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KERNEL’S ESTIMATION OF GINI INDEX BASED ON THE VARYING
BANDWIDTH PARAMETER

Komi Agbokou1 and Yaogan Mensah

ABSTRACT. Most of the measures of income inequality are derived from the Lorenz
curve, and many authors state that the Gini index is the best single measure of in-
equality. The present paper reviews some of the theorical properties of the Lorenz
curve and provides a nonparametric estimate of the Gini index and the almost sure
convergence of this estimate. And to confirm the performance of the estimator, an
application on real data was carried out.

1. INTRODUCTION

It is well known that the cumulative income distribution is graphically repre-
sented by Lorenz curve (see Figure 1). On the latter, the percentage of households
is plotted on the x-axis while the percentage of income is on the y-axis. It shows
for the bottom p1% of households, what percentage p2% of the total income they
possess. This theory was initiated by Max O. Lorenz in 1905 to represent the in-
equality in wealth distribution (see Cowell [7]). If p1 = p2, then the Lorenz curve
is the upward diagonal line, which means, for instance, that 50% of the households
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possess 50% of the total income. Thus the straight line represents perfect equal-
ity. Any case in which the Lorenz curve is not a straight line implies an income
inequality.

FIGURE 1. The area between the equality line and the Lorenz curve.

The standard definition of the Lorenz curve is defined in two equivalent ways.
Firstly, one has to determine a particular quantile, which means solving for the z

equation:

L(F (z)) =
1

µ

∫ z

0

tf(t)dt

where
F (z) =

∫ z

0

f(t)dt and µ =

∫ ∞

0

tf(t)dt.

Secondly, using a notation popularized by Gastwirth [8], z = F−1(p), one may
write the Lorenz curve in a direct way :

L(p) =
1

µ

∫ p

0

F−1(t)dt.

If everybody had the same income, the cumulative percentage of total income
held by any bottom proportion p of the population would also be p. The Lorenz
curve would then be L(p) = p: population share and the share of total income
would be identical. A useful informational content of a Lorenz curve is thus its
distance, p−L(p), from the line of perfect equality in income. Compared to perfect
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equality, the inequality removes a proportion p − L(p) of total income from the
bottom 100 × p% of the population. The larger that ” deficit ”, the larger the
inequality of income. There is thus an interest in computing the average distance
between these two curves on the surface between the diagonal p and the Lorenz
curve L(p). We know that the Lorenz curve is contained in the unit square having
a normalized surface of 1. The surface of the lower triangle is 1/2. If we want to
obtain a coefficient for values between 0 and 1, we must take twice the integral of
p− L(p) given by Lubrano [16]:

G = 2

∫ 1

0

(p− L(p))dp = 1− 2

∫ 1

0

L(p)dp.

which is nothing but the usual Gini coefficient. Xu [21] gives a good account of
the algebra of the Gini index. This definition above is an interpretation of the Gini
index as a surface. The alternative definition of Gini index is in the form of a mean
of absolute differences. There are other formulas too. All of these formulas are
equivalent. Thus, the alternative formula for Gini index G, which is based on the
mean difference ∆, of the underlying distribution function F (x) and is given by
Kendall and al. [13]. The Gini indices of the Lorenz curve L(p) generated by a

distribution function F (x) is G =
∆

2µ
, were:

(1.1) ∆ =

∫
R

∫
R
|x− y|dF (x)dF (y)

where X and Y are two random variables (with their respective realizations x and
y) of the same distribution F . As F (x) and 1 − F (x) are simply the proportions
of individuals with incomes below and above x, integrating the product of these
proportions across all possible values of x gives again the Gini coefficient, in its
form given by ∆ by (see Gastwirth [11]):

∆ = 2

∫
R
F (x)[1− F (x)]dx = 4

∫
R
x

[
F (x)− 1

2

]
dF (x)

The formula G shows that the Gini index measures the relative inequality as it is
the ratio of a measure to dispersion, the mean difference to the average value (µ).

Inequality measures in general and Gini index in particular, have been used
from a descriptive point of view. However, data available from statistical agencies
frequently come from sample surveys; inequality indices turn out to be computed
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on the basis of sample data. Therefore, it is necessary to use them not only as
descriptive tools, but also as tools for formal statistical inference. The approach to
statistical inference can be either nonparametric or parametric. A comprehensive
survey of the main results in the estimation of G according to these two approaches
is in Giorgi [9]. Conti and Giorgi [6] investigated the strong consistency of an esti-
mator of the kernel Gini index. The Gini coefficient can be obtained from a simple
ordinary least squares regression-based approach: see, for instance, Lerman and
Yitzhaki [15], Shalit [19], Ogwang [17], Giles [10]. Shahryar and al. [20] inves-
tigated the Gini Coefficient estimators based on the linearization and U-statistics
methods. Furthermore, some authors have proposed resampling techniques to
estimate the standard error of the Gini concentration index (see Berger [5] and
Yitzhaki and Schechtman [22]).

The present paper provides a nonparametric estimator of the Gini coefficient
based on the kernel method with varying bandwidth parameters. Firstly, this vary-
ing bandwidth parameter will vary according to the random variables and sec-
ondly, according to the variable x. The document is organized as follows; apart
from the introduction and the conclusion, we will first go through the construction
of the estimator and the study of its strong consistency, then a simulation study to
conclude.

2. GINI INDEX NONPARAMETRIC ESTIMATOR

Let X1, . . . , Xn be a random sample of size n from a population X with density
function f . Xi, for i = 1, . . . n; n ∈ N, are independent and identically distributed
(i.i.d.) observations. The main of nonparametric density estimation is to estimate
f with as few assumptions about f as possible. One of the well-known estimators
of f is the classical kernel density estimator, which we will denote by

(2.1) fn(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, x ∈ R,

where h = hn, is the bandwidth sequence satisfying:

(2.2) h −→ 0 and nh −→ +∞ for n large enough.

And K is a kernel function and is assumed to be a continuous density, symmetric
with respect to 0. The kernel K satisfies the following conditions to get the order
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of the bias and variance of the classical kernel density estimator:

(2.3)
∫

K(x)dx = 1,

∫
xK(x)dx = 0, and

∫
x2K(x)dx = σ2

K > 0.

One had remarked in the literature that the estimate (2.1) is more local in na-
ture but is scarcely a reasonable estimate of a smooth density. Note that the prob-
lem of additive form (2.1) is that it requires the preservation of the continuity and
differentiability properties of K. For example, the uniform density is discontinuous,
so the kernel density estimate based on a uniform kernel function is discontinu-
ous. Thus, a smoother kernel function will thus lead to a smoother kernel density
estimate. The ordinary estimate (2.1) does not allow for different levels of smooth-
ing at different parts of the density, as it is controlled by the single bandwidth h.
Therefore, it is surely not optimal. Jeffrey [12] shows that the mean squared er-
ror (MSE) of f(x) at any point x is directly related to f(x)/h and [f ′′(x)]2h4. In
other words, to reduce MSE, h should increase with f(x) (to reduce variance) and
should decrease with f ′′(x) (to reduce bias).

For filling this void of inadaptation, there is a way to vary h in the kernel esti-
mator to try to improve the performance, it is sufficient therefore to choose h(Xi)

as a function of the evaluation point Xi for i ∈ {1, . . . , n}. From a practical point
of view, the usual kernel density estimator (2.1) is susceptible to bumpiness in
the tail, since it does not adapt to local variations in smoothness. The estimator
can be generalized to allow this, by using broader windows for the contribution of
values associated with the region of low density and narrower windows for values
associated in a region of high density. The general formula for one such estimator,
the variable-bandwidth kernel estimator, is defined in Jeffrey [12] by:

(2.4) f̂n(x) =
1

nh(Xi)

n∑
i=1

K

(
x−Xi

h(Xi)

)
, x ∈ R,

where h(Xi) =
hn

f 1/2(Xi)
vary inversely with the underlying density, since the goal

is to smooth less where there is more structure (and more where there is less
structure). The choice of (2.4) is particularly advantageous, since it results in the
bias of (2.4) being O(h4), rather than the usual (2.1) O(h2), while leaving the
variance O(n−1h−1). Clearly, we observe that the choice of this variable h has
a great influence on the speed of convergence of (2.4), which induces the rapid
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convergence of the estimator (2.5). We can also remark that if the density function
f is uniform, then formula (2.4) is reduced to (2.1).

From the estimator (2.4) of the density function, it is obvious that we obtain an
estimator of the Gini index, which are given by:

(2.5) Ĝ =
∆̂n

2µ̂n

.

where
∆̂n =

∫
R

∫
R
|x− y|f̂n(x)f̂n(y)dxdy,

soit

∆̂n =
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R
|x− y|f

1/2(Xi)

hn

K

[
(x−Xi)f

1/2(Xi)

hn

]
f 1/2(Xj)

hn

K

[
(y −Xj)f

1/2(Xj)

hn

]
dxdy.

(2.6)

and

µ̂n =

∫
R
xf̂n(x)dx =

1

n

n∑
i=1

Xi.

In the next paragraph, we study the almost sure convergence or the strong
consistency of our estimator (2.5).

3. CONVERGENCE OF THE GINI INDEX ESTIMATOR

In the following, apart from the classical regularity conditions on the kernel
function K in (2.3) and on h (2.2), we adopt the following hypotheses.

3.1. Hypotheses.

(H.1) The density function f : R −→ R+ is:
a. a bounded function: ∃ 0 < m < M such that m ≤ f(x) ≤ M ∀x ∈

R,
b. a κ-Lipschitzian function: |f(x)− f(y)| ≤ κ|x− y| ∀x, y ∈ R.

c. a function such that
∫
R
f 1/2(x)dx = Θf > 0.

(H.2) The Kernel K : R −→ R+ satisfies the conditions below:

a.
∫
R
|u|K(u)du = ΩK > 0, ∀u ∈ R,
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b.
∫
R

∫
R
|u− v|K(u)K(v)dudv = ∆K > 0, ∀u, v ∈ R,

(H.3) The variable bandwidth parameter h satisfies: hnκ
√
MΩK ≤ 2m2, ∀n ∈ N.

These pre-enumerated hypotheses make it possible to study the strong consis-
tency of the estimator ∆̂ (2.6), which induces that of Ĝ (2.5).

3.2. Almost sure convergence. Suppose X1 . . . Xn are i.i.d random variables with
a distribution F . Consider a parametric function θ for which there is an unbiased
estimator. The parametric function θ may be represented as

θ = E[ϕ(X1, . . . , Xm)] =

∫
. . .

∫
ϕ(x1, . . . , xm)dF (x1) . . . dF (xm),

where ϕ = ϕ(x1, . . . , xm) a is a function of m(m ≤ n) i.i.d random variables, called
the kernel of θ. For any kernel ϕ, the corresponding U-statistic for estimating of θ
on the basis of a random sample of size n is obtained by averaging the kernel ϕ
symmetrically over the observations

Un = U(X1, . . . , Xm) =
1

Cm
n

∑
c

ϕ(Xi1 . . . Xi1),

where
∑
c

denotes summation over the Cm
n combinations of m distinct elements

{i1 . . . im} from {1, . . . , n}. In particular cases, we have:

Lemma 3.1. For n large enough, we have

- For ϕ(x) = x,

(3.1) µ̂n = U1 =
1

n

n∑
i=1

Xi −→ µ = E(X) =

∫
xdF (x) p.s..

- For ϕ(x1, x2) = |x1 − x2|,

U2 =
2

n(n− 1)

n∑
i=1

n∑
j=1

|Xi −Xj| −→ ∆ = E(|X1 −X2|)

=

∫ ∫
|x1 − x2|dF (x1)dF (x2) p.s..

(3.2)

Proof. This proof can easily be found in Lehmann [14] and Pranab [18]. □
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The following lemma plays an important role in the convergence of the estima-
tor.

Lemma 3.2. Under hypothesis (H.1), the function f−1/2 is δκ-Lipschitzian, that is to
say: ∣∣∣∣ 1

f 1/2(x)
− 1

f 1/2(y)

∣∣∣∣ ≤ δκ|x− y| ∀x, y ∈ R, where δκ =
κ
√
M

2m2
.

Proof. Indeed, it suffices to note that:

(3.3)
∣∣∣∣√x−√

y

x− y

∣∣∣∣ = 1√
x+

√
y
≤ 1

2
√
ϵ

∀x, y ≥ ϵ > 0,

and

(3.4)
∣∣∣∣1x − 1

y

∣∣∣∣ = ∣∣∣∣ 1xy
∣∣∣∣ |x− y| ≤ 1

ϵ2
|x− y| ∀x, y ≥ ϵ > 0.

From the inequalities (3.3), (3.4) and under the hypothesis (H.1), we can write∣∣∣∣ 1

f 1/2(x)
− 1

f 1/2(y)

∣∣∣∣ ≤
√
M

2

∣∣∣∣ 1

f(x)
− 1

f(y)

∣∣∣∣
≤

√
M

2m2
|f(x)− f(y)|

≤ κ
√
M

2m2
|x− y|.

□

Theorem 3.1. Under the assumptions (H.1), (H.2) and (H.3), we have

|∆̂n −∆| −→ 0 p.s, when n −→ +∞.

Proof.

∆̂n =
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R
|x− y|f

1/2(Xi)

hn

K

[
(x−Xi)f

1/2(Xi)

hn

]
f 1/2(Xj)

hn

K

[
(y −Xj)f

1/2(Xj)

hn

]
dxdy

=
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R

∣∣∣∣ uhn

f 1/2(Xi)
− vhn

f 1/2(Xj)
+ (Xi −Xj)

∣∣∣∣K(u)K(v)dudv
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=
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R

∣∣∣∣(Xi −Xj) +
hn

f 1/2(Xi)
(u− v)

+

(
1

f 1/2(Xi)
− 1

f 1/2(Xj)

)
vhn

∣∣∣∣K(u)K(v)dudv

≤ 1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R

[
|Xi −Xj|+

hn

f 1/2(Xi)
|u− v|

+

∣∣∣∣ 1

f 1/2(Xi)
− 1

f 1/2(Xj)

∣∣∣∣ |v|hn

]
K(u)K(v)dudv.

From the Lemma 3.2 and assumptions (H.1)-(H.2), we deduce

∆̂n ≤ 1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R

[
|Xi −Xj|+

hn

f 1/2(Xi)
|u− v|+ δκ|Xi −Xj||v|hn

]
K(u)K(v)dudv

=
1

n2

n∑
i=1

n∑
j=1

[
|Xi −Xj|+

hn

f 1/2(Xi)

∫
R

∫
R
|u− v|K(u)K(v)dudv

+hnδκ|Xi −Xj|
∫
R
|v|K(v)dv

]
≤ 1

n2

n∑
i=1

n∑
j=1

[
|Xi −Xj|+

hn√
m
∆K + hnδκΩK |Xi −Xj|

]

≤ 1

n(n− 1)

n∑
i=1

n∑
j=1

(1 + hnδκΩK)|Xi −Xj|+
hn√
m
∆K .

Using hypothesis (H.3) and noticing that |a− b| ≤ | |a| − |b| |, this leads to

(3.5) |∆̂n − U2| ≤ hn
∆K√
m
.

Thus, considering the first limit of equality (2.2), we get |∆̂n − U2| −→ 0 p.s.

Moreover, the triangular inequality allows us to write

|∆̂n −∆| ≤ |∆̂n − U2|+ |U2 −∆|.

Relation (3.2) of Lemma 3.1 completes the proof of the theorem. □
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Corollary 3.1. Under the assumptions of Theorem 3.1, we have

|Ĝn −G| −→ 0 p.s, when n −→ +∞.

Proof.

|Ĝn −G| = 1

2

∣∣∣∣∣∆̂n

µ̂n

− ∆

µ

∣∣∣∣∣ ≤ 1

2

[
1

µ̂n

|∆̂n −∆|+
∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣∆]
From relation (3.1) of Lemma 3.1 we get

∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣ −→ 0 p.s.

And finally Theorem 3.1 completes the proof of this corollary. □

Corollary 3.2. Under the assumptions of Theorem 3.1, Ĝn is an asymptotically un-
biased estimator i.e.,

E(Ĝn) = G a.s. as the sample size tends to infinity.

Proof. From the expression

∆̂n =
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R

∣∣∣∣hn

(
u

f 1/2(Xi)
− v

f 1/2(Xj)

)
+ (Xi −Xj)

∣∣∣∣K(u)K(v)dudv.

Using Fubini’s theorem, we can write

E(∆̂n) =
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R
E
[∣∣∣∣hn

(
u

f 1/2(Xi)
− v

f 1/2(Xj)

)
+(Xi −Xj)|]K(u)K(v)dudv.

By noting that |a+ b| ≤ |a|+ |b|, |a− b| ≤ |a|+ |b| and by considering the fact that
the random variables are i.i.d., we have

E(∆̂n) ≤
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R
E
[
hn(|u|+ |v|)E

[
f−1/2(X)

]
+E|Xi −Xj|]K(u)K(v)dudv,

hypothesis (H.1)c leads to

E(∆̂n) ≤
1

n2

n∑
i=1

n∑
j=1

E|Xi −Xj|+Θfhn

∫
R

∫
R
(|u|+ |v|)K(u)K(v)dudv.
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Taking into account that E|Xi − Xj| = ∆, using Jensen’s inequality, expectation
and Fubini’s theorem, hypothesis (H.2)a leads to

E|∆̂n −∆| ≤ 2ΘfΩKhn,

or

(3.6) E|∆̂n −∆| = O(hn).

By applying the linearity of the expectation, the last equality (3.6) and Lemma 3.1

to the following relation

|Ĝn −G| = 1

µ
|∆̂n −∆|+

∣∣∣∣ 1µ̂n

− 1

µ

∣∣∣∣ ∆̂n,

we have
E|Ĝn −G| −→ 0 a.s. when n −→ ∞.

In particular,
E(Ĝn) −→ E(G) = G a.s. when n −→ ∞.

□

4. APPLICATIONS

4.1. Gini index and Lorenz curves generated by some common distributions.
The table below proposes the theoretical expressions of the Lorenz curve and of
the Gini index for certain usual probability laws.

Among the above probability laws, only the Pareto and exponential (shifted)
distributions satisfy the hypotheses (H.1), (H.2), and (H.3). In addition, we can
notice that the exponential distributions (shifted) give a theoretical Gini index
strictly lower (for the shifted exponential distribution) or equal (for the exponen-
tial distribution) to 0.5, that is to say that the Gini index theoretical result from the
two above-mentioned distributions, gives an almost equal distribution of income
(because its value is closer to 0). Thus, exponential (shifted) distributions do not
allow us to make a good judgment on the real data we have. However, the Pareto
distribution gives a Gini index between 0 and 1 and it is also a distribution that is
very useful in the literature for studies on inequalities.
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TABLE 1. Some Gini index and Lorenz curves

Distribution Formula of F (x) Lorenz curve L(p) Gini in-
dex G

Equal 1[µ,+∞[(x) p 0

Exponential 1− e−λx, x > 0 p+ (1− p)ln(1− p) 1
2

Shifted Ex-
ponential

1− e−θ(x−a), x ≥ a > 0 p+ 1
1+θa

(1−p)ln(1−p) 1
2(θa+1)

General
Uniform

x− a

θ
, a < x < a+ θ

ap+ θp2

2

a+ θ
2

θ

3(2a+ θ)

Pareto 1 -
(
β

x

)α−1

, x ≥ β > 0, α > 2 1− (1− p)
α−2
α−1

1

2α− 3

4.2. Application to real data. The data we have was collected on the World Bank
website [23]. We collected data on adjusted net national income from 45 countries
in Africa (sub-Saharan Africa) and 185 countries around the world. The data
collected is the only data that exists on the site since not all countries have it. The
probability law considered is the Pareto distribution which has two parameters α

and β. The two parameters of the Pareto distribution are unknown, in order not
to choose these two parameters at random for our study, we chose to estimate
the two parameters by the maximum likelihood method and these two unbiased
and convergent estimators will represent the parameters α and β of the Pareto
distribution in our study. The following table provides the expressions of the two
parametric estimators and their characteristics.

Since in the expressions of α̂n and β̂n the parameters α and β are unknown, in
practice, we choose as estimators of α and β the quantities α̂∗

n and β̂∗
n defined by:

α̂∗
n =

(n− 1)

[
1 + n∑n

i=1 log

(
Xi

X(1)

)
]
+ 1

n
and β̂∗

n =

[
1− 1

n(α̂∗
n − 1)

]
X(1).

For the simulations, we have selected four kernel functions, two of which have
compact support and the others defined on R. The smoothing parameter h(•) is
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TABLE 2. Maximum Likehood Estimators of Pareto distribution parameters

Parameters ρ MLE estimators ρ̂n E(ρ̂n) σ2(ρ̂n)

α α̂n =
(n−1)

[
1+ n∑n

i=1
log(Xi

β )

]
+1

n
α (α−1)2

n−2

β β̂n =
[
1− 1

n(α−1)

]
X(1) β β2

n(α−1)(n(α−1)−2)

chosen such that hn =
[

R(K)

σ4
KR(f̂ ′′

n )

]1/9
n−1/9 or more simply hn = O(n−1/9) where the

notation follows the convention R(g) =
∫
g2(x)dx for appropriate functions g. For

the determination of hn, the estimator f̂n used is based on a different bandwidth
from the one that is appropriate for the estimation and is estimated from the data
(see Jeffrey [12]).

The different kernel functions used are grouped together in the following table:

TABLE 3. Some usefull Kernels

Kernel name Formula of K(u)

Epanechnikov
3

4

(
1− u2

)
1|u|≤1

Cosine
π

4
cos

(π
2
u
)
1|u|≤1

Gaussian
1√
2π

exp

(
−1

2
u2

)
Logistic

1

exp(−u) + 2 + exp(u)

Using the Matlab software, we obtain the following results, shown in Table 4
below. Recall that the values of the parameters α and β come from the samples
collected and are such that α ≃ α̂∗

n and β ≃ β̂∗
n. For these two values obtained, we

tried to construct the Lorenz curve given by Figure 2 for the two types of samples
(n = 45 and n = 185). Then, we calculated the theoretical Gini index G given by
the formula G = 1

2α−3
, in order to compare it with the estimated Gini index, noted

Ĝn.
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FIGURE 2. Theoretical Lorenz curves for Africa and World.

TABLE 4. Simulation results

n K(u) α β µ̂n ∆̂n Ĝn G Bias(Ĝ∗
n, G)

Epanechnikov 4.2175e+07 0.7237 0.0455

Cosine 4.3574e+07 0.7477 0.0215
45 2.1500 1.8352e+05 2.9138e+07 0.7692

Gaussian 4.4001e+07 0.7550 0.0142

Logistic 4.4164e+07 0.7578 0.0114

Epanechnikov 1.3266e+11 0.8916 0.0013

Cosine 1.3265e+11 0.8915 0.0014
185 2.0599 3.8915e+06 7.4388e+10 0.8930

Gaussian 1.3283e+11 0.8928 0.0002

Logistic 1.3279e+11 0.8926 0.0004
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4.3. Interpretation of results and commentary. Table 4 shows that for n = 45

(sample africa), the convergence is slow, while for n = 185 (sample world), almost
four times the size of sample Africa, the convergence is rapid. Moreover, we can
observe in both situations that the choice of the kernel has a slight influence on
the convergence of the Gini estimator, since one can notice that the kernels with
compact support provide a slower convergence compared to the others. In other
words, we can summarize that the size of the sample and the choice of the kernel
contribute to a faster convergence without forgetting the choice of the smoothing
parameter, which is of great importance. In view of the results obtained, we can
notice that the adjusted net national incomes are distributed unequally in the two
cases, but the inequality obtained with the 185 countries of the world is more
severe. This result is predictable because only about 20 countries hold most of the
income in the world.

5. CONCLUSION

The nonparametric estimator of the Gini index studied in this manuscript al-
lowed us to see the importance of the variable smoothing parameter which played
a primordial role in this study, especially regarding to the speed of convergence.
Choosing the variable smoothing parameter makes it possible to take into account
the variability of the data collected, even if the theoretical calculations and es-
pecially computer programming are heavier with this choice (variable smoothing
parameter), nevertheless it contributes to very good convergence and faster of
the estimate compared to the constant smoothing parameter which is much more
used in the literature (see Agbokou and al. [1–4]). Regarding the simulations, we
planned to take several samples, but for the lack of a calculator, we decided to
select only two samples (Africa and the world) to evaluate the performance of our
estimator and in view of the results obtained, we conclude that this Gini estimator
is efficient even if it can still be improved so that with n = 50, convergence is faster.
In our next study, we will compare the estimator of the Gini index with variable
smoothing parameter to the Zenga index with a constant smoothing parameter.
In a brief way, let us recall that the main objective of this work is to highlight the
rapid convergence of a variable bandwidth in terms of simulations and to see if
there is a conformity to the theory. Future work will focus on asymptotic normality
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(Central Limit Theorem) to get an idea of the behavior of the estimator in terms
of bias and variance and in addition to study the adequacy of simulations.
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