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AN ITERATIVE METHOD FOR THIRD-ORDER BOUNDARY VALUE
PROBLEMS

Nassima Bendjazia1, Assia Frioui, and Assia Guezane-Lakoud

ABSTRACT. This article is intended to apply the reproducing kernel Hilbert space
method (RKHSM) for solving a third order differential equation with multiple
characteristics in a rectangular domain. The exact solution is expressed in form of
series. The convergence of the iterative method to find the approximate solution
is proven. Some numerical examples are studied to demonstrate the accuracy of
the present method. Results obtained by the method are compared with the exact
solution of each example which are found to be in good agreement with each
other.

1. INTRODUCTION

Boundary value problems (BVPs) have a lot of applications, like engineering
technique, control theory and optimization, the boundary layer of fluid mechanics,
aero-elasticity, sandwich beamanalysis and beam deflection theory, electromagnet-
icwaves. Moreover, boundary-value problems with boundary conditions constitute
a very interesting and important class of problems.

In recent decades much attention has been paid to the study of third-order
boundary value problems and numerous articles are devoted to their solvability,
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see [4, 7, 10, 11] and references therein. Third-order differential equations appear
in various fields of applied mathematics and physics, for example in the deflection
of a curved beam having a constant or variable section, a three-layer beam, elec-
tromagnetic waves, or flows related to gravity... For this reason, their solvability
is important and thus different methods are used. In [4, 7, 10] the authors used
the spline functions to solve boundary value problems to third-order partial dif-
ferential equations. In [11], the authors developed a second-order method based
on the Padé approximant in a recurrence relation to solve third-order three-point
boundary value problems.

Yet, for the third-order three-point nonlinear BVP, it is difficult to exactly satisfy
the boundary conditions, unless one designs the algorithm to exactly satisfy all the
boundary conditions.

In this paper we propose new numerical methods for solving the nonlinear two
dimensional third-order boundary value problems with multiple characteristics,
designing the algorithms to automatically satisfy the three-point boundary con-
ditions, which are based on a novel concept of reproducing kernel Hilbert space
method.

The reproducing kernel Hilbert space method has been used recently, thereby,
several works have successfully been treated the one-dimensional third-order boun-
dary value problems, see [8, 9, 12]. However for the third-order boundary value
problems in the rectangular domain, this method has been applied only in two
works [3 , 6].

In [6] the authors are concerned with the numerical solution of the following
third-order partial differential equation with three-point boundary condition

∂3u(x, t)

∂t3
− ∂

∂x

(
a(x, t)

∂

∂x
u(x, t)

)
= f(x, t)∫ 1

c

u(x, t) = 0, t ∈ [0, T ] , 0 ≤ c < 1

utt(x, 0) = 0, ut(x, 0) = 0, u(x, 0) = 0,

where a(x, t) and its derivatives satisfy the condition 0 < a0 < a(x, t) < a1,

|ax(x, t)| ≤ b, and f(x, t) is given smooth function in [0, 1]× [0, T ] .
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In [3] the authors are concerned with the numerical solution of the following
third-order partial differential equation

uxxx(x, t)− utt(x, t) = f(x, t), (x, t) ∈ Q = (0, 1)× (0, 1) ,

subject to the boundary conditions:

ut(x, 0) = φ1 (x) , u(x, 1) = φ2 (x) ,

u(0, t) = ψ1 (t) , u(1, t) = ψ2 (t) , ux(1, t) = ψ3 (t) .

The rest of the paper is organized as follows. Section 2 introduces third-order
three-point linear BVP with multiple characteristics in a rectangular domain. Sec-
tion 3 represents several reproducing spaces required in this article. Section 4
introduces a linear operator, a complete normal orthogonal system and some es-
sential results. Section 5 provides exact and approximate solutions to problem
(2.1)-(2.3) and develops an iterative method for this kind of problems. Additional
numerical examples are included in Section 6. Finally, the paper ends with a brief
conclusion.

2. THIRD-ORDER BOUNDARY VALUE PROBLEM

We consider the following third order differential equation

∂3U

∂x3
− ∂

∂t

(
a(t)

∂

∂t
U

)
+ δ U(x, t) = F (x, t),(2.1)

(x, t) ∈ Q = (0, 1)× (0, 1) , δ > 0

subject to the boundary conditions:

U(0, t) = φ (t) , U(1, t) = ψ (t) , Ux(1, t) = ξ (t) ,(2.2)

Ut(x, 0) = Ut(x, 1) = 0

such that the compatibility conditions are fulfilled :

φ
′
(0) = ψ

′
(0) = ξ

′
(0) = 0,

φ
′
(1) = ψ

′
(1) = ξ

′
(1) = 0

where

φ (t) , ψ (t) ∈ C3 [0, 1]
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ξ (t) ∈ C2 [0, 1] , F (x, t) ∈ C0,2
x,t (Q) ,

a (t) and its derivatives satisfy the conditions 0 < a0 ≤ a (t) ≤ a1,
∣∣a′

(t)
∣∣ ≤ a2,

t ∈ (0, 1) , a
′
(0) = a

′
(1) .

The existence and uniqueness of the solution for Eq. (2.1)-(2.2) are discussed
in [2].

In order to put boundary conditions (2.2) into the reproducing kernel space
H(4,3)constructed in the following sections, we have to homogenize these condi-
tions. For this, let

u(x, t) = U(x, t)− (x2 − 2x+ 1)φ(t)− x(2− x)ψ(t)

− x(x− 1)ξ(t),

then the problem (2.1)-(2.2) can be written as

(2.3)


∂3u

∂x3
− ∂

∂t

(
a(t)

∂

∂t
u

)
+ δ u(x, t) = f(x, t),

ut(x, 0) = ut(x, 1) = 0,

u(0, t) = 0, u(1, t) = 0, ux(1, t) = 0.

3. THE REPRODUCING KERNEL HILBERT SPACE METHOD

The theory of reproducing kernels was used for the first time in the early 20th
century [1]. Accordingly, the reproducing kernel Hilbert space method is based
on generating orthonormal basis system over a compact dense interval in Sobolev
space in order to construct an appropriate numerical solution.

Definition 3.1. Let E be a nonempty abstract set. A function K : E × E → C is a
reproducing kernel of the Hilbert space H if

1) for each t ∈ E,K (., t) ∈ H.

2) for each t ∈ E and φ ∈ H, ⟨φ,K (., t)⟩ = φ (t) .

The last condition is called ”the reproducing property”: the value of the function φ

at the point t is reproducing by the inner product of φ with K (., t) . A Hilbert space
which possesses a reproducing kernel is called a RKHS. Meanwhile Ks (t) = K (s, t) .
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Lemma 3.1. A reproducing kernel function of real reproducing kernel space is sym-
metric.

Reproducing Kernel Spaces

We define some useful reproducing kernel spaces.

Definition 3.2. Let

H4[0, 1] = {u|u(x), u′(x), u′′(x), u′′′(x) are absolutely continuous real value

functions in [0, 1], u(4)(x) ∈ L2[0, 1], u(0) = u(1) = u′(1) = 0
}

On the other hand, let ⟨u(x), v(x)⟩H4
be the inner product in the spaceH4 [0, 1], which

is defined by

⟨u(x), v(x)⟩H4
= u(2)(0)v(2)(0) + u(3)(0)v(3)(0) +

∫ 1

0

u(4)(x)v(4)(x) dx,

and the norm is ∥u∥H4
=

√
⟨u(x), u(x)⟩H4

, where u(x), v(x) ∈ H4[0, 1]

We have the following result.

Lemma 3.2. The space H4[0, 1] is a reproducing kernel Hilbert space. The reproduc-
ing kernel function Rx(y) is given by

Rx(y) =


∑8

i=1Ci (x) y
i−1, y ≤ x,∑8

i=1Di (x) y
i−1, y > x.

Here

C1 = −x7/5040, C2 = D2 = 1741x/70272− 181x2/3904 + 307x3/17568

+307x4/70272 + 181x5/234240 + 253x7/702720, D1 = 0,

C3 = D3 = −181x/3904 + 173x2/1952− 35x3/976− 35x4/3904

−173x5/117120− x7/7808,

C4 = D4 = −307x/17568 + 35x2/976− 29x3/1464− 29x4/5856

−7x5/11712 + x7/35136,
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C5 = D5 = −307x/70272 + 35x2/3904 + 35x3/17568 +

35x4/70272− 7x5/46848 + x7/140544,

C6 = D6 = −181x/234240− 21x2/7808− 7x3/11712

−7x4/46848 + 7x5/156160− x7/468480,

C7 = −x/720, D7 = 0, C8 = 253x/702720− x2/7808−

x3/35136− x4/140544 + x5/468480− x7/9838080,

D8 = −1/5040 + C8

Proof. Using several integrations by parts of
∫ 1

0
u(4)(y)R

(4)
y (y)dy, it yields

⟨u(y), Rx(y)⟩H4
= u

(2)

(0)∂2yRx(0) + u
(3)

(0)∂3yRx(0)

+
3∑

i=0

(−1)4−i u(i)(0)∂7−i
x Ry(0)

+
3∑

i=0

(−1)3−i u(i)(1)∂7−i
x Ry(1)

−
∫ 1

0

u(y)∂8yRx(y)dy.

Since u(y) ∈ H4[0, 1], we get

u(0) = u(1) = u′(1) = 0,

then

⟨u(y), Rx(y)⟩H4
= u

(2)

(0)∂2yRx(0) + u
(3)

(0)∂3xRx(0)

+
3∑

i=1

(−1)4−i u(i)(0)∂7−i
y Rx(0)

+
3∑

i=2

(−1)3−i u(i)(1)∂7−i
y Rx(1)

−
∫ 1

0

u(y)∂8yRx(y)dy.
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Taking into account the property of the reproducing kernel ⟨u(y), Rx(y)⟩H4
=

u(y), then Rx(y) is the solution of the following generalized differential equation

(3.1) ∂8yRx(y) = δ (x− y) ,

with the boundary conditions

∂3yRx(0)− ∂4yRx(0) = 0,(3.2)

∂2yRx(0) + ∂5yRx(0) = 0,

∂6yRx(0) = ∂4yRx(1) = ∂5yRx(1) = 0.

Therefore

(3.3) Rx(y) =


∑8

i=1Ci (x) y
i−1, y ≤ x,

∑8
i=1Di (x) y

i−1, y > x.

On the other hand, since Rx(y) satisfies

(3.4) ∂iyRx(x+ 0) = ∂iyRx(x− 0), i = 0, 1, 2, 3, 4, 5, 6.

Then, integrating (3.4) from (x− ϵ) to (x+ ϵ) with respect to y and letting ϵ→ 0,

we have the jump degree of ∂7yRx(y) at x = y given by

(3.5) ∂7yRx(x+ 0)− ∂7yRx(x− 0) = −1.

Since Rx(y) ∈ H4[0, 1], we obtain

(3.6) Rx(0) = 0, Rx(1) = 0, ∂1yRx(1) = 0.

Through (3.4)-(3.7), the unknown coefficients of (3.3) can be obtained. □

Definition 3.3. Define the space

H3[0, 1] = {u(t)|u(t), u′(t), u′′(t) are absolutely continuous

real value functions in [0, 1], u(3)(t) ∈ L2[0, 1], u′(0) = u′(1) = 0
}
.

The inner product and the norm in H3 [0, 1] are defined respectively by

⟨u(t), v(t)⟩H3
=

2∑
i=0

u(i)(0)v(i)(0) +

∫ 1

0

u(3)(t)v(3)(t) dt,

∥u∥H3
=

√
⟨u(t), u(t)⟩H3

, u(t), v(t) ∈ H3[0, 1].
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Lemma 3.3. The space H3[0, 1] is a complete reproducing kernel space and its repro-
ducing kernel Gs(t) can be given by

Gs(t) =


1

768
s4(−32 t+ 12t2 + 4t3 − t4) + s2( t

2

16
− 1

16
t3 + t4

64
)

+s3( t
2

48
− 1

48
t3 + t4

192
) + 1 + 1

120
s5, s ≤ t,

s3( t
2

48
− t3

48
+ t4

192
) + 1

768
s4(−32 t+ 12t2 + 4t3 − t4)

− 1
24
st4 + s2( t

2

16
− 1

16
t3 + t4

64
) + 1 + t5

120
, t < s.

Definition 3.4. Define

H(4,3) (Q) =

{
u(x, t)| ∂5u

∂3x∂2t
are absolutely continuous real-valued functions

in Q, ∂7u
∂4x∂3t

∈ L2 (Q) , ∂u(x,1)
∂t

= ∂u(x,0)
∂t

= 0,

u (0, t) = u (1, t) = ∂u(1,t)
∂x

= 0

}
.

The inner product and the norm in H(4,3) (Q) are defined respectively by

⟨u(x, t), v(x, t)⟩H(4,3)
=

2∑
i=0

(∫ 1

0

∂3

∂t3
∂i

∂ti
u(0, t)× ∂3

∂t3
∂i

∂ti
v(0, t)dt

+

∫ 1

0

∂4

∂x4
∂i

∂ti
u(x, 0)× ∂4

∂x4
∂i

∂ti
v(x, 0)dx

+
∂2

∂x2
∂i

∂ti
u(0, 0)× ∂2

∂x2
∂i

∂ti
v(0, 0)

)
+

∫ 1

0

∫ 1

0

∂4

∂x4
∂3

∂t3
u(x, t)

∂4

∂x4
∂3

∂t3
v(x, t)dtdx,

and
∥u∥H(4,3)(Q)

=
√
⟨u(x, t), u(x, t)⟩H(4,3)

, u ∈ H(4,3) (Q) .

Lemma 3.4. [5]. H(4,3) (Q) is a reproducing kernel space and its reproducing kernel
function is

K(y,s) (x, t) = Ry(x)Gs(t).

such that for any u(x, t) ∈ H(4,3) (Q)

u(y, s) =
〈
u(x, t), K(y,s) (x, t)

〉
H(4,3)

Definition 3.5. [5]. Define

H1[0, 1] =
{
u(.)|u(.) is absolutely continuous in [0, 1], u′(.) ∈ L2[0, 1]

}
.
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The inner product and the norm in H1[0, 1] are defined respectively by

⟨u(x), v(x)⟩H1
= u(0)v(0) +

∫ 1

0

u′(x)v′(x) dx,

∥u∥H1
=

√
⟨u(x), u(x)⟩H1

, u(x), v(x) ∈ H1[0, 1].

Definition 3.6. [5]. Define

Ĥ (Q) =

{
u|u(x, t) is completely continuous in Q,

∂2u

∂x∂t
∈ L2 (Q)

}
.

The inner product and the norm in Ĥ (Q) are defined respectively by

⟨u(x, t), v(x, t)⟩Ĥ =

∫ 1

0

∂

∂t
u(0, t)

∂

∂t
v(0, t)dt

+ ⟨u(x, 0), v(x, 0)⟩H1

+

∫ 1

0

∫ 1

0

∂

∂x

∂

∂t
u(x, t)

∂

∂x

∂

∂t
v(x, t)dtdx,

∥u∥Ĥ =
√

⟨u(x, t), u(x, t)⟩Ĥ , u ∈ Ĥ (Q) .

Lemma 3.5. [5]. Ĥ (Q) is a complete reproducing kernel space, its reproducing
kernel function is

Ř(y,s)(x, t) = Ŕy(x)Ŕs(t).

Here

Ŕy(x) =

{
1 + y, y ≤ x,

1 + x, x < y.

4. A BOUNDED LINEAR OPERATOR

Define the differential operator L : H(4,3) (Q) → Ĥ (Q) by

(4.1) (Lu) (x, t) = uxxx(x, t)− a(t)utt(x, t),

then equation (2.3) can be converted into the following equivalent form inH(4,3) (Q),

(4.2) (Lu) (x, t) = F (x, t, u(x, t), ut(x, t)),
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where

F (x, t, u(x, t), ut(x, t)) = f(x, t)− δu(x, t) + at(t)ut(x, t)

+x(2− x)a(t)ψ
(2)
2 (t) + x(x− 1)a(t)ψ(2)(t)

+(x2 − 2x+ 1)a(t)ξ(2)(t).

u(x, t) ∈ H(4,3) (Q) , F (x, t, u(x, t), ut(x, t)) ∈ Ĥ (Q) .

Lemma 4.1. L is an invertible bounded linear operator from H(4,3) (Q) into Ĥ (Q) .

Proof. Since

u(x, t) = ⟨u(y, s), Ry(x)Gs(t)⟩H(4,3)
,

utt(x, t) =

〈
u(y, s), Ry(x)

∂2

∂t2
Gs(t)

〉
H(4,3)

,

uxxx(x, t) =

〈
u(y, s), Gs(t)

∂3

∂x3
Ry(x)

〉
H(4,3)

,

and

∥Lu∥2Ĥ(1,1)
=

∥∥∥∥∂3u∂x3
− a(t)

∂2u

∂t2

∥∥∥∥2

Ĥ

≤
∥∥∥∥∂2u∂t2

∥∥∥∥2

Ĥ

+ |a(t)|2
∥∥∥∥∂3u∂x3

∥∥∥∥2

Ĥ

,

we deduce that

|utt(x, t)| ≤ ∥u∥H(4,3)

∥∥∥∥ ∂2∂t2Gs(t)

∥∥∥∥
H1

∥Ry(x)∥
H4

|uxxx(x, t)| ≤ ∥u∥H(4,3)

∥∥∥∥ ∂3

∂x3
Ry(x)

∥∥∥∥
H1

∥Gs(t)∥
H3
.

From the continuity of Ry(x), Gs(t), ∂2

∂t2
Gs(t) and ∂3

∂x3Ry(x), it yields

∥Ry(x)∥
H4

≤ M1, ∥Gs(t)∥
H′
3

≤M2,∥∥∥∥ ∂3

∂x3
Ry(x)

∥∥∥∥
H1

≤ M3,

∥∥∥∥ ∂2∂t2Gs(t)

∥∥∥∥
H1

≤M4.

Hence
∥Lu∥2Ĥ(1,1)

≤M ∥u∥2H(4,3)
,
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where M = a21M
2
1 M

2
4 +M2

2 M
2
3 .

Since (4.2) has a unique solution [2], it indicates L is invertible.The proof is
complete. □

Let us choose a countable subset S = {(x1, t1) , (x2, t2) , . . .} in Q and define

(4.3) φi (x, t) = Ř(xi,ti)(x, t), ωi (x, t) = L∗φi (x, t) .

Lemma 4.2. Assume that S is dense in Q, then, {ωi (x, t)}∞i=1 is a complete system in
H(4,3) (Q) and

ωi (x, t) =
(
L(y,s)K(y,s) (x, t)

)
/(y,s)=(xi,ti).

By Gram-Schmidt process, we obtain an orthogonal basis{ϖi (x, t)}∞i=1 of H(4,3), such
that

(4.4) ϖi (x, t) =
i∑

j=1

βijωi (x, t) ,

where βij are orthogonal coefficients.

5. REPRESENTATION OF EXACT AND APPROXIMATE SOLUTIONS

Lemma 5.1. If S is dense in Q, then, the exact solution of equation (4.2) is

(5.1) u (x, t) =
∞∑
i=1

i∑
j=1

βijF (xj, tj, u(xj, tj), ut(xj, tj))ϖi (x, t) .

Proof. The exact solution u (x, t) can be expanded in the Fourier series in terms of
normal orthogonal basis {ϖi (x, t)}∞i=1 in H(4,3) (Q) :

u (x, t) =
∞∑
i=1

⟨u (x, t) , ϖi (x, t)⟩H(4,3)
ϖi (x, t)

=
∞∑
i=1

i∑
j=1

βij ⟨u (x, t) , ωj (x, t)⟩H(4,3)
ϖi (x, t)

=
∞∑
i=1

i∑
j=1

βij ⟨u (x, t) , L∗φi (x, t)⟩H(4,3)
ϖi (x, t)
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=
∞∑
i=1

i∑
j=1

βij ⟨Lu (x, t) , φi (x, t)⟩Ĥ(Q)ϖi (x, t)

=
∞∑
i=1

i∑
j=1

βij
〈
Lu (x, t) , Ř(xi,ti)(x, t)

〉
Ĥ(Q)

ϖi (x, t)

=
∞∑
i=1

i∑
j=1

βij (Lu) (xj, tj)ϖi (x, t) ,

then

u (x, t) =
∞∑
i=1

i∑
j=1

βijF (xj, tj, u(xj, tj), ut(xj, tj))ϖi (x, t) .

□

Iterative method and convergence theorem.

We give initial function u0 (x, t) , using the form (5.1), an iterative sequence is
constructed:

un (x, t) =
+∞∑
i=1

i∑
j=1

βijF (xj, tj, un−1(xj, tj), (un−1)t (xj, tj))ϖi (x, t) .

Now, the approximate solution un can be obtained by the n-term intercept of
the exact solution u and

(5.2) un (x, t) =
n∑

i=1

i∑
j=1

βijF (xj, tj, un−1(xj, tj), (un−1)t (xj, tj))ϖi (x, t) .

Lemma 5.2. If un (x, t) is given by (5.2), then

(Lun) (x, t) = F (x, t, un−1(x, t), (un−1)t (x, t)).

Theorem 5.1. If C ∥L−1∥ ≤ 1, |at(t)| ≤ a1, then un
∥.∥H(4,3)→ u as (n→ +∞) .

Proof. From the preceding theorem, we have

(Lun) (x, t) = F (x, t, un−1(x, t), (un−1)t (x, t)),
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so

∥un (x, t)− u (x, t)∥H(4,3)
(5.1)

=
∥∥L−1 (F (x, t, un−1, (un−1)t)− F (x, t, u, ut))

∥∥
H(4,3)

≤
∥∥L−1

∥∥ ∥(F (x, t, un−1, (un−1)t)− F (x, t, u, ut))∥Ĥ(1,1)

≤
∥∥L−1

∥∥ ∥−δun−1 + at(t) (un−1)t + δu− at(t)ut∥H(4,3)

≤
∥∥L−1

∥∥(δ ∥u− un−1∥
H(4,3)

+ |at(t)| ∥(un−1)t − ut∥
H(4,3)

)
≤ C

∥∥L−1
∥∥(∥u− un−1∥

H(4,3)
+ ∥(un−1)t − ut∥

H(4,3)

)
where C = max (δ, a2) . From C ∥L−1∥ ≤ 1 and (5.3) , and by recurrent we deduce
that

∥un (x, t)− u (x, t)∥H(4,3)
→ 0.

□

Proposition 5.1. Suppose that un
∥.∥→ u in H(4,3)(Q) as (n→ ∞), then∣∣∣∣ ∂i+j

∂xi∂tj
u (x, t)− ∂i+j

∂xi∂tj
un (x, t)

∣∣∣∣ → 0, n→ ∞, i, j = 0, 1, 2, 3.

6. NUMERICAL EXAMPLES

In order to calculate the approximate solution we put

(xi, ti) = (j/N, k/M) , j = 0, 1, ..N, k = 0, 1, ..M, i = 0, 1, ..m = N ×M,

en,m (x, t) = |u(x, t)− un,m (x, t)| .

Example 1. Consider

Uxxx(x, t)− ∂t (a(t) Ut(x, t)) + U(x, t) = −1

6
(−3 + 2t) t2(ex + 1)

+ (ex − xe) et
2(1−t)2

(
−1 + 2t− 2t2 + 8t3 − 10t4 + 4t5

)
,

for all (x, t) ∈ Q = [0, 1]× [0, 1], subject to the boundary conditions

U(0, t) =
t3

3
− t2

2
, U(1, t) = 0, Ux(1, t) = 0,
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and
Ut(x, 0) = 0, Ut(x, 1) = 0,

where a(t) = et
2(1−t)2 . The exact solution is given by

U(x, t) =

(
−t3

3
+
t2

2

)
(−ex + xe).

After homogenizing the boundary conditions, we obtain

uxxx(x, t)− ∂t (a(t) ut(x, t)) + u(x, t) = f(x, t),

u(0, t) = 0, u(1, t) = 0, ux(1, t) = 0,

ut(x, 0) = 0, ut(x, 1) = 0,

where

f(x, t) = −1

6

(
2ex − xe− (1− x)2

)
(−3 + 2t) t2

+et
2(1−t)2

(
ex − xe− (1− x)2

)
(−1 + 2t)(

1 + 2t2 − 4t3 + 2t4
)
.

The numerical results are presented in Tables 6.1, Figure 6.1, Figure 6.2, Figure 6.3.

Table 6.1. Comparison of results for Example 6.1: (n=5, 17), N=4, M=4, m=25
(xi, ti) u(xi, ti) (u5,25)(xi, ti) e5,25(xi, ti) (u17,25)(xi, ti) e17,25(xi, ti)

(0.01,0.00) 0.0000000 −4.5993310−6 4.5993310−6 4.0334810−17 4.0334810−17

(0.10,0.15) 0.000236345 0.000112732 0.000123613 0.000184297 0.0000520485
(0.15,0.10) 0.000147429 0.0000678994 0.0000795298 0.0000851855 0.0000622437
(0.35,0.20) 0.000782928 0.000353514 0.000429414 0.000674087 0.000108841
(0.25,0.45) 0.00297356 0.00139026 0.00158329 0.002767 0.000206554
(0.50,0.45) 0.00280526 0.00122581 0.00157945 0.00259351 0.000211749
(0.60,0.65 0.00372888 0.00158153 0.00214735 0.00343299 0.000295891
(0.75,0.7) 0.00206305 0.00122232 0.000840732 0.00186995 0.000193098
(0.80,0.75) 0.00153499 0.000617517 0.00091747 0.00138034 0.000154652
(0.99,0.99) 5.908610−6 3.6511910−6 2.2574110−6 5.1217510−6 7.8685210−7

(0.75,0.7) -0.0204119 -0.00520635 0.0152055 -0.0204191 7.24279 ∗ 10−6

(0.80,0.75) -0.0143628 -0.00354061 0.0108222 -0.0143717 8.8946710−6

(0.99,0.99) -0.0000491748 -0.0000106722 0.0000385026 -0.0000491967 2.18707−8

.
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Figure 6.1. Absolute error between exact and approximate solution (n=5,
m=25) for example 6.1

Figure 6.2. Absolute error between exact and approximate solution (n=25,
m=25) for example 6.1
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Figure 6.3. Comparison between the approximate solution and the exact solution
for Example 6.1

Example 2. Consider the following equation:
Uxxx(x, t)− t Utt(x, t)− Ut(x, t)− U(x, t) = F (x, t)

U(0, t) = 0, U(1, t) = 1/6 et
2(1−t)2 , Ux(1, t) = 1/6 et

2(1−t)2 ,

Ut(x, 0) = 0, Ut(x, 1) = 0,

where

F (x, t) = 1/6 et
2(1−t)2

(
(−1 + 4t− 18t2 + 20t3 − 24t4 + 52t5 − 48t6 + 16t7)

×
(
2 x4 − 3x3

)
+ 18− 48 x

)
The exact solution is given by U(x, t) = (x3/2 − x4/3) et

2(1−t)2 . After homogenizing
the initial and boundary conditions we obtain

uxxx(x, t)− t utt(x, t)− ut(x, t)− u(x, t) = f(x, t),

where

f(x, t) = 1/6
[
18 + (−49 + 4t− 18t2 + 20t3 − 24t4 + 52t5 − 48t6 + 16t7) x

+ (−1 + 4t− 18t2 + 20t3 − 24t4 + 52t5 − 48t6 + 16t7)
(
2 x4 − 3x3

)]
et

2(1−t)2

The numerical results are presented in Tables 6.2, Figure 6.4 , Figure 6.5, Figure 6.6.
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Table 6.2. Comparison Absolute error for Ex. 6.2 (n=11, 25), N=4, M=4,m=25
(xi, ti) u(xi, ti) (u11,25)(xi, ti) e11,25(xi, ti) (u25,25)(xi, ti) e25,25(xi, ti)

(0.01,0.00) -0.00166617 -0.000528164 0.00113801 -0.00166617 2.41936 ∗ 10−13

(0.10,0.15) -0.0164655 -0.00564694 0.0108186 -0.016423 0.0000425001
(0.15,0.10) -0.0236722 -0.00891318 0.014759 -0.0236368 0.0000354556
(0.35,0.20 -0.0429844 -0.0165564 0.0264279 -0.042873 0.000111365
(0.25,0.45) -0.0373771 -0.0116428 0.0257343 -0.0372975 0.0000796333
(0.50,0.45) -0.0442988 -0.0142367 0.0300621 -0.044234 0.0000648266
(0.60,0.65) -0.0370698 -0.0103444 0.0267254 -0.0370634 6.34791 ∗ 10−6

(0.75,0.7) -0.0204119 -0.00520635 0.0152055 -0.0204191 7.24279 ∗ 10−6

(0.80,0.75) -0.0143628 -0.00354061 0.0108222 -0.0143717 8.89467 ∗ 10−6

(0.99,0.99) -0.0000491748 -0.0000106722 0.0000385026 -0.0000491967 2.18707 ∗ 10−8

Figure 6.4. Absolute error between exact and approximate solution (n=11,
m=25) for example 6.2

Example 3. Consider

uxxx(x, t)− (t+ 1) utt(x, t)− ut(x, t) + u(x, t) = f(x, t),

u(0, t) = 0, u(1, t) = 0, ux(1, t) = 0,

ut(x, 0) = 0, ut(x, 1) = 0,
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Figure 6.5. Absolute error between exact and approximate solution (n=25,
m=25) for example 6.2

Figure 6.6. Absolute error between exact and approximate solution (n=20,
m=25,t=0.45) for example 6.2

for all (x, t) ∈ Q = [0, 1]× [0, 1], where

f(x, t) =
1

2
(−ex + (1− x)2 + xe)2(1 + t)et

−1 + 6t− t2 + e(−2− 4t+ t2)− 1

2
(−2et + (1− t)2 + et2)ex.
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The exact solution is given by u(x, t) = 1
2
(−2et + (1− t)2 + e t2)(−ex + (1− x)2 + x

e). The numerical results are presented in Tables 6.3, Figure 6.7 , Figure 6.8, Figure
6.9.

Table 6.3. Comparison of results for Ex. 6.3 (n=9, 22), N=4, M=4,m=25
(xi, ti) u(xi, ti) (u9,25)(xi, ti) e9,25(xi, ti) (u22,25)(xi, ti) e22,25(xi, ti)

(0.01,0.00) 0.00415102 0.00302248 0.00112855 0.00416952 0.0000184985
(0.10,0.15) 0.0348391 0.0249128 0.00992634 0.0350123 0.00017316
(0.15,0.10) 0.0472799 0.0334371 0.0138428 0.0475083 0.000228419
(0.35,0.20 0.0671678 0.0452082 0.0219597 0.0675208 0.000352949
(0.25,0.45) 0.0605971 0.0417747 0.0188223 0.0610012 0.000404116
(0.50,0.45) 0.0571673 0.0260705 0.0310968 0.0575495 0.000382122
(0.60,0.65) 0.0436891 0.0274247 0.0162644 0.0440447 0.000355572
(0.75,0.7) 0.02199 0.0132544 0.00873562 0.0221793 0.00018928
(0.80,0.75) 0.0151041 0.00897844 0.00612566 0.0152408 0.0001367
(0.99,0.99) 0.0000481998 0.0000272136 0.0000209863 0.0000486821 4.8227210−8

Figure 6.7. Absolute error between exact and approximate solution (n=9,
m=25) for example 6.3
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Figure 6.8. Absolute error between exact and approximate solution (n=25,
m=25) for example 6.3

Figure 6.9. Comparison between the approximate solution and the exact solution
for Example 6.3

7. CONCLUSION

In this paper, we applied the reproducing kernel Hilbert space method to solve
the third order differential equation with the multiple characteristics. From this
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work, we can conclude that the absolute errors decrease monotonically if n in-
creases. The results are accompanied by numerical examples indicating that the
approximate solution converge to the exact solution. Therefore, the effectiveness
of our proposed method is confirmed for this class of third order boundary value
problems.
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