
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 11 (2022), no.12, 1173–1190
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.11.12.3

FIXED POINT THEOREMS FOR SUSUKI TYPE GENERALIZED
L-CONTRACTIONS IN BRANCIARI DISTANCE SPACES

Seong-Hoon Cho

ABSTRACT. In this paper, the notion of Suzuki type generalized L-contractions is
introduced and a new fixed point theorem for such contractions is established.

1. INTRODUCTION AND PRELIMINARIES

Since the Banach contraction principle plays an important role and give many
applications in Mathematics, many authors have generalized the contraction prin-
ciple.

Suzuki [27] gave a generalization of Banach contraction principle to compact
metric space by introducing the notion of a contractive map T : X → X, where
(X, d) is compact metric space, such that

∀x, y ∈ X(x ̸= y),
1

2
d(x, Tx) < d(x, y) implies d(Tx, Ty) < d(x, y).

On the other hand, Branciari [10] gave a generalization of the notion of metric
spaces, which is called Branciari distance spaces, by replacing triangle inequality
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with trapezoidal inequality, and he gave an extension of Banach contraction prin-
ciple to Branciari distance spaces. After that, the authors ( [3, 4, 6, 14, 19, 24–26]
and references therein ) obtained fixed point results in Branciari distance spaces.

It is well know that Branciari distance spaces have some topological disadvan-
tages as follows (see [2,23,24]):

− Branciari distance does not have to be continuous in each coordinates;
− Convergent sequence in Branciari distance space does not have to be

Cauchy;
− Branciari distance space (X, d) does not have a topology which is compat-

ible with (X, d);
− The limit of convergent sequence does not have to be unique.

Consider the following conditions for a given function θ : (0,∞) → (1,∞),

(θ1) θ is non-decreasing;
(θ2) for any sequence {zn} of points in (0,∞),

lim
n→∞

θ(zn) = 1 ⇔ lim
n→∞

zn = 0;

(θ3) there is an p ∈ (0, 1) such that

lim
t→0+

θ(t)− 1

tp
= q, where q ∈ (0,∞);

(θ4) θ is continuous on (0,∞).

Jleli and Samet [17] obtained a generalization of the Banach contraction prin-
ciple in Branciari distance spaces by introducing the concept of θ-contractions,
where θ : (0,∞) → (1,∞) is a function satisfying conditions (θ1), (θ2) and (θ3).
Ahmad et al. [1] extended the result of Jleli and Samet [17] to metric spaces by
applying conditions (θ1), (θ2) and (θ4).

Very recently, Cho [11] introduced the concept of L-contractions, which is a
more generalized concept than some existing notions of contractions. He proved
that every L-contraction mapping defined on complete Branciari distance spaces
has a unique fixed point.

Afterward, the authors ( [5, 7, 12, 13, 16, 21, 22]) gave generalizations of the
result of [11].
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In the paper, we introduce the new concept of Suzuki type generalized L-
contractions which is a generalization of the concept of L-contractions, and we
establish a new fixed point theorem for such contraction mappings in the setting
of Branciari distance spaces. We give an example to illustrate main theorem.

Let ξ : [1,∞)× [1,∞) → R be a function.
Consider the following conditions:

(ξ1) ξ(1, 1) = 1;
(ξ2) ξ(t, s) < s

t
∀s, t > 1;

(ξ3) for any sequence {tn}, {sn} ⊂ (1,∞) with tn ≤ sn ∀n = 1, 2, 3, · · ·

lim
n→∞

tn = lim
n→∞

sn > 1 ⇒ lim
n→∞

sup ξ(tn, sn) < 1.

A function ξ : [1,∞)× [1,∞) → R is called L-simulation [11] if and only if (ξ1),
(ξ2) and (ξ3) are satisfied.

Note that ξ(t, t) < 1 ∀t > 1.

Denote L by the class of all L-simulation functions ξ : [1,∞)× [1,∞) → R.

Example 1. [11] Let ξb, ξw, ξc : [1,∞)× [1,∞) → R be functions defined as follows,
respectively:

(1) ξb(t, s) = sk

t
∀t, s ≥ 1 where k ∈ (0, 1);

(2) ξw(t, s) = s
tϕ(s)

∀t, s ≥ 1 where ϕ : [1,∞) → [1,∞) is nondecreasing and
lower semicontinuous such that ϕ−1({1}) = 1;

(2) ξc(t, s) =


1 if (s, t) = (1, 1),

s
2t

if s < t,

sλ

t
otherwise,

∀s, t ≥ 1, where λ ∈ (0, 1).

Then ξb, ξw, ξc ∈ L.

Example 2. [12] Let ξk : [1,∞) × [1,∞) → R, k = 1, 2, 3, be functions defined as
follows:

(1) ξ1(t, s) =
ψ(s)
φ(t)

, ∀t, s ≥ 1 where ψ, φ : [1,∞) → [1,∞) are continuous func-
tions such that ψ(t) = φ(t) = 1 if and only if t = 1, ψ(t) < t ≤ φ(t), ∀t > 1

and φ is an increasing function;
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(2) ξ2(t, s) =
η(s)
t
, ∀s, t ≥ 1, where η : [1,∞) → [1,∞) is upper semi-continuous

with η(t) < t, ∀t > 1 and η(t) = 1 if and only if t = 1;
(3) ξ3(t, s) = s∫ t

0 ϕ(u)du
, ∀s, t ≥ 1, where ϕ : [0,∞) → [0,∞) is a function such

that for each t ≥ 1,
∫ t
0
ϕ(u)du exists and

∫ t
0
ϕ(u)du > t, and

∫ 1

0
ϕ(u)du = 1.

Then ξ1, ξ2, ξ3 ∈ L.

Let X be a non-empty set.
A map d : X × X → [0,∞) is called Branciari distance [10] on X if and only

if it satisfies the following conditions: for all x, y ∈ X and for all distinct points
u, v ∈ X, each of them different from x and y

(d1) d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x);
(d3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).

The pair (X, d) is called a Branciari distance space [10].
Note that triangle inequality implies trapezoidal inequality, and so every metric

space is a Branciari distance space.

The following definitions are in [10].

Let (X, d) be a Branciari distance space. Then we say that

(1) a sequence {xn} ⊂ X is convergent to x (denoted by limn→∞ xn = x) if and
only if limn→∞ d(xn, x) = 0;

(2) a sequence {xn} ⊂ X is Cauchy if and only if limn,m→∞ d(xn, xm) = 0;
(3) (X, d) is complete if and only if every Cauchy sequence in X is convergent

to some point in X.

Lemma 1.1. [18] Let (X, d) be a Branciari distance space, {xn} ⊂ X be a Cauchy
sequence and x, y ∈ X. If there exists a positive integer N such that

(1) xn ̸= xm ∀n,m > N ;
(2) xn ̸= x ∀n > N ;
(3) xn ̸= y ∀n > N ;
(4) limn→∞ d(xn, x) = limn→∞ d(xn, y),

then x = y.
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2. FIXED POINT RESULTS

Let (X, d) be a Branciari distance space.
A map T : X → X is Suzuki type generalized L-contraction with respect to ξ ∈ L

if and only if it satisfies the condition: for all x, y ∈ X with d(Tx, Ty) > 0

1

2
d(x, Tx) < d(x, y) implies ξ(θ(d(Tx, Ty)), θ(M(x, y))) ≥ 1, (2.1)

where θ : (0,∞) → (1,∞) is a function, and M(x, y) = max{d(x, y), d(x, Tx),
d(y, Ty)}. When M(x, y) = d(x, y) in (2.1), T : X → X is called Suzuki type
L-contraction with respect to ξ ∈ L.

Recall that a map T : X → X is L-contraction [11] with respect to ξ ∈ L if and
only if the condition holds: for all x, y ∈ X with d(Tx, Ty) > 0

ξ(θ(d(Tx, Ty)), θ(d(x, y))) ≥ 1,

where θ : (0,∞) → (1,∞) is a function.

Lemma 2.1. Let l > 0, and let {tn} ⊂ (l,∞) be a non-increasing sequence such that

lim
n→∞

tn = l.

If θ : (0,∞) → (1,∞) is non-decreasing, then we have

lim
n→∞

θ(tn) = lim
n→∞

θ(tn−1) = lim
t→l+

θ(t) > 1.

Proof. Since θ is non-decreasing and {tn} is non-increasing,

lim
t→l+

θ(t) = lim
n→∞

θ(tn) ≤ lim
n→∞

θ(tn−1) ≤ lim
t→l+

θ(t).

Thus we have

lim
n→∞

θ(tn) = lim
n→∞

θ(tn−1) = lim
t→l+

θ(t) > θ(l) > 1.

□

Now, we prove our main result.

Theorem 2.1. Let (X, d) be a complete Branciari distance space, and let T : X →
X be a Suzuki type generalized L-contraction with respect to ξ ∈ L. If θ is non-
decreasing, then T has a unique fixed point, and the Picard sequence {xn = T nx0}
∀x0 ∈ X converges to the fixed point.
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Proof. Firstly, we show the uniqueness of fixed point whenever it exists. Assume
that w and u are fixed points of T . If u ̸= w, then d(w, u) > 0 and 1

2
d(w, Tw) = 0 <

d(w, u). Thus it follows from (2.1) that

1 ≤ξ(θ(d(Tw, Tu)), θ(M(w, u)))

=ξ(θ(d(w, u)), θ(d(w, u)))

<
θ(d(w, u))

θ(d(w, u))
.

Thus we have
θ(d(w, u)) < θ(d(w, u))

which is a contradiction. Hence w = u, and fixed point of T is unique.

Secondly, we prove the existence of fixed point. Let x0 ∈ X be a point. Define a
sequence {xn} ⊂ X by xn = Txn−1 = T nx0 ∀n = 1, 2, 3 · · · .

If xn0 = xn0+1 for some n0 ∈ N, then xn0 is a fixed point of T , and the proof is
finished. Assume that

xn−1 ̸= xn ∀n = 1, 2, 3 · · · . (2.2)

We infer that
1

2
d(xn−1, Txn−1) =

1

2
d(xn−1, xn) < d(xn−1, xn). (2.3)

It follows from (2.1), (2.2) and (2.3) that ∀n = 1, 2, 3, · · ·

1 ≤ξ(θ(d(Txn−1, Txn)), θ(M(xn−1, xn)))

=ξ(θ(d(xn, xn+1)), θ(M(xn−1, xn)))

<
θ(M(xn−1, xn))

θ(d(xn, xn+1))
,(2.4)

where m(xn−1, xn) = max{d(xn−1, xn), d(xn, xn+1)}.
If there exists n = 1, 2, 3, · · · , such that d(xn−1, xn) ≤ d(xn, xn+1), then from

(2.4) we have that

1 <
θ(M(xn, xn+1))

θ(d(xn, xn+1))
=
θ(d(xn, xn+1))

θ(d(xn, xn+1))
= 1

which is a contradiction. Hence, we obtain that

d(xn, xn+1) < d(xn−1, xn), ∀n = 1, 2, 3, · · · .
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It follows from (2.4) that

1 <
θ(M(xn−1, xn))

θ(d(xn, xn+1))
=
θ(d(xn−1, xn))

θ(d(xn, xn+1))
, ∀n = 1, 2, 3, · · · .

Consequently, we obtain that

θ(d(xn, xn+1)) < θ(d(xn−1, xn)), ∀n = 1, 2, 3, · · ·

which implies
d(xn, xn+1) < d(xn−1, xn) ∀n = 1, 2, 3, · · · .

Hence {d(xn−1, xn)} is a decreasing sequence, and so there exists l ≥ 0 such that

lim
n→∞

d(xn−1, xn) = l.

We now show that l = 0. Assume that l > 0. Let tn−1 = θ(d(xn−1, xn)) and
tn = θ(d(xn, xn+1)) ∀n = 1, 2, 3, · · · . Then tn < tn−1 ∀n = 1, 2, 3, · · · . By applying
Lemma 2.1,

lim
n→∞

tn−1 = lim
n→∞

tn = lim
t→l+

θ(t) > θ(l) > 1.

It follows from (ξ3) that

1 ≤ lim
n→∞

sup ξ(tn, tn−1) < 1

which is a contradiction. Thus,

lim
n→∞

d(xn−1, xn) = 0. (2.5)

Now, we show that {xn} is a Cauchy sequence. On the contrary, assume that
{xn} is not a Cauchy sequence. Then there exists ϵ > 0 for which we can find
subsequences {xm(k)} and {xn(k)} of {xn} such that m(k) is the smallest index for
which

m(k) > n(k) > k, d(xm(k), xn(k)) ≥ ϵ and d(xm(k)−1, xn(k)) < ϵ. (2.6)

From (2.6) we have

ϵ

≤d(xm(k), xn(k))

≤d(xn(k), xm(k)−2) + d(xm(k)−2, xm(k)−1) + d(xm(k)−1, xm(k))

<ϵ+ d(xm(k)−2, xm(k)−1) + d(xm(k)−1, xm(k)).(2.7)
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Letting k → ∞ in (2.7), we obtain

lim
n→∞

d(xm(k), xn(k)) = ϵ. (2.8)

On the other hand, we obtain

d(xm(k), xn(k)) ≤ d(xn(k), xn(k)+1) + d(xn(k)+1, xm(k)+1) + d(xm(k)+1, xm(k))

and

d(xn(k)+1, xm(k)+1) ≤ d(xn(k)+1, xn(k)) + d(xn(k), xm(k)) + d(xm(k), xm(k)+1).

Thus
lim
k→∞

d(xn(k)+1, xm(k)+1) = ϵ. (2.9)

It follows from (2.5) that there exists N ∈ N such that

d(xn(k), xn(k)+1) < ϵ, ∀k > N.

Thus we infer that ∀k > N

1

2
d(xn(k), Txn(k)) =

1

2
d(xn(k), xn(k)+1) < ϵ ≤ d(xn(k), xm(k)).

It follows from (2.1) that

1 ≤ξ(θ(d(Txn(k), Txm(k))), θ(M(xn(k), xm(k))))

=ξ(θ(d(xn(k)+1, xm(k)+1)), θ(M(xn(k), xm(k)))

<
θ(M(xn(k), xm(k)))

θ(d(xn(k)+1, xm(k)+1))

which implies
θ(d(xn(k)+1, xm(k)+1)) < θ(M(xn(k), xm(k))) (2.10)

where M(xn(k), xm(k)) = max{d(xn(k), xm(k)), d(xn(k), xn(k)+1), d(xm(k), xm(k)+1)}.
If M(xn(k), xm(k)) = d(xm(k), xm(k)+1), then from (2.10) we have

θ(d(xn(k)+1, xm(k)+1)) < θ(d(xm(k), xm(k)+1))

and so
d(xn(k)+1, xm(k)+1) < d(xm(k), xm(k)+1). (2.11)

Letting n→ ∞ in (2.11) and using (2.5) and (2.9), we obtain that

ϵ = lim
k→∞

d(xn(k)+1, xm(k)+1) = 0
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which leads to a contradiction.
Assume that M(xn(k), xm(k)) = d(xn(k), xn(k)+1). Then from (2.10) we have that

θ(d(xn(k)+1, xm(k)+1)) < θ(d(xn(k), xn(k)+1))

and so
d(xn(k)+1, xm(k)+1) < d(xn(k), xn(k)+1). (2.12)

Letting n→ ∞ in (2.12) and using (2.5) and (2.9), we infer that

ϵ = lim
k→∞

d(xn(k)+1, xm(k)+1) = 0

which is a contradiction. Thus, we have that

M(xn(k), xm(k)) = d(xn(k), xm(k)).

It follows from (2.10) that

θ(d(xn(k)+1, xm(k)+1)) < θ(d(xn(k), xm(k))).

Let
tk = θ(d(xn(k)+1, xm(k)+1)) and tk−1 = θ(d(xn(k), xm(k))).

Then
tk < tk−1 ∀k = 1, 2, 3, · · · .

Applying Lemma 2.1,

lim
k→∞

tk = lim
k→∞

tk−1 = lim
t→ϵ+

θ(t) > θ(ϵ) > 1.

From (ξ3) we have
1 ≤ lim

k→∞
sup ξ(tk, tk−1) < 1,

which is a contradiction. Thus, {xn} is a Cauchy sequence.
Since X is complete, there exists z ∈ X such that

lim
n→∞

d(xn, z) = 0. (2.13)

From (2.5) and (2.13) we may assume that

d(xn, xn+1) < d(xn, z), ∀n ≥ n0
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for sufiiciently lage n0. Hence

1

2
d(xn, Txn) =

1

2
d(xn, xn+1) < d(xn, z), ∀n ≥ n0.

Thus, it follows from (2.1) that

1 ≤ ξ(θ(d(Txn, T z)), θ(d(xn, z))) <
θ(d(xn, z))

θ(d(Txn, T z))
, ∀n ≥ n0

which implies
θ(d(Txn, T z)) < θ(d(xn, z)), ∀n ≥ n0.

Hence,
d(Txn, T z) < d(xn, z), ∀n ≥ n0.

and hence
lim
n→∞

d(xn+1, T z) = 0. (2.14)

Applying Lemma 1.1 with (2.13) and (2.14), we have z = Tz. □

Corollary 2.1. Let (X, d) be a complete Branciari distance space, and let T : X → X

be a Suzuki type L-contraction with respect to ξ ∈ L. If θ is non-decreasing, then T

has a unique fixed point.

Corollary 2.2. Let (X, d) be a complete Branciari distance space, and let T : X → X

be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0

ξ(θ(d(Tx, Ty)), θ(M(x, y))) ≥ 1,

where θ is non-decreasing and ξ ∈ L. Then T has a unique fixed point.

Corollary 2.3. [11] Let (X, d) be a complete Branciari distance space, and let T :

X → X be a L-contraction mapping with respect to ξ ∈ L. If θ is non-decreasing,
then T has a unique fixed point.

Corollary 2.4. Let (X, d) be a complete metric space, and let T : X → X be a
mapping such that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y) implies ξ(θ(d(Tx, Ty)), θ(M(x, y))) ≥ 1

where θ is non-decreasing and ξ ∈ L. Then T has a unique fixed point.
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Corollary 2.5. Let (X, d) be a complete metric space, and let T : X → X be a
mapping such that for all x, y ∈ X with d(Tx, Ty) > 0

ξ(θ(d(Tx, Ty)), θ(M(x, y))) ≥ 1,

where θ is non-decreasing and ξ ∈ L. Then T has a unique fixed point.

We give an example to illustrate Theorem 2.1.

Example 3. Let X = {1, 2, 3, 4} and define d : X ×X → [0,∞) as follows:

d(1, 2) = d(2, 1) = 3,

d(2, 3) = d(3, 2) = d(1, 3) = d(3, 1) = 1,

d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) = 4,

d(x, x) = 0 ∀x ∈ X.

Then (X, d) is a complete Branciari distance space, but not a metric space (see [4]).
Define a map T : X → X by

Tx =

1 (x = 2),

3 (x ̸= 2)

Let θ : (0,∞) → (1,∞) be a function defined by

θ(t) =

et (0 < t ≤ 3),

e6 (t > 3).

Then θ is non-decreasing, and is not continuous.
We now show that T is a Suzuki type L-contraction with respect to ξb, where

ξb(t, s) =
sk

t
∀t, s ≥ 1, k = 1

3
. We have

d(Tx, Ty) =


d(1, 3) = 1 (x = 2, y ̸= 2),

d(1, 1) = 0 (x = 2, y = 2),

d(3, 3) = 0 (x ̸= 2, y ̸= 2)

so
d(Tx, Ty) > 0 ⇔ x = 2, y ̸= 2.
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We have, for x = 2 and y ̸= 2,

d(x, y) =


3 (x = 2, y = 1),

1 (x = 2, y = 3),

4 (x = 2, y = 4)

and
d(Tx, Ty) = d(1, 3) = 1.

We deduce that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) =

1

2
d(2, T2) =

1

2
d(2, 1) =

3

2

<d(x, y) =

3 (x = 2, y = 1),

4 (x = 2, y = 4).

Thus we have

ξb(θ(d(Tx, Ty)), θ(M(x, y)))

=
[θ(M(x, y))]k

θ(d(Tx, Ty))

=


[θ(3)]k

θ(1)
(x = 2, y = 1),

[θ(4)]k

θ(1)
(x = 2, y = 4)

=

1 (x = 2, y = 1),

e (x = 2, y = 4)

≥1.

Thus all hypotheses of Theorem 2.1 are satisfied, and T has a fixed point z = 3.
Note that L-contraction condition is not satisfied. In fact, if x = 2, y = 3, then

1 ≤ ξb(θ(d(T2, T3)), θ(d(2, 3))) =
[θ(1)]k

θ(1)

which implies
k ≥ 1.

Also, note that θ-contraction condition [1] does not hold.
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Let θ : (0,∞) → (1,∞) be a function such that (θ1),(θ2) and (θ4) are satisfied. If

θ(d(T2, T3)) ≤ [θ(d(2, 3))]k, where k ∈ (0, 1),

then
θ(1) ≤ [θ(1)]k.

Thus k ≥ 1. Hence T is not a θ-contraction map.
Let

d(T2, T3) ≤ kd(2, 3), where k ∈ (0, 1).

Then k ≥ 1, and so T is not a contraction map.

Remark 2.1. Conditions (θ2), (θ3) and (θ4) are not required in the proof of Theorem
2.1, and hence Corollary 2.3.

3. CONSEQUENCE

Applying simulation functions given in Example 1.1, we have some fixed point
results.

By taking ξ = ξb in Theorem 2.1, we obtain Corollary 3.1.

Corollary 3.1. Let (X, d) be a complete Branciari distance space, and let T : X → X

be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y) implies θ(d(Tx, Ty)) ≤ [θ(M(x, y))]k,

where θ is non-decreasing and k ∈ (0, 1). Then T has a unique fixed point.

Corollary 3.2. Let (X, d) be a complete Branciari distance space, and let T : X → X

be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y) implies θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k,

where θ is non-decreasing and k ∈ (0, 1). Then T has a unique fixed point.

Remark 3.1. Corollary 3.2 is an extension of Theorem 3.3 of [1] to Branciari dis-
tance space without continuity of function θ.

Corollary 3.3. Let (X, d) be a complete Branciari distance space, and let T : X → X

be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0,
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θ(d(Tx, Ty)) ≤ [θ(M(x, y))]k,

where θ is non-decreasing and k ∈ (0, 1). Then T has a unique fixed point.

Corollary 3.4. Let (X, d) be a complete Branciari distance space, and let T : X → X

be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0,

θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k,

where θ is non-decreasing and k ∈ (0, 1). Then T has a unique fixed point.

Remark 3.2.

(1) Corollary 3.4 is an extension of Theorem 2.2 of [1] to Branciari distance
spaces without conditions (θ2) and (θ4).

(2) (2) Corollary 3.4 is a generalization of Theorem 2.1 of [17] without condi-
tion (θ2) and (θ3), and hence it is an answer of open question of [20].

By taking ξ = ξw in Theorem 2.1, we obtain the following result.

Corollary 3.5. Let (X, d) be a complete Branciari distance space, and let T : X → X

be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y) implies θ((Tx, Ty)) ≤ θ(M(x, y))

ϕ(θ(M(x, y)))
,

where θ is non-decreasing and ϕ : [1,∞) → [1,∞) is nondecreasing and lower semi-
continuous such that ϕ−1({1}) = 1. Then T has a unique fixed point.

Corollary 3.6. Let (X, d) be a complete Branciari distance space, and let T : X → X

be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0

1

2
d(x, Tx) < d(x, y) implies θ(d(Tx, Ty)) ≤ θ(d(x, y))

ϕ(θ(d(x, y)))
,

where θ is non-decreasing and ϕ : [1,∞) → [1,∞) is nondecreasing and lower semi-
continuous such that ϕ−1({1}) = 1. Then T has a unique fixed point.

Corollary 3.7. Let (X, d) be a complete Branciari distance space, and let T : X → X

be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y) implies d(Tx, Ty) ≤M(x, y)− φ(M(x, y)), (3.1)
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where φ : [0,∞) → [0,∞) is nondecreasing and lower semicontinuous such that
φ−1({0}) = 0. Then T has a unique fixed point.

The proof of Corollary 3.5 is similar with proof of Corollary 9 of [11].

Corollary 3.8. Let (X, d) be a complete Branciari distance space, and let T : X → X

be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y) implies d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)), (3.1)

where φ : [0,∞) → [0,∞) is nondecreasing and lower semicontinuous such that
φ−1({0}) = 0. Then T has a unique fixed point.

Remark 3.3. Corollary 3.6 (resp. Corollary 3.8) is a generalization of Corollary 8
(resp. Corollary 9) of [11].

By taking ξ = ξ2 in Theorem 2.1, we obtain the following result.

Corollary 3.9. Let (X, d) be a complete Branciari distance space, and let T : X → X

be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y) implies θ(d(Tx, Ty)) ≤ η(θ(M(x, y))),

where θ is non-decreasing and η : [1,∞) → [1,∞) is upper semi-continuous with
η(t) < t, ∀t > 1 and η(t) = 1 if and only if t = 1. Then T has a unique fixed point.

Corollary 3.10. Let (X, d) be a complete Branciari distance space, and let T : X →
X be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y) implies θ(d(Tx, Ty)) ≤ η(θ(d(x, y))),

where θ is non-decreasing and η : [1,∞) → [1,∞) is upper semi-continuous with
η(t) < t, ∀t > 1 and η(t) = 1 if and only if t = 1. Then T has a unique fixed point.

Corollary 3.11. Let (X, d) be a complete Branciari distance space, and let T : X →
X be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y) implies d(Tx, Ty) ≤ ψ(M(x, y)), (3.2)

where ψ : [0,∞) → [0,∞) is upper semi-continuous with ψ(t) < t, ∀t > 0 and
ψ(t) = 0 if and only if t = 0. Then T has a unique fixed point.
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Proof. Let θ(t) = et, ∀t > 0. From (3.2) we have that, for all x, y ∈ X with
d(Tx, Ty) > 0,

θ(d(Tx, Ty)) = ed(Tx,Ty) ≤ eψ(M(x,y)). (3.3)

Let ψ(t) = ln(η(θ(t))), ∀t ≥ 0, where η : [1,∞) → [1,∞) is upper semi-continuous
with η(t) < t, ∀t > 0 and η(t) = 1 if and only if t = 1. Then ψ is upper semi-
continuous with ψ(t) < t, ∀t > 0 and

ψ(t) = 0 ⇔ η(θ(t)) = 1 ⇔ θ(t) = et = 1 ⇔ t = 0.

It follows from (3.3) that, for all x, y ∈ X with d(Tx, Ty) > 0,

θ(d(Tx, Ty)) ≤ eln(η(θ(M(x,y)))) = η(θ(M(x, y))).

By Corollary 3.9, T has a unique fixed point. □

Corollary 3.12. Let (X, d) be a complete Branciari distance space, and let T : X →
X be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y) implies d(Tx, Ty) ≤ ψ(d(x, y)), (3.2)

where ψ : [0,∞) → [0,∞) is upper semi-continuous with ψ(t) < t, ∀t > 0 and
ψ(t) = 0 if and only if t = 0. Then T has a unique fixed point.

Remark 3.4. Corollary 3.11 is a generalization and an extention of Theorem 1 of [9].

By taking θ(t) = 2 − 2
π
arctan( 1

tα
) ∀t > 0, where α ∈ (0, 1) in Corollary 3.1 and

Corollary 3.5, we have the following two results, respectively.

Corollary 3.13. Let (X, d) be a complete Branciari distance space, and let T : X →
X be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y) implies

2− 2

π
arctan(

1

d(Tx, Ty)α
) ≤

[
2− 2

π
arctan(

1

M(x, y)α
)

]k
,

where α ∈ (0, 1) and k ∈ (0, 1). Then T has a unique fixed point.

Corollary 3.14. Let (X, d) be a complete Branciari distance space, and let T : X →
X be a mapping such that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y) implies
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2− 2

π
arctan(

1

d(Tx, Ty)α
) ≤

2− 2
π
arctan( 1

M(x,y)α
)

ϕ(2− 2
π
arctan( 1

M(x,y)α
))
,

where α ∈ (0, 1) and ϕ : [1,∞) → [1,∞) is nondecreasing and lower semicontinuous
such that ϕ−1({1}) = 1. Then T has a unique fixed point.

Remark 3.5. Corollary 3.12 (resp. Corollary 3.13) is a generalization of Theorem
2.3 of [1] (resp. Corollary 10 of [11]).
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