα =

∫ T

s

Eη (t) (−E ′ (t))
2/α

dt

≤ εC

∫ T

s

Eη+1 (t) dt+ Cε

∫ T

s

(−E ′ (t))
2(η+1)/α

dt.
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So, for η = α
2
− 1, we get

Jα ≤ εC

∫ T

s

Eη+1 (t) dt+ Cε

∫ T

s

(−E ′ (t)) dt

≤ εC

∫ T

s

Eη+1 (t) dt+ CεE (s) .(5.25)

Also, in this case, we have

Jα̃ =

∫ T

s

Eη (t) (−E ′ (t)) dt ≤ CE(s).(5.26)

By inserting (5.25) and (5.26) into (5.24), we infer that J1 (and similarly J2)
satisfies (5.23).
(3) if α ≥ α̃ > 2, we apply Young’s inequality with

δ = α̃/ (α̃− 2) and δ′ = α̃/2

to obtain

Jα̃ =

∫ T

s

Eη (t) (−E ′ (t))
2/α̃

dt

≤ εC

∫ T

s

E (t)ηα̃/(α̃−2) dt+ CεE (s) .

But ηα̃/ (α̃− 2) = η + 1 + (α− α̃) / (α̃− 2) , since η + 1 = α
2
. Therefore,

Jα̃ ≤ εC (E (s))(α−α̃)/(α−2)

∫ T

s

Eη+1 (t) dt+ CεE (s)

≤ εC

∫ T

s

Eη+1 (t) dt+ CεE (s) .(5.27)

The addition of (5.25) with (5.27) leads to (5.23).
We conclude that the claim is true for any α ≥ α̃ ≥ 2. Therefore,

I4 ≤ εC

∫ T

s

Eη+1 (t) dt+ CεE (s) .(5.28)

Now, substituting (5.19), (5.20), (5.22) and (5.28) into (5.18), we get

2 (1− β)

∫ T

s

Eη+1 (t) dt ≤ εC

∫ T

s

Eη+1 (t) dt+ CεE (s) ,
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with η = α
2
− 1. So,

2 (1− β)

∫ T

s

E
α
2 (t) dt ≤ εC

∫ T

s

E
α
2 (t) dt+ CεE (s) .

Choosing ε small enough, we obtain∫ T

s

E
α
2 (t) dt ≤ CE (s) .

Letting T −→ ∞, it yields∫ ∞

s

E
α
2 (t) dt ≤ CE (s) ,∀s > 0.

Applying Komornik’s lemma, we get the desired decay estimates. □
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