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ABSTRACT. We provide a brand-new distribution based on the model of Lindley,
with an emphasis on the estimation of its unknown parameters. After introducing
the new distribution, we cover two approaches to estimate its parameters; in the
presence of a censored scheme, we first use a traditional approach, which is The
maximum likelihood technique, then we use the Bayesian approach. The Barzi-
laiBrown algorithm is used to derive the censored maximum likelihood estimators
while a Monte Carlo Markov chains (MCMC) procedure is applied to derive the
Bayesian ones. Three loss functions are used to provide the Bayesian estimators:
the entropy, the generalized quadratic, and the Linex functions. Using Pitman’s
proximity criteria; the maximum likelihood and the Bayesian estimations are com-
pared. All of the provided estimations techniques have been evaluated throughout
simulation studies. Finally, we consider two sample Bayes predictions to predict
future order statistics

1. INTRODUCTION

We use real-life applications of numerical techniques in many fields such as
medicine, engineering sciences, finance, and statistics. We note that statistics
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have a critical role in our real-life applications. Often statistical analysis depends
strongly on the assumed probability distributions. However, not all the problems
in statistics follow the classical or standard probability distributions. for new data
analysis, choosing an appropriate fundamental model is becoming more and more
important in reliability and survival analysis. Even a little change from the funda-
mental model might cause a significant impact on the outcomes.

There are various kinds of probability distributions, In this work, we are inter-
ested in a one-parameter distribution called XL distribution which is a mixture
of Exponential distribution and Lindley distribution. one of the many used con-
tinuous probability distributions is The exponential distribution. It is applied to
model the interval between occurrences, also Lindley distribution is a probability
distribution applied to describe the lifetime of a processor or a certain device.

Let X be a random variable following the one-parameter distribution XL men-
tioned above, the density function of X is given by:

(1.1) fXL(x, α) =
α2(2 + α + x)e−αx

(1 + α)2
x, α > 0.

Its cumulative function is:

(1.2) FXL(x, α) = 1−
[
1 +

αx

(1 + α)2

]
e−αx.

The idea of this work is based on using upper truncated data to provide a new
distribution from the XL distribution. Recently there are many studies on newly
founded distributions, truncated distributions are also used in a wide range of ap-
plications; Bantan et al. (2019) (introduced the Truncated Inverted Kumaraswa-
my-generated family of distributions). Hamedani et al. (2019) (a new family
based on the exponential model called the type I general exponential class of dis-
tributions). Aldahlan et al. (2020) (introduced the truncated Cauchy power family
of distributions). Mansour et al. (2020f) (a new generalization of the reciprocal
exponential model with Clayton copula, Yadav et L. (2021) (The Burr-Hatke ex-
ponential distribution with some applications and a censored regression models),
H. Aiachi et al.(The Bayesian inference of three parameters Burr XII).

In most cases, we apply simple distributions than more complicated ones, this
work is inspired by this previous statement; we noticed that the XLindley distri-
bution (XL) is simple and easy to apply, the XL distribution can be used quite
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effectively in analysing many real lifetime data set such as application to Corona,
Ebola and Nipah virus; it gives adequate fits to many data sets.

The rest of this paper is arranged as follows: In section 2, we introduce the
model of our interest and give its survival proprieties. In section 3, we provide
the maximum likelihood estimation under type II censored data followed by the
simulation study. In section 4, we cover the Bayesian estimation and its simulation
using MCMC techniques. Comparison results of the estimators are presented in
section 5, the Prediction problem is provided in section 6, and finally, we conclude
the paper in section 7.

2. UPPER TRUNCATED XL DISTRIBUTION (UXL DISTRIBUTION)

In a statistical experiment, we call the process of omitting all the values that fell
outside predetermined bounds a "truncation", in which we obtain a truncated data
(the remaining data points inside these bounds).

Let the random variable X, we say that X is upper (lower) truncated, at a given
point level c, if only the values of X for which X ≤ c (X > c) are considered, i.e.
we exclude all the other values of X for which X > c (Xc).

The probability density function (PDF) of the upper truncated XLindly distribu-
tion at the point β > 0, is given by

fUXL(x, α, β) =
fXL(x, α)

FXL(x, β)
, x, α, β > 0.

Replacing by (1.1) and (1.2):

(2.1) fUXL(x, α, β) =
α2(2 + α + x)(1 + β)2e−αx+βx

(1 + α)2Aβ(x)
,

where Aβ(x) = (1 + β)2(eβx − 1) + βx. Then, using the same formula for the
cumulative function (CDF), we obtain:

FUXL(x, α, β) =
FXL(x, α)

FXL(x, β)
=

1− [1 +
αx

(1 + α)2
]e−αx

1− [1 +
βx

(1 + β)2
]e−βx

(2.2) FUXL(x, α, β) =
Aα(x)(1 + β)2e−αx+βx

(1 + α)2Aβ(x)
,
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where Aα(x) = (1 + α)2(eαx − 1) + αx.

FIGURE 1. Density and cumulative functions under different values
of parameters

The corresponding survival function is given by:

(2.3) S(t) = 1− F (t;α, β) =
(1 + α)2Aβ(t)− Aα(t)(1 + β)2e−αt+βt

(1 + α)2Aβ(t)
.

The failure rate at the moment t is expressed as:

(2.4) h(t) =
f(t)

S(t)
=

α2(2 + α + t)(1 + β)2

(1 + α)2Aβ(t)eαt−βt − Aα(t)(1 + β)2
.

FIGURE 2. Survival function and rate failure under different values
of parameters
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Assuming that the random variables X1, X2, . . . , Xn are independent and do
follow the UXL distribution, the joint probability density function is:

(2.5) fUXL(x1, x2, . . . , xn, α, β) =
α2n(1 + β)2ne

∑n
i=1(−αxi+βxi)

(1 + α)2n

n∏
i=1

2 + α + xi

Aβ(xi)
.

3. MAXIMUM LIKELIHOOD ESTIMATION

We use one of the most popular approaches in classic statistical inferences: the
Maximum likelihood estimation (MLE) method, it is mostly used since its rationale
is clear and adaptable. we use this method to estimate the parameters of a prob-
ability distribution assuming that we have some observed data. for that purpose,
the maximizing of the likelihood function is accomplished to the observed data as
probable as possible. However, in the majority of cases, it will be essential to use
numerical techniques to determine the probability function’s maximum.

In the case of complete data, the likelihood function is the joint probability den-
sity function (2.5). Here we are interested in type II censored data to estimate the
parameters. Considering the n-sample (x1, x2, . . . , xn) and a fixed constant m, we
assume that the m-sample (x1, x2, . . . , xm) is generated from the UXL distribution.
The likelihood function of this sample is: for n,m ∈ N

L(θ, β,X) = N
m∏
i=1

fUXL(x, θ, β)[1− FUXL(xm, θ, β)]
n−m,

where N =
n!

(n−m)!
. Replacing both (2.1) and (1.2) we have:

(3.1) L(α, β,X) = NBme
∑m

i=1(−αxi+βxi)Cn−m(xm)
m∏
i=1

2 + α + xi

Aβ(xi)
,

where 
B =

α2(1 + β)2

(1 + α)2
,

C(xm) =
(1 + α)2Aβ(xm)− Aα(xm)(1 + β)2e−αxm+βxm

(1 + α)2Aβ(xm)
.
.

Passing by the logarithm we find:
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l = l(x, α, β) = lnL(α, β,X)

= lnN +m lnB +
m∑
i=1

(−αxi + βxi) + (n−m) lnC(xm) +
m∑
i=1

ln(
2 + α + xi

Aβ(xi)
)

= lnN +m lnB −
m∑
i=1

(−αxi +
m∑
i=1

βxi) + (n−m) lnC(xm)

+
m∑
i=1

ln(2 + α + xi)−
m∑
i=1

ln(Aβ(xi)).

By finding:

∂B

∂α
= (1 + β)2(

2α + 2α2

(1 + α)3
)

∂B

∂β
= 2(1 + β)(

α2

(1 + α)2
)

∂C(xm)

∂β
=

(1 + α)2
∂Aβ

∂β
− (Aα(2 + 2β)e−αxm+βxm + Aα(xm)βe

−αxm+βxm)(1 + θ)2Aβ

((1 + θ)2Aβ(xm))2

−
(1 + α)2

∂Aβ

∂β
[(1 + θ)2Aβ + Aα(1 + β)e−αxm+βxm

((1 + α)2Aβ(xm))2

∂Aβ(x)

∂β
= (2 + 2β)(eβx − 1) + x(1 + β)2eβx + x,

∂Aα(x)

∂α
= (2 + 2α)(eαx − 1) + x(1 + α)2eαx + x.

We obtain the maximum likelihood estimators α̂MLE and β̂MLE by solving the
following non-linear system:
(3.2)

(S)


α̂MLE = ∂l

∂α
= m.

∂B
∂α

B
−

m∑
i=1

xi + (n−m)
∂Cm

∂α

C(xm)
+

m∑
i=1

1

2 + α + xi

= 0

β̂MLE = ∂l
∂β

= m.

∂B
∂β

B
+

m∑
i=1

xi + (n−m)

∂Cm

∂β

C
−

∂Aβ(x)

∂β

Aβ(x)
= 0
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It is clearly impossible to find the expression of the estimators analytically, so
we use numerical techniques to obtain approximations of the estimators, we use
the R programming language. the results are covered in the next part.

3.1. Simulation studies. We intend to perform a simulation study choosing dif-
ferent sample sizes; n = 20, 50, 200, matching different effective sample sizes,
m = 12, 30, 120. The results are obtained after M = 10000 sample generations, we
take α = 2 and β = 1.

The resulting values are displayed after the use of the R programming language,
more specifically, we used the package BB and the command BBsolve, short for
Barzilai-Brown is known for its high capacity for solving large-scale nonlinear sys-
tems, for more details we refer toVaradhan and Gilbert ( [14]).

TABLE 1. The MLE of the parameters with quadratic error (in brack-
ets).

N = 5000 n = 20 n = 50 n = 200
m 12 30 120
α 2,0502 (0,0152) 1,9234 (0,0217) 1,9872 (0,0078)
β 0,6135 (0,0078) 0,7397 (0,0054) 0,9573 (0,0045)

We notice from the table above: for α all the estimated values are close to the
real value of α and the corresponding error is small. However, for β the best
estimation value and the smallest quadratic error occur when n and m are large.

4. BAYESIAN ESTIMATION

In this section, we cover the Bayesian approach, in this approach the unknown
parameters are considered random variables, in other words, we have a piece
of prior information that we resume a prior distribution of the parameters to be
estimated.

There are two types of prior distribution; informative and non-informative, and
we use both of them.

For the first parameter (α) we suppose that we have an informative prior which
is gamma distribution, i.e.,

π(α) =
ab

Γ(b)
αb−1e−aα, α > 0, a, b > 0.
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Gamma distribution is often used as a prior distribution thanks to its flexibility,
offering conjugate prior distributions.

For the second parameter (β) we use a non informative prior distribution,

π(β) =
1

β
.

Noting that the parameters are independent, the joint prior distribution is:

π(α, β) =
ab

βΓ(b)
αb−1e−aα, α, β > 0, a, b > 0.

The Bayesian estimation is also done for type II censored data, then, using (3.1)
we read the posterior distribution as:

(4.1) π(α, β, x) = kβme
∑m

i=1(−αxi+βxi)Cn−m
xn

β−1αb−1e−aα

m∏
i=1

2 + α + xi

Aβ(xi)
,

where

K =

∫ +∞

0

∫ +∞

0

βme
∑m

i=1(−θxi+βxi)Cn−m
xn

β−1θb−1e−aθ

m∏
i=1

2 + α + xi

Aβ(xi)
dθdβ.

Estimators and their corresponding risks

The table below explain the three loss functions (Entropy, Generalized qua-
dratic, and Linex) used to find the estimators.

Loss function
Expresion

Bayes estimators posterior risk

Entropy:

L(θ, δ) =
(
δ
θ

)p − p log
(
δ
θ

)
− 1 δ̂E = Eπ(θ

−p)
−1
p p[Eπ(log(θ − log(δ̂E)))]

Generalized quadratic:
L(θ, δ) = τ(θ)(θ − δ)2 δ̂GQ = Eπ(τ(θ)θ)

Eπ(τ(θ)
Eπ(τ(θ)(θ − δ)2

Linex: L(θ, δ) =
exp(r(δ − θ))− r(δ − θ)− 1 δ̂L = −1

r
log(Eπ(exp(−rθ)) r(δ̂GQ − δ̂L)

(1) Under the entropy loss function, we derive the estimators and their corre-
sponding risks (p is an integer):
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α̂E =[
K

∫ ∫
Bme

∑m
i=1(−αxi+βxi)−aαCn−m(xm)β

−1αb−1−p

m∏
i=1

2 + α + xi

Aβ(xi)
dαdβ

]− 1
p

(4.2)

β̂E =[
K

∫ ∫
Bme

∑m
i=1(−αxi+βxi)−aαCn−m(xm)β

−p−1αb−1

m∏
i=1

2 + α + xi

Aβ(xi)
dαdβ

]− 1
p

PR(α̂GQ) = pEπ(lnα− ln α̂E)

PR(β̂GQ) = pEπ(ln β − ln β̂E)

(2) Under the generalized quadratic loss function we derive the estimators and
their corresponding risks (τ(θ) = θγ−1, γ is an integer):

α̂GQ

=

∫ +∞
0

∫ +∞
0

βme
∑m

i=1(−αxi+βxi)Cn−m(xm)β
−1αγ+b−1

m∏
i=1

2 + α + xi

Aβ(xi)
dαdβ

∫ +∞
0

∫ +∞
0

βme
∑m

i=1(−αxi+βxi)Cn−m(xm)β−1αγ+b−2

m∏
i=1

2 + α + xi

Aβ(xi)
dαdβ

(4.3)

β̂GQ

=

∫ +∞
0

∫ +∞
0

Bme
∑m

i=1(−αxi+βxi)−aαCn−m(xm)β
γ−1αb−1

m∏
i=1

2 + α + xi

Aβ(xi)
dαdβ

∫ +∞
0

∫ +∞
0

Bme
∑m

i=1(−αxi+βxi)−aαCn−m(xm)βγ−2θb−1

m∏
i=1

2 + α + xi

Aβ(xi)
dαdβ

PR(θ̂GQ) = Eπ(α
γ+1)− 2α̂GQEπ(α

γ) + α̂GQEπ(α
γ−1),

PR(β̂GQ) = Eπ(β
γ+1)− 2β̂GQEπ(β

γ) + β̂GQEπ(β
γ−1).

(3) Under the Linex loss function we derive the estimators and their corre-
sponding risks (r is an integer):
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α̂L =

−k
r

ln[

∫ ∫
Bme

∑m
i=1(−αxi+βxi)−aα−rαCn−m(xm)β

−1αb−1

m∏
i=1

2 + α + xi

Aβ(xi)
dαdβ],(4.4)

β̂L =

−k
r

ln[

∫ ∫
Bme

∑m
i=1(−αxi+βxi)−aα−rβCn−m(xm)β

−1αb−1

m∏
i=1

2 + α + xi

Aβ(xi)
dαdβ].

PR(α̂L) = r(α̂GQ − α̂L),

PR(β̂L) = r(β̂GQ − β̂L).

We can see clearly that the Bayesian estimators in (4.2), (4.3), and (4.4)
cannot be computed analytically, to obtain the estimation values we pro-
pose an MCMC procedure to approximate them.

4.1. Simulation studies.

4.1.1. MCMC methods. We are going to use the Metropolis-Hastings algorithm to
generate a sample following the posterior distribution (4.1).

First, we denote x := (α, θ, β), then, starting from a value x0 = (α0, θ0, β0) cho-
sen arbitrarily we propose a Chi two distribution as the instrumental (or proposal)
distribution p(x, .).

X i is the value retained in step i, and x̃→ p(x, .) is the proposed candidate,

(1) calculate

r = min

(
1,

π(x̃)p(x̃, x)

π(x)p(x, x̃)

)
;

(2) generate U[0,1] noting U i = u;
(3) verify if r ≥ u: X i+1 ← x̃, else X i+1 ← x.

We repeat these steps for i = 1,M , where M is the number of iterations.
The resulting random sequence (Xi)i≥0 is a Markov chain following the distri-

bution (4.1).
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Convergence diagnosis

One of the widely used methods for convergence diagnosis is a graphical method,
which is the trace plot. a trace is a time series plot used in order to show the real-
izations of the Markov chain at each iteration as opposed to the iteration number,
If the trace plot shows flat bits it does indicate having a slow convergence, i.e., the
MCMC chain is stuck in some part. However, if the trace plot resembles a hairy
caterpillar, it is an indication of a strong convergence which means an efficient
MCMC algorithm.

We run the Markov chain for 10000 iterations initialized. Figure 3 shows the
trace plots of the Markov chain samples.

We notice from the trace plot that there is no need for burn-in.

FIGURE 3. trace of the Metropolis Hastings algorithm

We display in the next tables the Bayesian estimation under the entropy, gen-
eralized quadratic and Linex loss functions, using the MCMC procedure that we
explained, we choose a = 2 and b = 1 for the hyper-parameters of the prior dis-
tribution, they were chosen in this way so the prior mean becomes the excepted
value of the parameter.

We picked different choices for the integers: p, γ, r ∈ {−2,−1.5,−1,−0.5, 2, 1.5,
1, 0.5}.
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TABLE 2. Bayes estimators and PR (in brackets) under the entropy
loss function.

N = 5000 n = 20 n = 50 n = 200
p m 12 30 120
-2 α 2.0942 (0.0008) 2.3990 (0.1644) 2.2144 (0.0019)

β 1.3188 (0.0699) 1.2839 (0.0090) 0,.7034 (0.0110)
-1.5 α 2.1067 (0.0091) 1.7188 (0.1443) 2.2179 (0.0017)

β 0.4407 (0.0611) 0.4077 (0.0661) 0.7060 (0.0012)
-1 α 2.1041 (0.0009) 1.6205 (0.0171) 2.2167 (0.0001)

β 1.4177 (0.0072) 1.3633 (0.0073) 0.7051 (0.0003)
-0.5 α 1.7981 (0.0038) 1.7830 (0.0733) 2.2148 (0.0009)

β 0.6493 (0.0308) 0.8755 (0.319) 0.7037 (0.0009)
0.5 α 1.8998 (0.0008) 1.8895 (0.0729) 1.9814 (0.0001)

β 0.7638 (0.0071) 0.9856 (0.0065) 1.0024 (0.0002)
1 α 1.6981 (0.0038) 2.4830 (0.0733) 1.2148 (0.0009)

β 0.5491 (0.0308) 1.3055 (0.0319) 0.6037 (0.0009)
1.5 α 1.7053 (0.0035) 1.6701 (0.0667) 2.2169 (0.0009)

β 1.4239 (0.0199) 1.3881 (0.0303) 0.7059 (0.0003)
2 α 1.7697 (0.0099) 1.7644 (0.1173) 2.2188 (0.0031)

β 1.4579 (0.0997) 1.4259 (0.0944) 0.7071 (0.0014)

TABLE 3. Bayes estimators and PR (in brackets) under generalized
quadratic loss

N = 5000 n = 20 n = 50 n = 200
γ m 12 30 120
-2 α 1.6490 (0.0089) 1.6825 (0.0041) 1.6432 (0.0016)

β 0.6657 (0.1491) 0.5033 (0.0611) 0.8113 (0.0008)
-1.5 α 1.7990 (0.0087) 2.0825 (0.0061) 2.2127 (0.0016)

β 0.8657 (0.7091) 0.7039 (0.0633) 0.7120 (0.0008)
-1 α 1.9282 (0.0004) 1.9841 (0.0001) 2.0015 (0.0001)

β 0.9296 (0.0003) 0.9789 (0.0009) 0.9998 (0.0001)
-0.5 α 2.0994 (0.0089) 2.0888 (0.0070) 2.2138 (0.0018)

β 1.2999 (0.0825) 1.2701 (0.711) 0.7131 (0.0012)
0.5 α 1.7510 (0.0095) 1.7926 (0.0077) 2.1839 (0.0020)

β 0.6891 (0.0909) 1.3591 (0.995) 1.7139 (0.0019)
1 α 1.7575 (0.0091) 2.0977 (0.0078) 2.1841 (0.0031)

β 1.4228 (0.1094) 1.3803 (0.1071) 1.7149 (0.0025)
1.5 α 1.6743 (0.0098) 1.5632 (0.0081) 2.1232 (0.0042)

β 1.4768 (0.1241) 0.6754 (0.1181) 0.7903 (0.0033)
2 α 2.1099 (0.0098) 2.0990 (0.0081) 2.1841 (0.0042)

β 1.4768 (0.1241) 1.4191 (0.1181) 0.7158 (0.0033)
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TABLE 4. Bayes estimators and PR (in brackets) under Linex loss
function.

N = 5000 n = 10 n = 50 n = 200
r m 12 30 120
-2 α 1.7021 (0.0039) 1.6549 (0.0066) 2.1015 (0.0006)

β 1.4647 (0.1041) 1.1058 (0.0147) 1.4315 (0.0481)
-1.5 α 1.5409 (0.1666) 1.5861 (0.0009) 1.7174 (0.0003)

β 1.4721 (0.1884) 1.4183 (0.0131) 0.7145 (0.0004)
-1 α 1.7201 (0.0039) 1.6815 (0.0038) 1.8179 (0.0012)

β 1.4806 (0.0411) 1.4455 (0.0519) 0.7054 (0.0013)
-0.5 α 1.5555 (0.0519) 1.5815 (0.0183) 2.0070 (0.0057)

β 0.2191 (0.0049) 0.1251 (0.0195) 0.7094 (0.0057)
0.5 α 2.2041 (0.0107) 1.9813 (0.0031) 2.0019 (0.0015)

β 0.8070 (0.0020) 1.1619 (0.0105) 0.8021 (0.0012)
1 α 1.7228 (0.0105) 1.7819 (0.0081) 1.8153 (0.0004)

β 0.7117 (0.1033) 1.4639 (0.0581) 0.7059 (0.0013)
1.5 α 2.0182 (0.0013) 2.0501 (0.0007) 1.9731 (0.0003)

β 0.9692 (0.0014) 0.9462 (0.0099) 0.9859 (0.0004)
2 α 1.6991 (0.0007) 1.8058 (0.0147) 2.2061 (0.0015)

β 1.3815 (0.0183) 1.1251 (0.0195) 0.7091(0.0032)

We notice that:

- Under the entropy loss function, the value p = 0.5 gives us the best poste-
rior risk.

- Under the generalized loss function, the value γ = −1 gives us the best
posterior risk.

- Under the Linex loss function, the value r = 1.5 a gives us the best poste-
rior risk.

- We have the smallest posterior risk when n and m are large.

Then, in order to compare the three loss functions based on the corresponding
posterior risk, the next table presents the three loss functions at their best perfor-
mance; when p = 0.5, γ = −1, and r = 1.5.
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TABLE 5. Bayes estimators and PR (in brackets) under the three loss
functions.

N = 5000 n = 20 n = 50 n = 200
Loss functions m 12 30 120
Entropy (p=0.5) α 1.8998 (0.0008) 1.8895 (0.0729) 1.9814 (0.0001)

β 0.7638 (0.0071) 0.9856 (0.0065) 1.0024 (0.0002)
(GQ)γ= -1 α 1.9282 (0.0004) 1.9841 (0.0001) 2.0015 (0.0001)

β 0.9296 (0.0003) 0.9789 (0.0009) 0.9998 (0.0001)
Linex (r = 1.5) α 2.0182 (0.0013) 2.0501 (0.0007) 1.9731 (0.0003)

β 0.9692 (0.0014) 0.9462 (0.0099) 0.9859 (0.0004)

We see clearly that the generalized quadratic loss function gives us the smallest
posterior risk among the three loss functions.

5. COMPARISON OF THE ESTIMATION METHODS

There are many procedures to compare between different methods of estima-
tion, in order to compare two estimators the pitman criterion is a simple and
logical procedure that is defined as: see Jozani [11].

According to Pitman closeness criterion, an estimator δ1 of a parameter θ pre-
forms better than another estimator called δ2 if

Pθ[|δ1 − θ| < |δ2 − θ|] > 1

2
.

N = 5000 n = 20 n = 50 n = 200
Loss functions m 12 30 120
Entropy (p=0.5) α 0.579 0.682 0.625

β 0.543 0.542 0.599
(GQ)γ= -1 α 0.789 0.602 0.668

β 0.753 0.559 0.643
Linex (r = 1.5) α 0.697 0.634 0.5779

β 0.632 0.579 0.5623

TABLE 6. Pitman comparison of the estimators.

In Table 6, we presented the values of the Pitman probabilities which allows us
to compare the Bayesian estimators with the MLE estimator which is done under
the three loss functions when p = 0.5, γ = −1, andr = 1.5. According to the def-
inition above, when the probability is greater than 0.5, the Bayesian estimators
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are better than the MLE estimators. Then we notice that, according to this crite-
rion, the Bayesian estimators of the two parameters are better than the MLE. Also,
the generalized quadratic loss function has the best values in comparison with the
other two loss functions with 0.789|n=20,m=12 and 0.753|n=20,m=12.

6. BAYESIAN PREDICTION FOR FUTURE ORDER STATISTICS

We assume that X1,m,n, · · · , Xm,m,n is a type II censored lifetime sample of size
m, drawn from a two parameters UX Lindley distribution, this sample represents
the past (informative) sample, otherwise, we denote Y1, · · · , YN , a random sample
of size N of unobserved observations (future) from the same distribution, we sup-
pose that both samples are independent, our aim is to make a Bayesian prediction
for the kth, 1 ≤ k ≤ N , ordered lifetime in a future sample of size N

The density function of the kth, ordered lifetime Yk in the future sample (of size
N) is given by:

H(k)(yk;α, β) = k

(
N

k

)
[S(yk)]

N−k [FUXL(yk, α, β)]
k−1 fUXL(yk, α, β).

Using the the functions and the survival function given in (2.1), (2.2) and (2.3),
we obtain

(6.1) H(k)(yk;α, β) = α2(1 + yk)(1 + β)2e−αyk+βyk
DN−kEk−1

(1 + α)2N−1Aβ(yk)N
,

where

D(yk) = (1 + θ)2Aβ(yk)− Aα(x)(1 + β)2eαyk+βykF (yk) = Aα(yk)(1 + β)2e−αyk+βyk .

Thus, the Bayesian predictive density function of Yk is:

H(k)(yk|X) =

∫ +∞

0

∫ +∞

0

∫ +∞

0

H(k)(yk;α, , β)π(α, β|X)dαdβ,

where π(α, β|X) is the joint posterior density (4.1), it is clear that this Bayesian
predictive density function can not be calculated or expressed analytically.

We propose the use of the natural predictor Ŷk = E(Yk) by using the MCMC
sampling procedure described in the sections above, so we can obtain a simulation-
based estimation.
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7. CONCLUSION

In this paper, we introduced and studied a new version of the Lindley model
called the two parameters Upper truncated XL (UXLE) model. We introduce the
model, provide its survival function and failure rate, we find the maximum like-
lihood, under a censored scheme. Also developed and explored the Bayesian es-
timation under three loss functions, a thorough comparison of the two methods
is conducted; using the Pitman criterion. The following results can be specifically
highlighted: amongst the three loss functions utilized the generalized quadratic
provides the best estimators. When the sample size is great both methods give
the smallest error(quadratic error for the maximum likelihood approach and the
posterior risk for the Bayesian approach). Comparing the two approaches indicate
that Bayesian estimation performs better than the maximum likelihood estima-
tion particularly when the sample size is small, it is generally emphasized that the
Bayesian technique and the Maximum Likelihood methods are advised.
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