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ON THE BLOCKING FORCE OF STEADY-STATE FLOW OF
HERSCHEL-BULKLEY FLUID

Hibat Errahmane Ben Messaoud1, Farid Messelmi, and Zohra Bendaoud

ABSTRACT. The paper is devoted to the study of the blocking force of Herschel-
Bulkley fluid in the case of steady-state flow. To this aim, we consider a mathemat-
ical model which describes the steady-state flow of a Herschel-Bulkley fluid in a
bounded domain. We give the mathematical formulation of the blockage phenom-
enon and we establish the existence of blocking force. We also focus on behaviour
of the flow with respect to the blocking force.

1. INTRODUCTION

The Herschel-Bulkley fluid is the most generalized model describing the be-
havior of Non-Newtonian viscoplastic fluids, this incompressible fluid has been
studied and used by mathematicians, physicists and engineers. While this model
describes adequately a large class of flows. It has been used to model the flow of
metals, plastic solids and a variety of polymers. Due to existence of yield limit,
the model can capture phenomena connected with the development of discontin-
uous stresses. Physical experiments and numerical studies of the flow of Herschel-
Bulkley fluids prove that when the yield stress increases, the rigid zones become
larger and may completely block the flow. This property is called the blocking phe-
nomenon. The literature concerning this topic is extensive; see e.g. [5–7,9–12].
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Our paper deals with the steady-state flow of Herschel Bulkley. The main object
is the study the behaviour of the flow. We provide a generalization of a result
obtained by Mihai, Patrick et al. [14] for Bingham fluid to the steady-state flow
of Herschel-Bulkley model, An important property of the Herschel-Bulkley model
concerns the existence of rigid zones which are located in the interior of the flow.
As the external loads decrease the rigid zones become larger and may completely
block the flow if the forces become lower than a certain value which stands for a
maximal blocking force.

The paper is organized as follows. In Section 2 we present the mechanical
problem of the steady-state flow of Herschel-Bulkley fluid in a bounded domain
Ω ⊂ Rn. We introduce some notations and preliminaries. In addition, we derive
the variational formulation of the problem. In Section 3, we show the mathemat-
ical formulation of blockage phenomenon and we prove the existence of blocking
force. Section 4 is devoted to study of the behaviour of the flow with respect to
the blocking force.

2. PROBLEM STATEMENT

We consider a mathematical problem modelling the steady-state flow of the
rigid viscoplastic and incompressible Herschel-Bulkley fluid in a bounded domain
Ω ⊂ Rn (n = 2, 3) , with the boundary Γ of class C1. The fluid is acted upon by
given volume forces of density f . On Γ we suppose that the velocity is equal to
zero.

We denote by Sn the space of symmetric tensors on Rn. We define the inner
product and the Euclidean norm on Rn and Sn, respectively, by

u · v = uivi ∀ u, v ∈ Rn and σ · τ = σijτij ∀ σ, τ ∈ Sn.

|u| = (u · u)
1
2 ∀u ∈ Rn and |σ| = (σ · σ)

1
2 ∀σ ∈ Sn.

Here and below, the indices i and j run from 1 to n and the summation conven-
tion over repeated indices is used. We denote by σD the deviator of σ = (σij) given
by

σD =
(
σD
ij

)
, σD

ij = σij −
σkk

n
δij,

where δ = (δij) denotes the identity tensor.



ON THE BLOCKING FORCE OF STEADY-STATE FLOW 1269

Let 1 < p ≤ 2. We consider the rate of deformation operator defined for every
u ∈ W 1,p (Ω)n by

D (u) = (Dij (u)) , Dij (u) =
1

2
(ui,j + uj,i) .

The steady-state flow of Herschel-Bulkley fluid can be described the following
mechanical problem.

Problem P1. Find the velocity field u = (ui) : Ω −→ Rn and the stress field
σ = (σij) : Ω −→ Sn such that

(2.1) u · ∇u = divσ + f in Ω.

(2.2)
σD = µ |D (u)|p−2D (u) + g

D (u)

|D (u)|
if |D (u)| ≠ 0∣∣σD

∣∣ ≤ g if |D (u)| = 0

 in Ω.

(2.3) divu = 0 in Ω.

(2.4) u = 0 on Γ.

Here divσ = (σij,j) and divu = ui,i. The flow is given by the equation (2.1)
where the density is assumed equal to one. Equation (2.2) represents the consti-
tutive law of Herschel-Bulkley fluid where µ > 0 and g ≥ 0 represent respectively
the consistency and yield limit of the fluid, 1 < p ≤ 2 is the power law index. (2.3)
represents the incompressibility condition. (2.4) gives the adherence condition on
the boundary Γ.

Remark 2.1.
1. The Bingham fluid represents a particular case of Herschel-Bulkley fluid corre-

sponding to p = 2.

2. In the constitutive law of Herschel-Bulkley fluid (2.2), the viscosity and hydro-
static pressure are given, respectively, by

(2.5) η = µ |D (u)|p−2 and π = − 1

n
σkk.

Let us introduce the function spaces

(2.6) Wp,div =
{
v ∈ W 1,p

0 (Ω)n : div (v) = 0 in Ω
}
,
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Wp,div is a Banach space equipped with the norm

(2.7) ∥v∥W
p,div

= ∥v∥W 1,p(Ω)n ,

Moreover, Korn’s inequality holds in the space Wp,div, see [12], which means
that there exists a positive constant C0 depending only on Ω and Γ such that

(2.8) C0 ∥D (v)∥Lp(Ω)n×n ≥ ∥v∥W
p,div

∀v ∈ Wp,div.

Denoting by p′ the conjugate of p. We introduce the convective operator

(2.9) B : Wp,div ×Wp,div ×Wp,div −→ R, B (u,v,w) =

∫
Ω

u · ∇v ·wdx.

We begin by recalling the following lemma see [12], which gives some proper-
ties of the convective operator B.

Lemma 2.1. Suppose that

(2.10)
3n

n+ 2
≤ p ≤ 2.

Then, B is trilinear, continuous on Wp,div × Wp,div × Wp,div. Moreover, ∀ (u,v,w) ∈
Wp,div ×Wp,div ×Wp,div we have B (u,v,w) = −B (u,w,v) .

For the rest of this paper, we choose
3n

n+ 2
≤ p ≤ 2. The use of Green’s for-

mula permits us to derive the following variational formulation of the mechanical
problem (P1), see [12].

Problem Pf . For prescribed data f ∈ W ′
p,div. Find u ∈ Wp,div satisfying the varia-

tional inequality

B (u,u,v − u) + µ

∫
Ω

|D (u)|p−2D (u) ·D (v − u) dx

+ g

∫
Ω

|D (v)| dx− g

∫
Ω

|D (u)| dx ≥
∫
Ω

f · (v − u) dx ∀v ∈ Wp,div.

(2.11)

By taking v = 0, respectively v = 2u in (2.11), the following equation holds

(2.12) µ

∫
Ω

|D (u)|p dx+ g

∫
Ω

|D (u)| dx =

∫
Ω

f · udx.

This implies using again (2.11)
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B (u,u,v) + µ

∫
Ω

|D (u)|p−2D (u) ·D (v) dx

+ g

∫
Ω

|D (v)| dx ≥
∫
Ω

f · vdx ∀v ∈ Wp,div.

(2.13)

Consequently, the steady-state flow of Herschel-Bulkley fluid can be also de-
scribed by the system (2.12), (2.13)

3. BLOCKAGE PROPERTY

This section is consecrated to the study of blockage property of Herschel-Bulkley
fluid. To do this, let us recall the following standard definition, see [14].

Definition 3.1. We will say that the fluid is blocked in the domain Ω if u = 0 a.e. in
Ω is solution to the variational problem (Pf).

We prove the following proposition, which gives the variational interpretation
of blockage property.

Proposition 3.1. The fluid is blocked in the domain Ω if and only if

(3.1) g

∫
Ω

|D (v)| dx ≥
∫
Ω

f · vdx ∀v ∈ Wp,div.

Proof. The first implication is an immediate consequence of the definition of block-
age property. For the second one, we proceed as follows. Suppose that (3.1) holds.
In particular, we have

(3.2) g

∫
Ω

|D (u)| dx ≥
∫
Ω

f · udx.

Subtracting the inequalities (2.12) and (3.1) , we find

µ

∫
Ω

|D (u)|p dx ≤ B (u,u,v) + µ

∫
Ω

|D (u)|p−2D (u) ·D (v) dx

+ g

∫
Ω

|D (v)| dx−
∫
Ω

f · vdx ∀v ∈ Wp,div.

(3.3)

Thus, the result can be obtained by setting v = 0 as test function in (3.3) and
using Korn’s inequality. □
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Hence, the mathematical study of blockage property consists in finding the re-
lationship between the yield limit g and the density of volume forces f such that
the inequality (3.1) holds.

We say that f is a blocking force if the inequality (3.1) is satified.
We suppose from now on that

(3.4) f ∈ L∞ (Ω)n .

Proposition 3.2. Denote by j the functionel given by j : Wp,div −→ [0,+∞[,

j(v) = g

∫
Ω

|D (v)| dx,∀v ∈ Wp,div.

Then the set j(0) of all blocking forces is nonempty closed and convex.

Proof. Since j(v) ≥ 0 for any v ∈ Wp,div, we deduce that ∂j(0) contains f = 0.

According to [6] the set ∂j(0) is closed and convex. □

Proposition 3.3. Let f ∈ ∂j(0), f ̸= 0 and set M = sup{λ > 0|λf ∈ ∂j(0)}. Then
M < +∞ and M f ∈ ∂j(0).

Proof. The set {λ > 0 | λf ∈ ∂j(0)} is nonempty since it contains λ = 1 (in
fact it contains ]0, 1]). Since f ̸= 0, there is v0 ∈ Wp,div satisfying (f , v0) > 0. If
λ0 is large enough we have (λ0f , v0) > j(v0)so that λ0f /∈ ∂j(0). Consequently
{λ > 0 | λf ∈ ∂j(0)} ⊂ ]0, λ0[ and M ≤ λ0 < +∞. Let (λn)n be a sequence con-
verging towards M and verifying λnf ∈ ∂j(0). Hence λnf → M f and since ∂j(0)

is closed we deduce that M f ∈ ∂j(0). □

Definition 3.2. Let f be a blocking force and let M be defined as in the Proposition
4. We call f̃ = M f the maximal blocking force associated with f .

Proposition 3.4. Let f ∈ ∂j(0), f ̸= 0. Then the maximal blocking force is given by
f̃ = M1f where

M1 = inf(f ,v)̸=0
j(v)

|(f , v)|
.

Proof. Remark that f ∈ ∂j(0) iff |(f , v)| ≤ j(v) ∀v ∈ Wp,div and observe that M =

M1, where M = sup{λ > 0 | λf ∈ ∂j(0)}. □

Let f be a blocking force. We denote by C the set

(3.5) C =

{
v ∈ Wp,div | g

∫
Ω

|D (v)| dx =

∫
Ω

f · vdx
}
.
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It is straightforward to verify that the set C is a convex cone in Wp,div.

4. BEHAVIOUR OF THE FLOW

Let us introduce for ε > 0 the perturbed blocking force

(4.1) fε =
(
1 + εp−1

)
f ,

and denote by uε the solution of the corresponding problem, i.e.

B (uε,uε,v − uε) + µ

∫
Ω

|D (uε)|p−2D (uε) ·D (v − uε) dx

+g

∫
Ω

|D (v)| dx− g

∫
Ω

|D (uε)| dx ≥
∫
Ω

fε · (v − uε) dx ∀v ∈ Wp,div.(4.2)

The above inequality can be written in equivalent form

µ

∫
Ω

|D (uε)|p dx+ g

∫
Ω

|D (uε)| dx =

∫
Ω

fε·uεdx,(4.3)

B (uε,uε,v) + µ

∫
Ω

|D (uε)|p−2D (uε) ·D (v) dx+ g

∫
Ω

|D (v)| dx

≥
∫
Ω

fε·vdx ∀v ∈ Wp,div.(4.4)

Setting now

(4.5) wε =
uε

ε
, ∀ε > 0.

In the following we establish a convergence result for (wε)ε>0 when ε tends to 0.

Theorem 4.1. Suppose that f is a blocking force. Then, (wε)ε>0 convergences strongly
when, ε tends to 0, in Wp,div to w solution of the following variational inequality

(4.6) w ∈ C | µ
∫
Ω

|D (w)|p−2D (w) ·D (v −w) dx ≥
∫
Ω

f · (v −w) dx ∀v ∈ C.

Proof. The system becomes, taking into account (4.5)

(4.7) µεp−1

∫
Ω

|D (wε)|p dx+ g

∫
Ω

|D (wε)| dx =
(
1 + εp−1

) ∫
Ω

f ·wεdx,
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ε2B (wε,wε,v) + µεp−1

∫
Ω

|D (wε)|p−2D (wε) ·D (v) dx+

g

∫
Ω

|D (v)| dx ≥
(
1 + εp−1

) ∫
Ω

f · vdx ∀v ∈ Wp,div.

Equation (4.7) gives

µεp−1

∫
Ω

|D (wε)|p dx+ g

∫
Ω

|D (wε)| dx−
∫
Ω

f ·wεdx

= εp−1

∫
Ω

f ·wεdx(4.8)

Suppose that f is a a blocking force, then (4.8) gives

(4.9) µ

∫
Ω

|D (wε)|p dx ≤ g

∫
Ω

|D (wε)| dx.

We deduce makig use Korn’s inequality and some algebraic manupilations that

(4.10) ∥wε∥W
p,div

≤ c.

Hence, we can extract a subsequence still denoted by (wε)ε>0 such that

(4.11) wε −→ w in Wp,div weakly.

Rellich-Kondrachof’s compactness theorem allows us to get after a new extrac-
tion

(4.12) wε −→ w in Lp (Ω)n strongly and a.e. in Ω.

Therefore, equation (4.8) gives again

g

∫
Ω

|D (wε)| dx ≤
(
1 + εp−1

) ∫
Ω

f ·wεdx.

There by allowing to find

(4.13) g lim

∫
Ω

|D (wε)| dx ≤ lim inf

∫
Ω

f ·wεdx.

This yields

(4.14) g

∫
Ω

|D (w)| dx ≤
∫
Ω

f ·wdx.
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Consequently, since f is a blocking force, the following equation holds

(4.15) g

∫
Ω

|D (w)| dx =

∫
Ω

f ·wdx.

Taking w as test function in inequality (4.8), it implies that

ε2B (wε,wε,w) + µεp−1

∫
Ω

|D (wε)|p−2D (wε) ·D (w) dx

+ g

∫
Ω

|D (w)| dx ≥
(
1 + εp−1

) ∫
Ω

f ·wdx

This gives, making use (4.15)

(4.16) ε3−pB (wε,wε,w) + µ

∫
Ω

|D (wε)|p−2D (wε) ·D (w) dx ≥ g

∫
Ω

|D (w)| dx

Moreover, Lemma 1 permits us to obtain the estimate

(4.17) |B (wε,wε,w)| ≤ ∥wε∥2W
p,div

∥w∥W
p,div

.

From another hand, it is well known that the non linear terme µ
∫
Ω
|D (wε)|p−2D (wε)·

D (w) dx converges to µ
∫
Ω
|D (w)|p dx, see the reference [4]. Consequently, by

passing to the limit, one can find, keeping in mind account (4.17),

(4.18) µ

∫
Ω

|D (w)|p dx ≥ g

∫
Ω

|D (w)| dx.

We get thanks to (4.9)

lim inf µ

∫
Ω

|D (wε)|p dx ≤ g lim inf

∫
Ω

|D (wε)| dx.

So, using (4.13) we can infer that

lim inf µ

∫
Ω

|D (wε)|p dx ≤ lim inf

∫
Ω

f ·wεdx

Which implies that

(4.19) µ

∫
Ω

|D (w)|p dx ≤
∫
Ω

f ·wdx

Putting together (4.15), (4.18) and (4.19) we obtain

(4.20) µ

∫
Ω

|D (w)|p dx = g

∫
Ω

|D (w)| dx =

∫
Ω

f ·wdx
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Which implies in particular that w ∈ C. Furthermore, by (4.8) we get

ε3−pB (wε,wε,v) + µ

∫
Ω

|D (wε)|p−2D (wε) ·D (v) dx+

1

εp−1

(
g

∫
Ω

|D (v)| dx−
∫
Ω

f · vdx
)

≥
∫
Ω

f · vdx ∀v ∈ Wp,div.

By choosing v ∈ C in the above inquality, the passage to the limit leads to

(4.21) µ

∫
Ω

|D (w)|p−2D (w) ·D (v) dx ≥
∫
Ω

f · vdx ∀v ∈ C.

Combining (4.20) and (4.21) yields the inequality (4.6).
Our object now is to prove the strong convergence. For this aim, we procede as

follows. The use of (4.7) and (4.8) permits us to affirm that for every v ∈ Wp,div

we have

ε2B (wε,wε,v) + µεp−1

∫
Ω

|D (wε)|p−2D (wε) ·D (v −wε) dx

≥
(
1 + εp−1

) ∫
Ω

f · (v −wε) dx− g

(∫
Ω

|D (v)| dx−
∫
Ω

|D (wε)| dx
)

It follows, by setting v = w

−ε2B (wε,wε,w) + µεp−1

∫
Ω

|D (wε)|p−2D (wε) ·D (wε −w) dx

≤
(
1 + εp−1

) ∫
Ω

f · (wε −w) dx+ g

∫
Ω

(|D (w)| − |D (wε)|) dx.(4.22)

Further, since f is a blocking force and w ∈ Wp,div, one can verify that

g

∫
Ω

(|D (w)| − |D (wε)|) dx ≤
∫
Ω

f · (w −wε) dx

Consequently, inequality (4.22) becomes

µ

∫
Ω

|D (wε)|p−2D (wε) ·D (wε −w) dx ≤
∫
Ω

f · (wε −w) dx

+ ε3−pB (wε,wε,w) .

(4.23)

This becomes
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µ

∫
Ω

(
|D (wε)|p−2D (wε)− |D (w)|p−2D (w)

)
·D (wε −w) dx

≤
∫
Ω

f · (wε −w) dx− µ

∫
Ω

|D (w)|p−2D (w)D (wε −w) dx

+ cε3−p ∥wε∥2W
p,div

∥w∥W
p,div

.

(4.24)

Let us observe now that for every x, y ∈ Rn,(
|x|p−2 x− |y|p−2 y

)
· (x− y) ≥ c

|x− y|2

(|x|+ |y|)2−p , 1 < p ≤ 2.

So, applying the above inequality, (4.24) can be rewritten as

µ

∫
Ω

|D (wε −w)|2

(|D (wε)|+ |D (w)|)2−pdx ≤ c

∣∣∣∣∫
Ω

f · (wε −w) dx

∣∣∣∣
+cε3−p ∥wε∥2W

p,div
∥w∥W

p,div
+ cµ

∣∣∣∣∫
Ω

|D (w)|p−2D (w)D (wε −w) dx

∣∣∣∣ .
Which gives exploiting Korn’s and Hölder’s inequalities

∥wε −w∥pWp
≤ c

(∫
Ω

(|D (wm)|+ |D (w)|)p dx
) 2−p

2
(∣∣∣∣∫

Ω

f · (wε −w) dx

∣∣∣∣
+ε3−p ∥wε∥2W

p,div
∥w∥W

p,div
+ µ

∫
Ω

|D (w)|p−2D (w)D (wε −w) dx

) p
2

.

Passing to the limit, we conclude, using (4.11) and taking into account the fact
that |D (w)|p−2D (w) belongs is bounded of Lp′ (Ω)n that

wε −→ w in Wp,div strongly.

Which permits us to achieve the proof. □

Corollary 4.1. Denoting by w0 the unique solution of the variational equation given
by

(4.25) µ

∫
Ω

|D (w0)|p−2D (w0) ·D (v) dx =

∫
Ω

f · vdx ∀v ∈ Wp,div.

Then, the following estimates hold
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(4.26) ∥D (w)∥Lp(Ω)n×n ≤ ∥D (w0)∥Lp(Ω)n×n and
∫
Ω

f ·wdx ≤
∫
Ω

f ·w0dx.

Proof. We can infer by setting w as test function in (4.25) that

µ

∫
Ω

|D (w0)|p−2D (w0) ·D (w) dx =

∫
Ω

f ·wdx.

This yields, using Hölder’s inequality

µ ∥D (w0)∥p−1

Lp(Ω)n×n ∥D (w)∥Lp(Ω)n×n ≥
∫
Ω

f ·wdx = µ ∥D (w)∥p
Lp(Ω)n×n .

Which allows us to get the first estimate. The second estimate becomes an imme-
diate consequence of the first one. □

REFERENCES

[1] G. DUVAUT, J.L. LIONS: Les Inéquations en Mécanique et en Physique, Dunod 1976 .
[2] M. FORTIN: Résolution numérique d’écoulements Newtoniens et non Newtoniens, Thèse, Paris

1962. .
[3] J. FREHSE, J. MÁLEK, M. STEINHAUER: On analysis of steady flows of fluids with shear-

dependent viscosity based on the Lipschitz truncation method, SIAMJ. Math. Anal. 34(2003),
1064–1083.

[4] J.L. LIONS: Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires, Dunod
1969.

[5] J. MÁLEK: Mathematical Properties of Flows of Incompressible Power-Law-Like fluids that are
Described by Implicit Constitutive Relations, Electronic Transactions on Numerical Analysis.
Volume 31 (2008), 110–125.

[6] J. MÁLEK, D. PRAŽÁK AND M. STEINHAUER: On the Existence and Regularity of Solutions
for Degenerate Power-Law Fluids, Differential and Integral Equations, Bonn, Mai (2007), 1–16.
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